
Bachelor Thesis

Analysis of Encrypted Databases with CryptDB

Michael Skiba

Date: 09.07.2015
Supervisor: Prof. Jörg Schwenk

Advisor: Dr.-Ing. Christoph Bader
M.Sc. Christian Mainka
Dipl.-Ing. Vladislav Mladenov

Ruhr-University Bochum, Germany

Chair for Network and Data Security
Prof. Dr. Jörg Schwenk

Homepage: www.nds.rub.de

www.nds.rub.de

i

Erklärung

Ich erkläre, dass das Thema dieser Arbeit nicht identisch ist mit dem Thema einer von mir bereits für ein an-
deres Examen eingereichten Arbeit. Ich erkläre weiterhin, dass ich die Arbeit nicht bereits an einer anderen
Hochschule zur Erlangung eines akademischen Grades eingereicht habe.

Ich versichere, dass ich die Arbeit selbständig verfasst und keine anderen als die angegebenen Quellen
benutzt habe. Die Stellen der Arbeit, die anderen Werken dem Wortlaut oder dem Sinn nach entnommen
sind, habe ich unter Angabe der Quellen der Entlehnung kenntlich gemacht. Dies gilt sinngemäß auch für
gelieferte Zeichnungen, Skizzen und bildliche Darstellungen und dergleichen.

Ort, Datum Unterschrift

ii

Acknowledgements

Writing this thesis was a time consuming process and the end result has benefited greatly from the input of a
lot of different people whom I would like to thank on this page. First of all I would like to thank my parents
for enabling me to be in the position to write this thesis in the first place. Secondly I would like to thank
my three advisors who have been directly involved in writing this thesis: There is Dr.-Ing. Christoph Bader
that initially set me up with this particular interesting topic. And then there is M.Sc. Christian Mainka and
Dipl.-Ing. Vladislav Mladenov whom I have to thank especially for their valuable suggestions and remarks,
for both the presentations as well as the actual thesis. I also have to thank both of them for setting up and
maintaining the virtual machine that was used for the experiments during this thesis. Additionally I would
like to thank everyone that I have not mentioned here but is still somehow involved in my bachelors thesis,
this includes, but is not limited to my professors and their assistants, the people at the registrar’s office and
pretty much everyone else that is involved in keeping the university running.

Now that the obvious stakeholders have been pleased (wink), let me come to a few more personal men-
tions. I would like to thank Peter Skiba for taking the time and interest to proofread the manuscript of this
thesis and correcting many post-midnight mistakes, as well as making some stylistic suggestions.

A whole circle of people that also deserves my recognition is my study group. That consists of Alexan-
der Wichert, Christoph Zallmann, Endres Puschner, Johanna Jupke and Tim Guenther. Not just for the
occasional LATEX induced crisis intervention, but also for the good times (and tasty meals) we had during the
basic study period. Feel free to visit https://lerngruppe-id.de for a visual representation of each
of them.

Actually I wanted to thank my laptop for living just long enough for me to finish this thesis. But since
it unexpectedly lost power once again while writing this acknowledgement I wont - there you have it you
piece of machinery, you are getting replaced by a ThinkPad soon enough. In fact lets thank the internet
instead for providing a secure backup of my work.

Almost last but not least, if you are still reading this, then I would like to thank you - the reader - for
taking the time to even read the acknowledgement page of this thesis, where someone you probably do not
know thanks a bunch of people and even things that you probably also do not know. But by now you have
probably realized that this page is to be taken with a wink in one’s eye.

And finally I would like to thank Lena Brühl, who always has the last word in our relationship, so why
not have it here too? ;-) May the next sixty years be as happy and successful as the the past six ones.

https://lerngruppe-id.de

Abstract
CryptDB is a MySQL proxy that allows SQL aware encryption inside existing database management

systems. To offer the best possible protecting while enabling the greatest computational flexibility it relies
on a new concept called onions, where different layers of encryption are wrapped around each other and
are only revealed as necessary. While its concept to improve database security looks fresh and interesting
from an academic standpoint we wanted to examine the usability in practical application to determine if a
real world productive use is desirable. We have therefore benchmarked the performance of CryptDB and
examined how well existing applications can be adapted for the use with a CryptDB setup.

KEYWORDS: CryptDB, Databases, Encryption, Onion Encryption, Usability, Benchmark

Contents

List of Figures . v
List of Tables . vi

1. Introduction 2

2. Foundation 3
2.1. Databases and Database Systems . 3
2.2. Database Management System (DBMS) . 4
2.3. The Query Language SQL . 5

3. CryptDB 8
3.1. General Setup . 8
3.2. Onion Layers . 8
3.3. Encryption Types . 9
3.4. Related Work . 12

4. Benchmark 14
4.1. Preliminary Considerations . 14
4.2. Benchmarks . 14
4.3. Results . 18
4.4. Conclusion . 22

5. Adapting Applications 25
5.1. Preliminary Considerations and Restrictions . 25
5.2. Techniques . 25
5.3. Sample Applications . 27
5.4. Conclusion . 32

6. Conclusions 33

A. Appendix General 34
A.1. Testing Environment . 34
A.2. Installing CryptDB . 34

B. Appendix Logs and Errors 36
B.1. Adapting Applications . 36

Bibliography 41

List of Figures

2.1. Database storage concept . 3
2.2. Structure of a Database Management System . 4
2.3. Formal syntax of a SELECT statement according to ISO/IEC 9075:2011 6
2.4. Formal syntax of an INSERT statement according to ISO/IEC 9075:2011, some optional

parts have been omitted due to size restriction and improved readability 6
2.5. Formal syntax of a UPDATE statement according to ISO/IEC 9075:2011 6
2.6. Formal syntax of a DELETE statement according to ISO/IEC 9075:2011 7

3.1. Communication scheme of an application without and with CryptDB 8
3.2. Schematics of the onions construct with various layers that is used in CryptDB [1] 9

4.1. The SQL script responsible for creating the test table on which the benchmark is performed . 16

List of Tables

4.1. MySQL: Scenario=1, PARAM1=100, PARAM2=1.000, PARAM3=1 18
4.2. CryptDB: Scenario=1, PARAM1=100, PARAM2=1.000, PARAM3=1 18
4.3. MySQL: Scenario=1, PARAM1=100, PARAM2=1.000, PARAM3=1 18
4.4. CryptDB: Scenario=1, PARAM1=100, PARAM2=1.000, PARAM3=1 19
4.5. MySQL: Scenario=1, PARAM1=100, PARAM2=1.000, PARAM3=2 19
4.6. CryptDB: Scenario=1, PARAM1=100, PARAM2=1.000, PARAM3=2 19
4.7. MySQL: Scenario=1, PARAM1=100, PARAM2=1.000, PARAM3=4 19
4.8. CryptDB: Scenario=1, PARAM1=100, PARAM2=1.000, PARAM3=4 19
4.9. MySQL: Scenario=1, PARAM1=100, PARAM2=1.000, PARAM3=8 20
4.10. CryptDB: Scenario=1, PARAM1=100, PARAM2=1.000, PARAM3=8 20
4.11. MySQL: Scenario=2, PARAM1=100.000, PARAM2=500, PARAM3=1 20
4.12. CryptDB: Scenario=2, PARAM1=100.000, PARAM2=500, PARAM3=1 21
4.13. MySQL: Scenario=2, PARAM1=100.000, PARAM2=500, PARAM3=1 21
4.14. CryptDB: Scenario=2, PARAM1=100.000, PARAM2=500, PARAM3=1 21
4.15. MySQL: Scenario=2, PARAM1=100.000, PARAM2=500, PARAM3=2 21
4.16. CryptDB: Scenario=2, PARAM1=100.000, PARAM2=500, PARAM3=2 21
4.17. MySQL: Scenario=2, PARAM1=100.000, PARAM2=500, PARAM3=4 21
4.18. CryptDB: Scenario=2, PARAM1=100.000, PARAM2=500, PARAM3=4 22
4.19. MySQL: Scenario=2, PARAM1=100.000, PARAM2=500, PARAM3=8 22
4.20. CryptDB: Scenario=2, PARAM1=100.000, PARAM2=500, PARAM3=8 22

Acronyms

AES Advanced Encryption Standard

BLOB Binary Large Object

CBC Cipher Block Chaining

CMC CBC-mask-CBC

CMS Content Managing System

CPU Central Processing Unit

DBA Database Administrator

DBaaS Database as a Service

DBMS Database Management System

IND-CPA Indistinguishability under chosen-plaintext attack

IV Initialization Vector

OLTP Online Transaction Processing

SPEC Standard Performance Evaluation Corporation

TPC Transaction Processing Performance Council

UDF User Defined Function

1. Introduction

In today’s computing environment companies accumulate more and more personal data. Virtually every

internet user is registered in at least one database, but usually a lot more. In fact, the information provider

Experian has conducted a survey that revealed that the average Briton between 25 and 34 years has 40.1

different online accounts [2]. The circumstance that there is a huge amount of highly personal data stored in

one place makes these databases a very attractive target for both inside and outside attackers. While it seems

to be common practice to try to defend the database against attacks from the outside via DMZs, firewalls and

intrusion prevention systems it seems like there is not much that can be done against an inside attacker. An

inside attacker in our scenario is someone who has limited or full access to the database and its entries, e.g.

there is at least one database administrator, who by nature, has to be able to have full control over all access

rights to maintain the database. Until now it seems that the only thing you can do would be to trust him to

do his job properly[3] [4]. We see something similar with the increasing trend towards cloud computing and

Infrastructure as a Service (IaaS) which means that the company which rightfully possesses the user data

might not store the data in their facilities but on some third party site. This third party also needs a certain

level of control to administrate and maintain their infrastructure. So how can a company outsource data in a

possibly untrusted environment without giving away sensible information about their customers?

One approach is to outsource the data only in an encrypted form and let the database perform its operations

only on these encrypted data. This is exactly what the software CryptDB claims to provide. CryptDB

was developed by the MIT and serves as a proxy, a translator, between the application that communicates

with standard SQL and the database that behaves like a regular database. According to the original paper

by Popa et al. [1] that was published together with the first version of CryptDB, both the application and

the database require only small changes and should otherwise work transparently, i.e. they are unaware that

they are computing with encrypted data. But is this really true?

In this thesis we want to evaluate the actual usability of a CryptDB setup in practical application. To see

whether the loss in performance and the increased space usage are small enough to justify the use of such

a crypto layer. Keeping in mind that big companies often maintain databases with several million entries,

so even a small overhead might lead to significant differences in the overall result. Additionally we want

to conduct whether adapting existing applications is really as easy as it is claimed to be and if there are

noteworthy problems that might need to be addressed before a widespread use.

2. Foundation

In this section we describe the general concepts behind databases and SQL that are necessary to understand

this thesis. We will see that a minimal knowledge of both is essential to understand how CryptDB works.

2.1. Databases and Database Systems

A database is “[a] structured set of data held in computer storage and typically accessed or manipulated by

means of specialized software”[5]. Databases are among the most important aspects of the third industrial

revolution, that is the transition from analogous to digital computing that took place somewhere between the

1950s and the 1970s. They allow for an abstracted view on data so that the user can request a subset of the

underlying data that is relevant to his current interests without him having to rearrange or care about the data

itself. Previously digital data sets had typically been stored in “blocks” (e.g. textfiles) that had to follow a

precise structure and could only be understood by applications that were specifically aware of the design of

said structure. The new ability to store all the data in one place and access only the relevant portions of it has

lead to a widespread adoption of database systems. While digital databases have been used since the midst of

the twentieth century to store customer data - among other things - it was the triumphant advance of the inter-

net that lead to even more databases and even more customer data that is now distributed around the world.

Figure 2.1.: Database storage concept

More important than the number of installations is the fact that al-

most all of these databases are directly connected to the internet

and thus are potentially exposed to the threats of cybercrime. This

exposure however is necessary to allow the users to access their in-

formation from their own internet connected devices from all over

the world and still have their personal settings presented to them:

E.g. the webshop remembers who you are and what you like and of

course, for convenience sake your credit card number, so that your

next purchase is just one click away. This development seems log-

ical from an economy point of view. But it is not without risks. As

the past has shown millions of sensitive data sets are leaked every

year [6]. This includes voluntarily entered data (e.g. a webshop

or social media site) [7] as well as administrative data held by the

government or employers [8][9].

2.2 Database Management System (DBMS) 4

2.2. Database Management System (DBMS)

The software that coordinates access to the database is called a Database Management System (DBMS). It

provides an interface to the user that is usually independent of the platform for both input and output. The

input of commands and output of results is usually done via the language SQL (see Sect: 2.3). The DBMS

then takes care of the details, such as how it stores the data sets on the filesystem of the used platform or

how it handles concurrent access by several applications (see Fig. 2.1).

2.2.1. Structure of a DBMS

In this section we give a quick overview over the structure of a DBMS as well as introducing a few terms that

we will use throughout this document. First it has to be stated that a DBMS usually can and will hold more

than one database. In fact often the DBMS itself reserves one or more databases to store information about

itself and make them accessible to the user, e.g. in MySQL one can usually find the databases mysql and

information_schema. Inside such a database there can be several tables, that look similar to a spreadsheet.

A Database Administrator (DBA) sets columns that are supposed to hold a certain data structure (e.g. an

integer, a date, a text, ...) and meet specific criteria (e.g. is not allowed to be NULL1). Afterwards these

columns can be filled with data. Every successful INSERT statement (see Listing 2.4) creates a new row in

the database table. See Figure 2.2 for a visual representation of these structures inside a DBMS. The single

element that you get by combining a database, a table, a column and a row reference is called a field (e.g.

Database 1, Table 3, Column 1, Row 5 would return the field labeled “Value 5”).

Figure 2.2.: Structure of a Database Management System

1SQL distinguishes between an empty string or an integer that is set to 0 and a true NULL value. While the first two examples
actually have a value, the latter one says that this data field has not been set (yet). There are cases in which it makes sense to
prohibit a NULL value.

2.3 The Query Language SQL 5

2.3. The Query Language SQL

Probably the most important language in the brief history of digital databases is SQL which can be classified

as a structured descriptive query language. “Structured” because every query has to follow a certain struc-

ture, which we will see later. “Descriptive” because the users are intended to enter what they demand (e.g.

SUM(COLUMN)) without entering in what way this should be effected (e.g. ROW1 + ROW2 + ROW3 +

ROW4). How exactly that sum is calculated is up to the database. SQL has been standardized as ISO/IEC

9075 in 1987 and has been revised several times since then [10]. It lays the foundation for many different

database systems, but most of them implement their own additional commands to distinguish themselves

from their competitors, thus introducing a certain degree of incompatibility between each other. A few ex-

amples of these database systems are MS SQL, Oracle, MySQL, and PostgreSQL. The first and second

one are examples of commercial database systems which have a high distribution in enterprise environments

while the latter two are examples of open source database systems [11]. Due to its free nature MySQL has

been the standard database system in many webserver packages and features the highest overall installation

count (counting company and private users). Because of these two aspects we decided to also use MySQL

as a base for our tests.

2.3.1. Types of SQL Statements

According to the ISO 9075:2011 definition there are 9 types of SQL Statements:

• SQL-schema statements

• SQL-data statements

• SQL-transaction statements

• SQL-control statements

• SQL-connection statements

• SQL-session statements

• SQL-diagnostics statements

• SQL-dynamic statements

• SQL embedded exception declaration

It is worth mentioning that not all of these statements read from or write to the database. Most of these

statements are of an organizational nature and only last temporarily until the session is terminated. The two

important classes of statements that can permanently alter the data in the database are the SQL-schema and

the SQL-data statements. This distinction is relevant because - when it comes to concealing sensitive data -

only the aforementioned statements do carry a sensitive payload.

2.3.2. Structure of SQL Statements

In this section we briefly explain the structure of the most commonly used SQL-data statements that might

carry user related data. We will see them again when we discuss CryptDB. Generally all SQL statements

follow a similar structure: At the beginning it is specified what type of statement should be issued (e.g.

2.3 The Query Language SQL 6

select), depending on the statement there is a further specification (e.g. in case of select: which field should

be selected?) and then there is a target (usually a table) which can be restricted by defining certain conditions.

SELECT statement

Probably the most used statement is SELECT. It is used to fetch data from the database. One specifies the

fields one is interest in and optionally restricts the returned results by certain criteria.

< s e l e c t s t a t e m e n t : s i n g l e row> : : =
SELECT [< s e t q u a n t i f i e r >] < s e l e c t l i s t >
INTO < s e l e c t t a r g e t l i s t >
< t a b l e e x p r e s s i o n >
< s e l e c t t a r g e t l i s t > : : =
< t a r g e t s p e c i f i c a t i o n > [{ <comma> < t a r g e t s p e c i f i c a t i o n > } . . .]

Figure 2.3.: Formal syntax of a SELECT statement according to ISO/IEC 9075:2011

INSERT statement

The INSERT statement is used to insert new data sets into the database.

< i n s e r t s t a t e m e n t > : : =
INSERT INTO < i n s e r t i o n t a r g e t > < i n s e r t columns and sou rce >

< i n s e r t i o n t a r g e t > : : =
< t a b l e name>

[. . .]

Figure 2.4.: Formal syntax of an INSERT statement according to ISO/IEC 9075:2011, some optional parts
have been omitted due to size restriction and improved readability

UPDATE statement

The UPDATE statement is used to modify existing data sets.

<update s t a t e m e n t : s e a r c h e d > : : =
UPDATE < t a r g e t t a b l e >

[FOR PORTION OF < a p p l i c a t i o n t ime p e r i o d name>
FROM < p o i n t in t ime 1> TO < p o i n t in t ime 2>]

[[AS] < c o r r e l a t i o n name>]
SET < s e t c l a u s e l i s t >
[WHERE < s e a r c h c o n d i t i o n >]

Figure 2.5.: Formal syntax of a UPDATE statement according to ISO/IEC 9075:2011

2.3 The Query Language SQL 7

DELETE statement

The DELETE statement is used to delete a row.

< d e l e t e s t a t e m e n t : s e a r c h e d > : : =
DELETE FROM < t a r g e t t a b l e >

[FOR PORTION OF < a p p l i c a t i o n t ime p e r i o d name>
FROM < p o i n t in t ime 1> TO < p o i n t in t ime 2>]

[[AS] < c o r r e l a t i o n name>]
[WHERE < s e a r c h c o n d i t i o n >]

Figure 2.6.: Formal syntax of a DELETE statement according to ISO/IEC 9075:2011

With the knowledge we have accumulated about the design principles and core mechanics of databases

and DBMSs we can now move forward and take a look on how CryptDB uses these concepts to interact

with the DBMS.

3. CryptDB

In this chapter we take a look at the concepts behind CryptDB, similarly to how we looked at databases

and SQL in the first chapter. We start with the general setup and then go into details and explain the different

encryption methods that are used and what the so called “Onion Layers” are.

3.1. General Setup

CryptDB is intended to work as a proxy between the application and the database. An application for

example might be a website, an application on a mobile device (a so called “App”) or a classic desktop

application, basically anything that connects to a database.

Figure 3.1.: Communication scheme of an application without and with CryptDB

3.2. Onion Layers

When it comes to SQL aware encryption there are different aspects of computation that are based on dif-

ferent fundamental principles. For example the operator GROUP BY relies on equality checks concerning

the encrypted data, other functions like SUM rely on the ability to perform additions of the encrypted data.

CryptDB deals with these different computational aspects by clustering functions by their underlying op-

erations, as mentioned above. Around these different aspects or clusters CryptDB builds a construct that

the developers have called onion: An onion features different layers of encryption from least revealing on

3.3 Encryption Types 9

the outside to most revealing on the inside (see Fig. 3.2). At the same time the outmost layer is the one

with the least functionality while the innermost one offers the greatest functionality. The transformation

from one layer into another (“peeling off a layer”) happens automatically when the need arises (i.e. when a

query with a certain operator/function is issued). In this case CryptDB automatically reencrypts the entire

column and remembers its state. While technically it is possibly to reencrypt everything to a higher layer

of security again it is not recommended by the developers in case of common queries as it would demand a

considerable amount of computationpower, besides that the information might have already been revealed.

Figure 3.2.: Schematics of the onions construct with various layers that is used in CryptDB [1]

3.3. Encryption Types

Each type uses a different algorithm that meets the specified requirements for a certain type and can be

exchanged for another algorithm should the need arise, e.g. when a used cipher is broken. In such an

event existing encrypted data would have to be decrypted with the old algorithm and reencrypted using the

new one. We have listed the different layers from most to least secure. Whereas least secure means that

this particular layer does reveal the most information about its encrypted content, please notice that this is

sometimes unavoidable in order to perform certain operations and is not automatically insecure.

3.3.1. Random (RND)

The RND onion layer provides the strongest security assurances: It is probabilistic, meaning that the same

plaintext will be encrypted to a different ciphertext. On the other hand it does not allow any feasible com-

putation in a reasonable amount of time. If someone wants to know something about the content of these

fields the encrypted data has to be retrieved as a whole to be decrypted by CryptDB. This type seems to

be reasonable choice for highly confidential data like medical diagnosis, private messages or credit card

numbers that do not need to be compared to other entries for equality.

3.3 Encryption Types 10

The current implementation of RND uses the Advanced Encryption Standard (AES) to encrypt strings and

Blowfish to encrypt integers1. In their paper Popa et al. explain this with the respective block sizes of the

two ciphers: Blowfish has a blocksize of 64 bit, which should be large enough to store 99% of all integers,

whereas AES is used with a blocksize of 128 bit [1]. This means using Blowfish to store integers only

needs half the space that AES needs. Both implementations use the Cipher Block Chaining (CBC) mode

with a random Initialization Vector (IV) and are considered to be Indistinguishability under chosen-plaintext

attack (IND-CPA) secure by Popa et al. [1].

3.3.2. Homomorphic encryption (HOM)

The HOM onion layer provides an equally strong security assurance, as it is considered to be IND-CPA

secure too [1]. It is specifically designed for columns of the data type integer and allows the database to

perform operations of an additive nature. This includes of course the addition of several entries, but also

operations like SUM or AVG. The reason that only addition is supported lies in the fact that fully homomor-

phic calculations, while mathematically proofen by M. Cooney [12], is unfeasible slow on current hardware.

An exception is the homomorphic addition HOM(x) · HOM(y) = HOM(x + y) mod n, that can be

performed in a reasonable amount of time. In CryptDB the developers choose to implement the homomor-

phic addition using the Paillier cryptosystem [13]. Currently the ciphertext of a single integer is stored a

VARBINARY(256), this means it uses 256 bytes of space which is 64 times the size of a normal integer

that would only use 4 bytes. Considering that integers are among the most used data types in a database this

is a huge overhead. Popa et al. indicate that there might be a more efficient way to store the integers with

the use of a scheme developed by Ge and Zdonik [14][1]. As of today this has not been implemented.

3.3.3. Word search (SEARCH)

The SEARCH onion layer is exclusive for columns of the data type text. In the version of CryptDB that

we used in this thesis (see Appendix A.1) we have been unable to successfully create such an onion. The

following explanation is therefore solely of a theoretical nature and based on the paper provided by Popa

et al. [1]. This layer uses a modified Version of a cryptographic scheme presented by Song et al.[15] and

allows for a keyword level text search with the LIKE operator. The implementation splits the string that

is to be stored in the database by a specified delimiter (e.g. space or semicolon) and stores each distinct

substring in a concatenated and encrypted form in the database. Each substring is padded to a certain size

and its position inside the concatenated string is permutated thus obfuscating the position where it appears

in the original string. When the user wants to perform a search using the LIKE operator CryptDB applies

the padding to the search term and sends the encrypted version to the DBMS. The DBMS can now search

for this specific string and is able to return the results.

This scheme comes with several restrictions: Due to the used scheme it is only able to search for the existence

of full words, it does not work with regular expressions or wildcards since they would not be encrypted in

the same way.

1See line 408 in main/CryptoHandlers.cc

3.3 Encryption Types 11

3.3.4. Deterministic (DET)

The DET onion layer provides the second strongest security assurance: In contrary to RND this layer is

deterministic, meaning that the same plaintext will be encrypted to the same ciphertext. This means that

the DBMS can identify fields with equal (encrypted) content. This allows us to use functions like GROUP

BY, to group identical fields together or use DISTINCT to only select fields that are different. It does not

however reveal whether a certain field is bigger or smaller than another field.

For this type the developers used Blowfish and AES again, although this time they do not distinguish between

integers and strings, but choose the cipher depending of the blocksize of the plaintext. Blowfish is used for

any plaintext that is smaller than 64 bit and AES for any plaintext that is bigger than 64 bit. In both cases the

plaintext is padded up to fit the blocksize. A special situation occurs when the plaintext is longer than the

standard 128 bit AES blocksize: In this case the plaintext is split into several blocks which are processed in

a variant of AES-CBC-mask-CBC (CMC) mode that uses a zero IV . Popa et al. justifies these special steps

because AES in normal CBC mode would reveal prefix equality for the first n blocks in case the first n 128

bit blocks are identical [1].

3.3.5. Order-preserving encryption (OPE)

The OPE onion layer is significantly weaker than the DET layer as it reveals the order of the different

entries. This means that the DBMS knows relations like bigger and smaller, but also equality (without

having to look at the Eq onion). This means that if x < y, then OPE(x) < OPE(y), also if x = y, then

OPE(x) = OPE(y). This allows us to use ordered operations like MIN, MAX or ORDER BY. To achieve

this functionality the developers of CryptDB implemented an algorithm that was published by Boldyreva

et al. and was inspired by the ideas suggested by Agrawal et al. [16] [17].

In regards to security it is noteworthy that this onion layer is the most revealing one: It can not fulfill the

security definition of IND-CPA, as is shown by Boldyreva et al. [16]. Even more important it reveals not

just the order but also the proximity of the transformed values to an attacker [16] . This behavior might be

acceptable for some values (e.g. text), but might be an issue for others (e.g. financial data).

3.3.6. Join (JOIN, OPE-JOIN)

The JOIN and OPE-JOIN layers are both “sub layers” of DET respective of OPE. That means both of them

feature the computational abilities of their “parent layer” (i.e. to distinguish whether a plaintext a is equal

to plaintext b, respective knowing the order of the entries of a column). In addition to that this type works

over multiple columns and allows to determine whether a plaintext in column a is equal to a plaintext in

column b for JOIN and whether a plaintext in column a is bigger or smaller than a plaintext in column b

for OPE-JOIN. Both operators work with multiple column allowing for constructs like: SELECT * FROM

test_table WHERE name1=name2 AND name2=name3.

In this case all 3 name columns will use the same deterministic parameters, with the consequence that the

same plaintext will be encrypted in the same ciphertext across all three columns. Therefore it is more

3.4 Related Work 12

revealing than DET or OPE alone.

3.4. Related Work

We would like to split the related work part into three different perspectives:

1. CryptDB related papers,

2. CryptDB security related papers and

3. Papers related to similar cryptographic systems

3.4.1. CryptDB related papers

First we would like to mention the original CryptDB paper “CryptDB: Protecting Confidentiality with

Encrypted Query Processing” [18]. In this paper, released in 2011, CryptDBwas officially introduced to the

public. Besides explaining the elemental concepts of the onion and its layers this paper also features a small

section dedicated to performance measurements. However much has changed since then: The multi principal

mode (using different keys for different users) has been abandoned and is currently only implemented in a

one principal mode. Also there was a general restructuring of the underlying code to improve the overall

performance. In this vein the search onion that was used to make encrypted text searchable has not been

reimplemented. These findings and the fact that it is not entirely evident how the results were obtained in

the first place justify a revalidation of these measurements.

3.4.2. CryptDB security related papers

Even though security is not an official part of this thesis, security is still an important topic when it comes to

usability and whether it is worth the additional coasts. One question we had in the beginning was whether

a curious database administrator could still draw conclusions from the encrypted data sets and whether

he would able to take advantage of that, either by getting interesting insights or by actually being able to

manipulate things in a way that would gain him further access to data. For these questions we would like

to feature the following two papers: The first one is “On the Difficulty of Securing Web Applications using

CryptDB” [19] by Ihsan H. Akin and Berk Sunar and the second one is “Inference Attacks on Property-

Preserving Encrypted Databases” [20] by Muhammad Naveed, Seny Kamara and Charles V. Wright. The

First paper shows that the lack of authentication checks for the stored data enables a malicious database

administrator to copy and/or exchange row entries so that he could achieve administration privileges in a

web application if he manages to identify the correct table. Another interesting aspect, as the the paper

points out that as long as the database administrator is able to interact with the web application and is able

to “produce” queries whose changes he can log inside the DBMS he will most likely be able to figure out

certain relations (e.g. by creating a user/logging in he will most likely be able to figure out the user table

and even his users row). At this point he could then try to exchange/copy existing entries to gain further

3.4 Related Work 13

privileges, while the encryption is technically not broken the web application might be exploited. It is to

notice that this might be less of an issue if the application using the database is not publicly accessible.

On the other hand the second paper describes a direct attack against the encryption by way of trying to

determine the plaintext value of a ciphertext. To do that they have used two commonly known attacks

(frequency analysis and sorting attacks) and also developed two new attacks (lp-optimization and cumulative

attack). All these attacks focus on values encrypted with the DET or OPE layer - the two most revealing

layers CryptDB has to offer. The proposed attacks have been shown to be very effective when used with

dense data that is on a limited range (e.g. a scoring from 0-100, or other relatively fixed scales) or the

frequency of the data is guessable (e.g. access control groups like administrators, moderators and users).

Their findings have however spun up a little controversy between the authors of this paper and Ada Popa, the

first author of the CryptDB paper who claims that they have wrongfully used the DET and OPE layer for

non high entropy values (i.e. values that fulfill the above mentioned criteria). The problem here is that quite

a lot operations (like =, !=, count, min, max, group by, order by, ...) require the functionality only offered by

one of these two layers. So the question, how these low entropy values should - if at all - be encrypted, still

remains open.

3.4.3. Similar cryptographic systems

When talking about databases and cryptography one will probably end up finding an article by Michael

Cooney “IBM touts encryption innovation; new technology performs calculations on encrypted data with-

out decrypting it”[12] where he introduces a schema for fully homomorphic encryption for databases in a

way that DBMS can perform all operations over fully encrypted data sets. The problem here is that perform-

ing most of these operations is extremely slow and therefore is not a valid option for real world applications

for the time being. This is the reason why CryptDBs middle way approach seems so promising. In fact

there are several projects out there that are already based on the core concepts of CryptDB, one promi-

nent example is Google’s Encrypted BigQuery Client [21], which can be used for Google’s cloud platform

BigQuery. Another example is SAP’s SEEED implementation for the SAP HANA Database Management

System (an in memory database), where a paper called “Experiences and observations on the industrial im-

plementation of a system to search over outsourced encrypted data.” [22] was published last year. Both

systems follow a similar approach like CryptDB in the way that both of them implement different onions

that consist of different layers of encryption.

4. Benchmark

When evaluating the usability of a new concept like CryptDB performance and secondary costs are of

great interest to potential investors and users. If a new technology is to be widely adopted it has to have

a certain advantage over the old system to justify the coats that are related to switching and running the

new system. This becomes all the more interesting since the pricing of cloud services (like Database as

a Service (DBaaS)), where CryptDB looks most promising, are usually directly related to quantities of

usage (often Central Processing Unit (CPU) usage or storage capacities). While the costs are rather obvious

in the form of increased storage needs (see Section 3.2, a column is usually padded out and encrypted in

several onions) and CPU load (for the underlying cryptography) the advantage of more security however

is somewhat vague. In this chapter we compare how much additional storage needs and CPU usage are

produced by using CryptDB in contrast to a normal MySQL setup.

4.1. Preliminary Considerations

In our measurements we focused on small to mid sized databases with 1000 to 100 Million rows[23]. This

should cover most use cases for web applications. Of course there are applications with a need for larger

databases but database scaling is an entirely different topic and is outside of the scope of this thesis. As

the database grows CryptDB will become more and more of a bottleneck since it is not optimized for

simultaneously processing large quantities of queries like the major DBMSs are. Further development would

be needed on the side of CryptDB.

4.2. Benchmarks

There are several enterprise benchmark processes out there that are used in the industry to measure the per-

formance of Online Transaction Processing (OLTP) systems [24]. OLTP means that the results are computed

and evaluated in (near) real-time as opposed to some calculations that run over a longer period of time. The

near real-time evaluation is an requirement for most web applications that are supposed to directly display

the results produced (e.g. articles on a blog, prices in a webshop, amount of logged in users on a forum,

...). Among the most important OLTP benchmarks are the SPECjEnterprise2010 by Standard Performance

Evaluation Corporation (SPEC)1 and the TPC-C and the TPC-E by the Transaction Processing Performance

Council (TPC)2. All of them feature different suites with a variety of tests to benchmark different scenarios

1https://www.spec.org
2https://www.tpc.org

https://www.spec.org
https://www.tpc.org

4.2 Benchmarks 15

on different hardware. They are designed to measure large enterprise deployments on expensive hardware.

However both of these benchmark suites are associated with a fee so we decided to opt for an known and

accepted open source solution in the form of the application SysBench. This test does not award points for

different aspects of the machine and is therefore not usable to identify bottlenecks of the DBMS like other

benchmarks do. It rather measures the transactions per second which covers our use case, since we directly

compare two different software setups on identical hardware.

4.2.1. SysBench

SysBench has been developed by Alexey Kopytov who is a former employee of MySQL AB (respective

SUN, respective Oracle), the developers of MySQL [25]. Since SysBench has been used by MySQL AB in

several publications it seems to be a reasonable choice for our measurements [26].

4.2.2. Benchmark

When performing a OLTP benchmark with SysBench, one usually follows the following three stages,

which we will explain in further detail, together with the problems we encountered, later in this section:

1. Preparation: We create a test table with a defined amount of rows that is filled with randomly gener-

ated data. This is the only table that is being accessed by SysBench.

2. Run: We run a series of sql queries against the DBMS, respective CryptDB

3. Cleanup: We delete the previously created test table

4.2.2.1. Scenario

The scenarios differ only in the size of the underlying test database (PARAM1, controlled with the –oltp-

table-size switch) and the number of sequential requests we send to said database (PARAM2, controlled

with the –max-requests switch). Please note that one request is used synonymously to one transaction,

which is in fact a block of several SQL commands, so even though there are only e.g. 1000 requests the

number of actual statements - like select or update - is higher. To simulate concurrent database access we

ran the benchmark with 1, 2, 4 and 8 threads each (PARAM3, controlled with the –num-threads switch). Our

originally scenarios included the following parameters:

1. Small database: table size: 1.000 rows (PARAM1), 1.000 requests (PARAM2)

2. Medium database: table size: 1.000.000 rows (PARAM1), 100.000 requests (PARAM2)

However due to problems we encountered during the benchmarking (see below) we had to reduce the size

of these parameters to the following values:

1. Small database: table size: 100 rows (PARAM1), 1.000 requests (PARAM2)

2. Medium database: table size: 100.000 rows (PARAM1), 500 requests (PARAM2)

4.2 Benchmarks 16

We have run both scenarios against our normal MySQL installation as well as against a setup with

CryptDB serving as proxy in front of the very same MySQL server to directly compare how using CryptDB

influenced the performance. We repeated each tests five times to cancel out load fluctuations on the host

system. We restarted CryptDB after every benchmark, because we discovered that after a benchmark ran

CryptDB did not properly free the allocated memory, eventually leading to a filled up memory. A nearly

filled memory slows down all operations and is eventually being killed by the Kernel Out of Memory Killer

(oom-killer). We have described this problem below in the preparation section (see Sect. 4.2.2.2).

4.2.2.2. Preparation

In this step we tell SysBench to setup a sample database in which we can perform our SQL commands

without destroying currently existing databases. The database is being created with the following command:

./sysbench --test=tests/db/oltp.lua --oltp-table-size=PARAM1 --mysql-host

y

=127.0.0.1 --mysql-port=3307 --mysql-db=test_with_cryptdb --mysql-user=

y

root --mysql-password=rootpassword prepare

With this command it invokes the following SQL script (see Fig. 4.1) which adds a new table sbtest1

with four different columns. The id column is an integer that is automatically increased, ranging from 1 to

the specified table size (see Sect. 4.2.2.1). The other three fields contain pseudo randomly generated data

of different lengths, with the field k being an integer and c as well as pad being of the data type char. The

latter two contain groups of integers separated by -.

CREATE TABLE ‘ s b t e s t 1 ‘ (
‘ id ‘ i n t (1 0) u n s i g n e d NOT NULL a u t o _ i n c r e m e n t ,
‘k ‘ i n t (1 0) u n s i g n e d NOT NULL d e f a u l t ’ 0 ’ ,
‘ c ‘ char (1 2 0) NOT NULL d e f a u l t ’ ’ ,
‘ pad ‘ char (6 0) NOT NULL d e f a u l t ’ ’ ,
PRIMARY KEY (‘ id ‘) ,
KEY ‘k ‘ (‘ k ‘)) ;

Figure 4.1.: The SQL script responsible for creating the test table on which the benchmark is performed

We ran into problems, when we tried to run the prepare stage with CryptDB with a table size greater

than 70.000. The problem was that CryptDB continued to allocate memory for every new insert statement,

while not freeing it anymore. This built up to a point where all memory was allocated and the kernel had

to kill the CryptDB process to continue operating normally. We solved this problem by exporting the

unencrypted test table from our MySQL server into a .sql file. We split this file in the middle, so that we had

two files with roughly 50.000 insert statements each. Then we first imported the first file into our CryptDB

setup, quickly restarted it and imported the second file. Restarting CryptDB frees the allocated memory

and does not come with any negative side effects as the values are safely stored inside the DBMS.

4.2 Benchmarks 17

4.2.2.3. Run

In this phase we send the actual queries to CryptDB respective MySQL. The selected ruleset - OLTP -

consists of the following queries, where x and y stand for different randomly generated numbers that change

for each query and are always within the specified limits. c_val and pad_val stand for random, but correct

pattern for c and pad:

SELECT c FROM sbtest1 WHERE id=x

SELECT c FROM sbtest1 WHERE id BETWEEN x AND y

SELECT SUM(K) FROM sbtest1 WHERE id BETWEEN x AND y

SELECT c FROM sbtest1 WHERE id BETWEEN x AND y ORDER BY c

SELECT DISTINCT c FROM sbtest1 WHERE id BETWEEN x AND y ORDER BY c

UPDATE sbtest1 SET k=k+1 WHERE id=x

UPDATE sbtest1 SET c=’c_val’ WHERE id=y

DELETE FROM sbtest1 WHERE id=x

INSERT INTO sbtest1 (id, k, c, pad) VALUES (x, y, c_val, pad_val)

All of these lie withing the scope of commands that CryptDB is able to process. We confirmed this by

manual testing each type of query and cross checking the output for an “ERROR 1105 (07000): unhandled

sql command 28” that is thrown, when an certain sql command is not supported. Some of these commands

require a certain onion layer, so that CryptDB has to strip away outer layers and reencrypt the data to a

inner layer. Since this is a one time only process in addition to the possibility to set the correct onion layer

from the start via an annotated schema file we decided to only include the measurements for the second run,

where all onions have been encrypted to the correct layer. Since we would consider this the normal usage

behavior. We eventually ran the test with the following command:

./sysbench --test=tests/db/oltp.lua --oltp-table-size=PARAM1 --mysql-host

y

=127.0.0.1 --mysql-port=3307 --mysql-db=test_with_cryptdb --mysql-user=

y

root --mysql-password=rootpassword --init-rng=off --max-requests=PARAM2

y

--num-threads=PARAM3 run

When running the original scenario we encountered the same memory leak problem we have already

described in Sect. 4.2.2.2. We therefore had to limit the amount of consecutive requests as described in the

scenario section (see Sect. 4.2.2.1).

4.2.2.4. Cleanup

This stage basically deletes the previously created test table and is the only step that always worked without

a problem. The command issued was:

./sysbench --test=tests/db/oltp.lua --mysql-host=127.0.0.1 --mysql-port=3307

y

--mysql-db=test_with_cryptdb --mysql-user=root --mysql-password=

y

rootpassword cleanup

4.3 Results 18

4.3. Results

We have split the results in two subsections, the first one showing the results for the insertion and the second

one showing the results for the mixed queries. We choose this separation because it approximates the real

world scenarios where an existing database is transferred to a CryptDB setup: The initial transfer can be

scheduled and might be slow, the more relevant part is certainly the day to day usage that is simulated in the

Run Stage.

4.3.1. Scenario 1: Small Database

PARAM1=100 rows, PARAM2=1.000 requests

The database size is 64KiB for the unencrypted and 128KiB for the encrypted data. This is an increase of

100% in storage requirements for the 100 rows setup.

4.3.1.1. Preparation stage / INSERT

The preparation stage is always conducted with 1 thread (PARAM3=1).

Run 1 2 3 4 5 Mean Median
Time 0m0.054s 0m0.050s 0m0.049s 0m0.053s 0m0.050s 0m0.051s 0m0.050s

Table 4.1.: MySQL: Scenario=1, PARAM1=100, PARAM2=1.000, PARAM3=1

Run 1 2 3 4 5 Mean Median
Time 0m2.203s 0m2.148s 0m2.135s 0m2.208s 0m2.145s 0m2.168s 0m2.148s

Table 4.2.: CryptDB: Scenario=1, PARAM1=100, PARAM2=1.000, PARAM3=1

The mean increased by 2.117s (4151%), the median increased by 2.098s (4196%).

4.3.1.2. Run Stage / Mixed Queries

This stage should reflect the everyday usage behavior of a database and thus contains a mix of various

different queries (See Sect. 4.2.2.3). The proportions of these mixed queries stayed the same for each

scenario.

1 Thread (PARAM3=1)

Run 1 2 3 4 5 Mean Median
Time 0m5.462s 0m5.710s 0m5.510s 0m5.827s 0m5.418s 0m5.585s 0m5.510s

Table 4.3.: MySQL: Scenario=1, PARAM1=100, PARAM2=1.000, PARAM3=1

4.3 Results 19

Run 1 2 3 4 5 Mean Median
Time 6m32.172s 6m34.065s 6m37.230s 6m33.954s 6m32.019s 6m33.888s 6m33.954s

Table 4.4.: CryptDB: Scenario=1, PARAM1=100, PARAM2=1.000, PARAM3=1

The mean increased by 6m28.303s (6953%), the median increased by 6m28.444s (7050%).

2 Threads (PARAM3=2)

Run 1 2 3 4 5 Mean Median
Time 0m4.003s 0m3.996s 0m4.160s 0m4.075s 0m4.023s 0m4.051s 0m4.023s

Table 4.5.: MySQL: Scenario=1, PARAM1=100, PARAM2=1.000, PARAM3=2

Run 1 2 3 4 5 Mean Median
Time 6m19.873s 6m31.458s 6m41.970s 6m24.641s 6m29.260s 6m29.440s 6m29.260s

Table 4.6.: CryptDB: Scenario=1, PARAM1=100, PARAM2=1.000, PARAM3=2

The mean increased by 6m25.389s (9513%), the median increased by 6m25.237 (9576%).

4 Threads (PARAM3=4)

Run 1 2 3 4 5 Mean Median
Time 0m3.078s 0m2.986s 0m2.978s 0m2.957s 0m2.950s 0m2.990 0m2.957s

Table 4.7.: MySQL: Scenario=1, PARAM1=100, PARAM2=1.000, PARAM3=4

Run 1 2 3 4 5 Mean Median
Time 6m26.908s 6m30.280s 5m24.649s 4m58.225s 4m53.582s 5m38.729s 5m24.649s

Table 4.8.: CryptDB: Scenario=1, PARAM1=100, PARAM2=1.000, PARAM3=4

The mean increased by 5m35.779s (11382%), the median increased by 5m21.692 (10879%).

Note: Beginning with 4 threads we saw very unreliable and inconsistent measures for the CryptDB setup.

Not only did we see a higher distance between outliers and the mean execution time, but in 14 out of 21 tries

the benchmark execution was disrupted and did not finish properly. In those cases CryptDB is displaying

the following error message:

ALERT: mysql_drv_query() for query ’UPDATE sbtest1 SET c

y

=’27150449877-35882676096-71614727371-78027787201-37878787463-59418460466-

84621839479-87330447182-06793416020-97484136743’ WHERE id=46’ failed: 4095

4.3 Results 20

(main/dml_handler.cc, 1266)

DML query failed against remote database

The value for c and id are different for every error message as they are randomly generated, but the

SQL operation associated with the failure has been UPDATE 13 out of 14 times, the remaining one can be

accounted to a DELETE statement. This seems to suggest that there is a problem with handling table/row

locks as these are usually required by those two operations. This would also explain why we have not

experienced this problem with the SELECT or INSERT statement which can be simultaneously processed

by the DBMS. It is not clear, and we have not investigated it further, whether this is actually a problem

on the side of CryptDB or on the side of MySQL. We did not experience this behavior with the MySQL

benchmark however.

8 Threads (PARAM3=8)

Run 1 2 3 4 5 Mean Median
Time 0m2.545s 0m2.616s 0m2.590s 0m2.535s 0m2.568s 0m2.571s 0m2.568s

Table 4.9.: MySQL: Scenario=1, PARAM1=100, PARAM2=1.000, PARAM3=8

Run 1 2 3 4 5 Mean Median
Time white - white - white - white - white - white - white -

Table 4.10.: CryptDB: Scenario=1, PARAM1=100, PARAM2=1.000, PARAM3=8

Note: At this point we had a zero percent success rate with the CryptDB setup. We tried 25 times to run

the benchmark, but each time it was aborted in under a minute with the error described above (see Sect.

4.3.1.2, 4 Threads (PARAM3=4)).

4.3.2. Scenario 2: Medium Database

PARAM1=100.000 rows, PARAM2=10.000 requests

The database size is 24.1MiB for the unencrypted and 68.6MiB for the encrypted data. This is an increase

of 185% in storage requirements for the 100.000 rows setup.

4.3.2.1. Preparation stage / INSERT

The preparation stage is always conducted with 1 thread (PARAM3=1).

Run 1 2 3 4 5 Mean Median
Time 0m2.548s 0m2.693s 0m2.674s 0m2.579s 0m2.564s 0m2.612s 0m2.579s

Table 4.11.: MySQL: Scenario=2, PARAM1=100.000, PARAM2=500, PARAM3=1

4.3 Results 21

Run 1 2 3 4 5 Mean Median
Time 39m25.769s 41m47.200s 40m12.541s 40m20.809s 39m10.930s 40m11.450s 40m12.541s

Table 4.12.: CryptDB: Scenario=2, PARAM1=100.000, PARAM2=500, PARAM3=1

The mean increased by 40m8.838s (92222%), the median increased by 40m9.962s (93446%).

4.3.2.2. Run Stage / Mixed Queries

1 Threads (PARAM3=1)

Run 1 2 3 4 5 Mean Median
Time 0m3.513s 0m3.378s 0m3.248s 0m3.304s 0m3.259s 0m3.340s 0m3.304s

Table 4.13.: MySQL: Scenario=2, PARAM1=100.000, PARAM2=500, PARAM3=1

Run 1 2 3 4 5 Mean Median
Time 19m32.590s 19m23.299s 31m53.204s 30m31.576s 19m34.881s 24m11.110s 19m34,881s

Table 4.14.: CryptDB: Scenario=2, PARAM1=100.000, PARAM2=500, PARAM3=1

The mean increased by 24m7.770s (43346%), the median increased by 19m31.577s (35459%).

2 Threads (PARAM3=2)

Run 1 2 3 4 5 Mean Median
Time 0m2.459s 0m2.438s 0m2.599s 0m2.574s 0m2.559s 0m2.526s 0m2.559

Table 4.15.: MySQL: Scenario=2, PARAM1=100.000, PARAM2=500, PARAM3=2

Run 1 2 3 4 5 Mean Median
Time 19m53.822s 19m58.848s 30m55.864s 30m21.356s 19m57.951s 24m13.568s 19m58.848s

Table 4.16.: CryptDB: Scenario=2, PARAM1=100.000, PARAM2=500, PARAM3=2

The mean increased by 24m11.042s (57444%), the median increased by 19m56.289s (46748%).

4 Threads (PARAM3=4)

Run 1 2 3 4 5 Mean Median
Time 0m1.992s 0m1.947s 0m1.888s 0m1.877s 0m2.074s 0m1.956s 0m1.947s

Table 4.17.: MySQL: Scenario=2, PARAM1=100.000, PARAM2=500, PARAM3=4

4.4 Conclusion 22

Run 1 2 3 4 5 Mean Median
Time 19m35.493s 26m32.328s 19m35.664s 19m9.848s 19m23.405s 20m51.348s 19m35.493s

Table 4.18.: CryptDB: Scenario=2, PARAM1=100.000, PARAM2=500, PARAM3=4

The mean increased by 20m49.392s (63875%), the median increased by 19m33.546s (60275%).

8 Threads (PARAM3=8)

Run 1 2 3 4 5 Mean Median
Time 0m1.677s 0m1.627s 0m1.683s 0m1.767s 0m1.688s 0m1.688s 0m1.683s

Table 4.19.: MySQL: Scenario=2, PARAM1=100.000, PARAM2=500, PARAM3=8

Run 1 2 3 4 5 Mean Median
Time 19m29.417s 19m21.851s 19m53.931s 19m54.450s 20m19.593s 19m47.745s 19m53.931s

Table 4.20.: CryptDB: Scenario=2, PARAM1=100.000, PARAM2=500, PARAM3=8

The mean increased by 19m46.057s (70264%), the median increased by 19m52.248s (70841%).

4.4. Conclusion

We have ran a multitude of benchmarks with various parameters. We have seen that the CryptDB setup

is always noticeably slower than the MySQL setup. This was fully expected seeing that the CryptDB

works as a proxy that also performs cryptography and thus has naturally an additional delay compared to a

standalone MySQL setup. The original CryptDB paper [18] thus compared the results of CryptDB with

SQL queries executed over a MySQL proxy. Since such a proxy would not be the standard setting for small

to mid sized databases installations we deliberately did not use one. Our benchmark shows that the total

execution time drastically increases with the number of affected rows. Somewhat confusing was that the

proportions of the total insert time and the total query execution time are exactly opposite for both scenarios:

In the small database scenario inserting is quicker by a small margin, in the medium sized database scenario

the percentage increase of the inserting time is more than double of the percentage increase of the query

execution time. Another important aspect is the magnitude of the percentage increase: For the small database

the increase is of a factor of 103 for both times, whereas the increase for the medium sized database is of

the factor 104. In clearly defined systems that operate in a clearly defined time these two findings would

usually indicate some sort of error in the benchmark execution. However since the system we tested does

not have fixed but flexible execution times that are influenced by the virtual machine as a whole, we have

been looking into other possible causes for these observations. On very likely cause in our opinion could be

memory management: During our initial tests we have noticed that the originally planned scenarios are too

big to be properly executed by CryptDB. CryptDB would continuously eat up the available memory and

4.4 Conclusion 23

was eventually killed by the kernel Out-of-memory-killer. Such a crash also occurred when we first tried to

insert 100.000 rows into CryptDB, we therefore split the table creation script in two part roughly containing

50.000 rows each. We then loaded the first table creation script, restarted CryptDB and loaded the second

table creation script, only taking time of the actual script execution. While CryptDB worked fine with this

routine (in the sense that it did not crash) it might have been slowed down by the still increasing memory

load that was aggregated during that process. But even with having a somewhat reasonable explanation for

these numbers the fact remained that the current version of CryptDB seemed severely flawed and proved

unreliable in both memory management and thread handling. Thread handling was only problematic for

the first scenario, where we started to experience failing queries with 4 threads and came to a completely

unexecutable benchmark with 8 threads. The second scenario did not suffer from these problems, what

suggests that the problem might be related with the small amount of rows that might have overlapped each

other during queries and a missing or insufficient locking mechanism thereof. Regarding the storage size

we have been positively surprised to find that the needs have only doubled in the first scenario and not just

tripled in the second scenario. Both seems pretty reasonable seeing that every column has several (usually

two - for numbers three) onions. All in all the benchmark revealed the true state CryptDB is currently

in: An abandoned development state of a research prototype with many unresolved issues, not ready for

productive usage.

4.4.1. Time Charts

1 Thread 2 Threads 4 Threads 8 Threads

0

100

200

300

400

5.59 4.05 2.99 2.57

393.89 389.44

338.73

E
xe

cu
tio

n
tim

e
in

s

Scenario 1: Run Stage

MySQL CryptDB

1 Thread

0

1,000

2,000

2.61

2,412.54

E
xe

cu
tio

n
tim

e
in

s

Scenario 1: Insert Stage

MySQL CryptDB

4.4 Conclusion 24

1 Thread 2 Threads 4 Threads 8 Threads

0

500

1,000

1,500

3.34 2.53 1.96 1.69

1,451.11 1,453.57

1,251.35 1,187.75

E
xe

cu
tio

n
tim

e
in

s

Scenario 2: Run Stage

MySQL CryptDB

1 Thread

0

0.5

1

1.5

2

0.05

2.17

E
xe

cu
tio

n
tim

e
in

s

Scenario 2: Insert Stage

MySQL CryptDB

4.4.2. Storage Charts

Scenario 1

0

50

100

64

128

St
or

ag
e

us
e

in
K

iB

Scenario 1: Storage usage

MySQL CryptDB

Scenario 2

0

20

40

60

24.1

68.6

St
or

ag
e

us
e

in
M

iB

Scenario 2: Storage usage

MySQL CryptDB

5. Adapting Applications

After we have measured the performance of a CryptDB setup in the previous chapter we now want to test

how difficult it is to adjust an existing application to make it usable with CryptDB.

5.1. Preliminary Considerations and Restrictions

First off we would like to restrict the scenario to the capabilities of the latest publicly available version of

CryptDB. The two major points affected by this are:

1. Principals: In the current version of CryptDB there is only support for one single principal

2. Onions: In the current version of CryptDB there is no search onion and thus no ability to perform a

keyword search over encrypted data

These two features were present in an earlier version of the CryptDB prototype but have not been reim-

plemented in the latest version, which features a different structure and was supposedly optimized in other

areas (see Appendix A.1 for version numbers). While the single principal restriction does not affect our test

cases, the lack of search onions limits our abilities to perform searches over encrypted data. As a result we

are left with two choices:

1. We do not care about existing search functions in the application and accept that they will not work

properly or

2. We do not encrypt the affected fields (i.e. those that are searchable) at all, leaving existing search

functions intact and allow the DBMS to know our search terms as well as all searchable texts.

For our sample applications that do not have any specific security requirements this choice is negligible

and we have therefore opted for option two and went with a best effort approach where the strict security

setting failed. In fact, recognizing that these problems and options exist is exactly the purpose of these

tests. To enable us to have unencrypted fields in the database we have to explicitly set the (undocumented)

environmental variable $SECURE_CRYPTDB to the value false before starting the CryptDB proxy. Where

incompatible datatypes would have produced an error before they will now be used unencrypted.

5.2. Techniques

One of the challenges when trying to use an application with CryptDB is knowing beforehand if all the

queries used will be supported or whether the application will run into troubles when in use. We therefore

5.2 Techniques 26

tried to extract all SQL queries from the sourcecode of the scripts to manually check their compliance. There

are two problems with that:

1. The function executing the query (e.g. mysql_db_query(), mysqli_query(), pdo->exec(), ...) is the

most reliable way to detect a SQL query, but often contains only a variable, not the query itself.

2. Queries are often constructed on a dynamic basis, often with user input. This means that the final query

cannot be fully evaluated beforehand. This problem intensifies when dealing with script languages like

PHP which are not type secure, where even the nature of a variable can be unclear until it is processed

(e.g. is it an integer or a string?).

To extract the SQL sequences we slightly adapted an idea published in [27] and used a regular expression

(see Listing 5.1) together with grep1 to try and find static parts of an SQL query, namely the operators

SELECT, UPDATE, INSERT, DELETE, DROP, SHOW.

grep -i -r -n "sql =.*\"\(SELECT\|UPDATE\|INSERT\|DROP\|DELETE\|SHOW\)" . |

y

awk -F: ’{print "filename: "$1"\nline: "$2"\nmatch: "$3"\n\n"}’

Listing 5.1: Grep command to find sql statements, prettified by awk. Please notice that the backslashes are

used to escape characters in bash and are not part of the actual RegEx

The regular expression searches case insensitive for a php variable $sql that is somewhere in the same line

followed by either of the aforementioned statements. Please notice that it is just a common habit to name

the SQL string $sql, but in fact it can have any valid variable name whatsoever and needs to be adapted for

different applications. We piped the output of the commands from Listing 5.1 into a file for further analysis.

Here we could use additional grep commands to explicitly search for known problematic queries.

5.2.1. Problematic Queries

As already mentioned some queries are of a problematic nature and cannot be supported by CryptDB due

to the underlying cryptography. These problematic queries can be divided into two subclasses:

1. Operator related queries

2. Logic related queries

An example for the first class is the EXPLAIN operator, which is not (properly) supported by CryptDB.

The first class of queries is easy to filter for by a list of keywords. The second class is actually not that

easy to filter for, it covers the cases where computation and comparison happens in the same sql query (e.g.

SELECT a FROM b WHERE c = 2*d). Unfortunately we have not been able to come up with a proper

way to detect the latter case since there is a huge variety in the ways such a query might be constructed. We

discovered some throughout our experiments with setting up the applications but there are surely more

problematic queries out there that we did not catch.

1http://www.gnu.org/software/grep/

http://www.gnu.org/software/grep/

5.3 Sample Applications 27

5.3. Sample Applications

For our sample applications we choose web applications that are widely used and targeted at small to mid

sized databases. We usually installed the application to the normal MySQL installation first, to gather all the

relevant SQL data and to avoid running out of (php) script execution time. Because - as we have seen in the

benchmark section - inserting larger data structures at the same instant can easily consume some time. Then

we exported the whole database from MySQL and imported it through our CryptDB setup. Afterwards we

adapted the application to access CryptDB directly.

5.3.1. Wordpress 4.3

Wordpress is arguably the most used blogging software of today, with its website claiming up to 24% of all

websites running Wordpress2.

Installation

We downloaded the latest version from the wordpress homepage3 and extracted its content in the doc-

ument root of our apache2 server. When accessing the site the installer script tries to generate a file

wp-config.php, if it is not already present. Unfortunately the installer does not allow to set a specific

port for our MySQL installation, which is needed to access the CryptDB proxy. Therefore we had to create

the wp-config.php file ourself by adapting the provided sample file. After doing that we accessed the

installer script again which tried to create the necessary tables. However this script failed to create all the

necessary tables and was aborted. To narrow down the issue we repeated the installation with MySQL and

tried to export it out of MySQL and reimport it with CryptDB. While doing so we counted 169 sql queries.

However 27 out of these queries failed and resulted in an error at the CryptDB console. A closer inspection

revealed that 21 of these errors are caused by a failing INSERT statement because the corresponding table

does not exist. The remaining 6 failing queries concerned the creation of said tables. Therefore they induced

missing tables in the further process. This leaves us with only 5 out of originally 11 tables. A close com-

parison of the queries that worked and did not work (See Sect. B.1.1.1 for the full queries) revealed that the

only difference was that the queries that did not work featured a length restriction in their KEY assignment

(see Listing 5.2, second to last line). After we manually deleted these restrictions by turning e.g. KEY

‘meta_key‘ (‘meta_key‘(191)) in KEY ‘meta_key‘ (‘meta_key‘) only, all eleven ta-

bles have been created successfully. This eliminated the reason for the other failing queries. The problematic

queries can be identified with the following regular expression “KEY .*(\d*).*)” (excluding the paren-

thesis).
CREATE TABLE IF NOT EXISTS ‘wp_usermeta‘ (

‘umeta_id‘ bigint(20) unsigned NOT NULL AUTO_INCREMENT,

‘user_id‘ bigint(20) unsigned NOT NULL DEFAULT ’0’,

‘meta_key‘ varchar(255) COLLATE utf8mb4_unicode_ci DEFAULT NULL,

‘meta_value‘ longtext COLLATE utf8mb4_unicode_ci,

PRIMARY KEY (‘umeta_id‘),

2https://de.wordpress.com
3https://de.wordpress.org/latest-de_DE.zip

https://de.wordpress.com
https://de.wordpress.org/latest-de_DE.zip

5.3 Sample Applications 28

KEY ‘user_id‘ (‘user_id‘),

KEY ‘meta_key‘ (‘meta_key‘(191))

) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4 COLLATE=utf8mb4_unicode_ci AUTO_INCREMENT=16 ;

Listing 5.2: CREATE TABLE query that produces an error

Usage

With the now fixed tables we can fully load the Wordpress start page, including the example entry that

came with its installation. When first visiting the site we were still logged in as administrator due to a valid

authentication cookie from the installation procedure. The first thing we tested was the search function,

which worked fine. That means we have been able to produce positive search results (article found) for key-

words that are present and we have been able to find empty search results (no article) for keywords that were

not present. Also we were able to fully navigate the dashboard (the administration area of Wordpress).

However, we were not able to create new blog entries or new users. Also when logged out we were unable

to log in again. The common denominator of these unsuccessful actions were sql commands that have been

replaced by DO 0 instructions (see Sect. 5.3.2, where we observed the same behavior in regard to Piwik).

In the case of Wordpress we have been able to track it down to a single4 line of code that is invoking

the sql query SHOW FULL COLUMNS FROM $table in wp-includes/wp-db.php:2306. This line is part of

a function that tries to determine the character set that is used by the columns. For testing purposes we

simply returned the (known) character set immediately upon calling the function by inserting a return

’utf8’; in line 2280. This solved the problems mentioned above and allowed us to log in again, create

new users, new blog entries and comments. We have not conducted an in-depth test of all Wordpress

features, which would be outside of the time scope of this thesis, but the basic blogging features appear to

work. There might even be a more sophisticated solution by issuing a query against the information_schema

table. Something along the lines like Listing 5.3, the variables $this->dbname and $table are known to the

script already, however the information_schema table only knows about the encrypted table names, so one

would have to find a way to work around that. One option would be to simply pick the first entry of the

database and rely on all tables in this database using the same character set (in which case one would drop

the AND T.table_name clause and replace it with LIMIT 1).

SELECT CCSA.character_set_name FROM information_schema.‘TABLES‘ T,

y

information_schema.‘COLLATION_CHARACTER_SET_APPLICABILITY‘ CCSA WHERE CCSA

y

.collation_name = T.table_collation AND T.table_schema = "’.$this->dbname

y

.’" AND T.table_name = "’.$table.’";

Listing 5.3: An idea for a patch to determine the character set of any table

4Actually there is a second occurrence in wp-admin/includes/upgrade.php. This is the upgrade API and not vital for running the
script. Therefore we did not look into that file, but we believe it can be fixed in a similar fashion

5.3 Sample Applications 29

5.3.2. Piwik

Piwik is an open source web analytic tool that according to its website has been downloaded over 2.5 million

times5.

Installation

When trying to install we were confronted with two failing queries. The first one was caused by a KEY

parameter using prefix lengths (see Sect. 5.3.1), the key is of the Binary Large Object (BLOB) type, where

it makes arguably sense to use only a prefix instead of the whole entry as a key. We did not come up with

a better way and deleted the whole key instead which allowed us to proceed with the installation but could

possibly cause some unwanted side effects later on. The second problem arose when the installer tried to

create the piwik_log_visit table (see Appendix B.5 for the full query), a table with 64 columns which through

CryptDB would have been expanded to a table with about 260 columns. Through trial and error we figured

out that 234 columns seem to be the maximum number of columns that can be created at the same time. We

also checked whether the actual length of the query had any influence by artificially extending the column

names. As we could execute queries with more than 3.000 characters successfully, while other queries with

less than 3.000 characters (e.g. 2.880) failed, we found out, that the limiting factor was in fact the number

of columns. By omitting 8 columns of the original query, with 2.880 characters we were able to make the

query work. What is interesting is that we have been able to alter the table directly afterwards to insert

these columns by a simple ALTER TABLE piwik_log_visit ADD [...] statement. With these

two problems more or less solved we have been able to finish the installation.

To allow access to CryptDB we added a variable port and set it to port = "3307" in the file

config/config.ini.php. It is worth noting that Piwik supports two database drivers: Mysqli and

PDO, as we will see in the usage section this makes somewhat of a difference. The driver in use can be

changed in this file as well.

Usage

When we first opened the site using the Mysqli driver we received a message saying “Error: Piwik is already

installed”. When looking at the CryptDB console we see that not all the SQL commands are properly

executed. In fact only the first statement is executed correctly (as seen by the corresponding NEW QUERY

line). We have not been able to determine why CryptDB registers the additional empty queries:
QUERY: SET NAMES utf8

NEW QUERY: SET NAMES utf8

==

QUERY: SELECT DATABASE()

unexpected packet type 22

==

QUERY:

unexpected packet type 23

==

QUERY:

5https://piwik.org

https://piwik.org

5.3 Sample Applications 30

unexpected packet type 26

==

QUERY:

unexpected packet type 25

==

QUERY: SELECT option_value, option_name FROM ‘piwik_option‘ WHERE autoload = 1

unexpected packet type 22

==

QUERY:

What is interesting though is that when using the PDO driver the very same commands yield a proper

response (output truncated for a better readability):
QUERY: SET NAMES ’utf8’

NEW QUERY: SET NAMES ’utf8’

==

QUERY: SELECT DATABASE()

NEW QUERY: select database() AS ‘DATABASE()‘

ENCRYPTED RESULTS:

[...]

==

QUERY: SELECT option_value, option_name FROM ‘piwik_option‘ WHERE autoload = 1

NEW QUERY: select ‘nocrypt_piwik‘.‘table_TWWWPXWVZJ‘.‘PMZXFVWXOQoEq‘,‘nocrypt_piwik‘.‘table_TWWWPXWVZJ‘.‘cdb_saltENOGSDAEQE‘,‘

y

nocrypt_piwik‘.‘table_TWWWPXWVZJ‘.‘BIADPUMKCJoEq‘ from ‘nocrypt_piwik‘.‘table_TWWWPXWVZJ‘ where (‘nocrypt_piwik‘.‘

y

table_TWWWPXWVZJ‘.‘VIAEURAOYGoEq‘ = 552574328611617537)

ENCRYPTED RESULTS:

[...]

As a result there are a few more queries executed, however we still cannot use the page properly as we get

another error message (although this time the sites theme is loaded already): “SQLSTATE[HY000]: General

error”. This error is thrown by the PDO driver and can be traced back to the way CryptDB responds

to certain commands. Instead of executing commands like EXPLAIN, DESCRIBE or SHOW COLUMNS

properly, what would reveal certain properties about the database structure, CryptDB rewrites them to a

DO 0 command, that simply returns an empty row, whereas PDO would expects a non empty response as

an adequate result. It is outside of the scope of this thesis to analyze the source code of all the applications

we tested in order to figure out why it relies on these commands and come up with a possible workaround

as these could only be symptomatic and require a different approach each time one wants to preserve the

secrecy that CryptDB seems to require. We found a workaround for Wordpress, where only the character

set of a column was required. Piwik however tries to retrieve all columns of a table which seems not to

be possible from our current perspective, as the only workaround (considering the application) would be

to query the information_schema table, which only contains encrypted column names. There might be a

possibility to utilize the undocumented SET @cryptdb=’show’ statement that displays the layer status

of the different onions and in the same vein reveals which tables contain which columns.The easier solution

however (as in one fix fixes all) would be to simply allow these commands in CryptDB. However this might

cause security implications that would have to be inspected first.
QUERY: SHOW COLUMNS FROM . piwik_log_visit

NEW QUERY: DO 0;

Listing 5.4: CryptDB replacing a SHOW COLUMNS statement with a DO 0

5.3 Sample Applications 31

5.3.3. Joomla

Joomla is another popular open source Content Managing System (CMS). According to a 2011 survey by

w3techs it is second only to Wordpress6.

Installation

As before we went ahead and installed the application in our MySQL database and exported the created

tables. With the regular expression presented in Sect. 5.3.1 we have been able to directly identify some

critical prefix restrained keys that we stripped of their prefix restriction. The second issue we discovered

after trying to import the script file was that CryptDB only supports InnoDB as storage engine which

conflicted with two tables that should have been created using the MEMORY storage engine. We changed

both of them so that they would use the InnoDB storage engine instead of the MEMORY storage engine by

replacing the engine name in the last line of Listing 5.5.

CREATE TABLE IF NOT EXISTS ‘fdnag_finder_tokens‘ (

‘term‘ varchar(75) NOT NULL,

KEY ‘idx_word‘ (‘term‘),

) ENGINE=MEMORY DEFAULT CHARSET=utf8;

Listing 5.5: (Truncated) table creation script that features the MEMORY storage engine

After these adjustments we have been able to import these tables without further problems.

Usage

When opening the site with the default database driver mysqli we are faced with two error messages (please

see Appendix B.3, due to their size). Both error messages display a fairly complex failed query, including

several CASE WHEN ... THEN ... constructs. When looking in the CryptDB console we have been

able to find the corresponding log entry for those two failed queries. We see a behavior that is similar to

the one described in the Piwik section, where we found the failing queries followed by a message about

unexpected packets:

[...]

THEN a.state ELSE 0 END = 1 AND (a.publish_up = ’0000-00-00 00:00:00’ OR a.

y

publish_up <= ’2015-09-16 13:47:06’) AND (a.publish_down = ’0000-00-00

y

00:00:00’ OR a.publish_down >= ’2015-09-16 13:47:06’)

==

QUERY:

unexpected packet type 14

Listing 5.6: Joomla: Unexpected package types in CryptDB console (output truncated)

6http://w3techs.com/technologies/overview/content_management/all

http://w3techs.com/technologies/overview/content_management/all

5.4 Conclusion 32

To verify that this error is not caused by CASE WHEN ... THEN ... constructs we performed a few

different SELECT statements using this construct. All of them worked fine. So we tried to further narrow

the problem down by removing parts from the failing query step by step. It turned out that the second query

would eventually work, when we removed the LEFT OUTER JOIN and its succeeding subquery. However

both the LEFT OUTER JOIN and the subquery functioned properly when testing them alone. So the exact

cause of this error remains unknown to us. And unfortunately this resulted in an unusable application.

5.4. Conclusion

We have tested some of the most prominent open source web applications to see how much effort it takes to

get them to run in a stable manner. Out of all the applications we have tested, none were able to run out of

the box. With a few tweaks we were able to get one application to run in a stable manner, whereas the others

can not be considered stable or just would not run at all. The reasons for the problems we faced with each

applications were quite diverse and ranged from driver related problems to cryptography related timeouts and

downright unsupported commands. Another issue, that we have chosen to ignore widely, is the fact that with

the current version of CryptDB it has not been possible to individually select the sensitivity of each column.

Instead we discovered and used an undocumented environmental variable named $SECURE_CRYPTDB to

switch CryptDB from the “secure everything and abort if we can not do that” approach to a “try to secure

everything as good as we can and if we can not do that then leave them unencrypted” approach. While

this was convenient for us and necessary to test the existing applications, it raises the question whether the

additional overhead is worth enduring, when some of the most sensitive fields, i.e. the text fields are not

encrypted at all.

6. Conclusions

We know that database security is a difficult topic that becomes increasingly difficult with outsourcing data

in the cloud. Regardless of that there is more and more data aggregated every day with increasing sensitive

character. And not a single weak passes without some major database leak. So is CryptDB the solution we

have all been waiting for?

With our tests we have shown that the current version of CryptDB suffers from severe memory problems,

rendering it totally useless at times where it crashed during a reencryption of an onion layer, leaving us with a

unaccessible data. But even when the data sets have been small enough to not cause a memory leak we have

seen that accessing them is multiple times slower with CryptDB. Though to be fair this is not only overhead

resulting from the cryptography but also due to the indirect access with a proxy. So the difference in access

times is smaller if your regular MySQL setup utilizes a proxy as well. As for the storage requirement we

were surprised to see it only increase about 200%, which seems quite acceptable when we consider our

scenarios of a small to mid sized database with only a few million rows. Extrapolating our measures from

scenario two, this would translate to a database size of below 10 GiB for a database with 10.000.000 rows.

This should be quite affordable with today’s storage prices. Of course these views can not be applied to large

corporate databases which store data of another magnitude and require features like distributed access and

load balancing. These features are currently unavailable in CryptDB but could certainly be implemented

when the different CryptDB instances synchronize their internal state after certain operations (e.g. new

master key, change of onion layer state, ...). As for security, which was not part of this thesis, but is still

relevant when evaluating the usability of a system, we have seen that CryptDB is not the final answer to all

the problems related to database security. In fact there are still conceptual questions like how one will ever

be able to disclose the order of data to the server without revealing to much information. It is however a

feasible and justifiable first step in the right direction, leading to more secure databases. Not with CryptDB

itself, which in its current version is lacking existential features like encrypted text and as of now is nothing

more than a research prototype, but rather with the development to follow. We currently see that at least two

major database developers are incorporating the core ideas of CryptDB in their own enterprise database

systems and more research is being done in this area.

A. Appendix General

A.1. Testing Environment

In this section I want to describe the setup we used to run our tests on, as well as explain which software
was involved. This is meant as a reference to be able to recreate a similar environment. For any thoughts
and conclusions as result of the tests that ran on this setup please refer to the according section in the main
thesis.
Due to practical reasons our test system was virtualized with QEMU/Bochs. The node running the test
system had a reserved (i.e. fixed) amount of CPU and RAM capacity that is solely available to this system.
Network traffic however is shared with other virtual machines.

OS and Hardware

• Operating System: Ubuntu 14.01 LTS (GNU/Linux 3.13.0-57-generic x86_64)

• QEMU Virtual CPU version 2.0.0 (2299.998 MHz)

• 12305888 kB Memory (1̃2GB)

Software

Here you see a list of the software we used, along with its version. Please notice that linux distributions
occasionally modify their packages to include bug fixes or make adjustments specific to the distribution.
Therefore we also included the exact package version in braces.

• Apache2: 2.4.7 (2.4.7-1ubuntu4.4)

• Bison: 2.7.12-4996 (2.7.1.dfsg-1)

• CryptDB (commit c7c7c7748f060011af9e4cf5158ccfc52ae891f6 (Date: Feb 19 00:45:26 2014 -0500))

• MySQL: 14.14 (5.5.44-0ubuntu0.14.04.1)

• UnixBench 5.1.3

• Sysbench 0.5 (commit 0257f50738a9ff5f4ef4ee0ade12b6d902a6e88c (Date Jul 8 08:52:17 2015 +0300))

A.2. Installing CryptDB

Before installing CryptDB we installed the software that we intended to run CryptDB with first. We did
this because the readme file for CryptDB hinted that it would install some User Defined Functions (UDFs)
into an existing MySQL installation. Therefore we installed Apache2 first, followed by PHP and MySQL.
Afterwards we started with the actual CryptDB installation (see Listing A.1 for a copyable version): The
current version of CryptDB features a script that installs all necessary dependencies when run with the

A.2 Installing CryptDB 35

appropriate privileges (i.e. root), therefore it is only necessary to install two components to start with: The
first one is git, to download the source code and the second one is ruby to run the installation script itself.
We install both by issuing the command sudo aptitude install git ruby. Then we use the freshly installed
git to “clone” (i.e. download (if necessary) and copy to a new (local) destination) the CryptDB source
code, the -b public switch tells git to fetch the files from the “public” branch [28]. Now we switch
inside the newly downloaded folder cryptdb with the cd command. In here we started the installation script
with elevated privileges with sudo ./scripts/install.rb. At the end of the installation we are told to set an
environmental variable called $EDBDIR, to point to the full path of CryptDB. We do so by adding the
following line to our .bashrc file, as recommended by the installer, in order to automatically set this
variable every time we log into the system: export EDBDIR=/home/mskiba/git/cryptdb/cryptdb.
Note: During the compilation of some MySQL related files the installation script was aborted with the
following error message: “error: ’yythd’ was not declared in this scope”. After some research on the
internet we were able to associate that problem with our bison installation. Apparently the error message
was the result of some incompatibilities between version 2 and version 3. Since we had the latter one
installed we tried to downgrade our installed version of bison to version 2. However the installation script
kept updating this version 2 to the most recent available version 3. Therefore we modified the installation
script, by removing bison from the list of software to install/update and additionally to that we locked it in
the distributions package manager with aptitude hold bison libbison-dev to prevent the system to update this
package. After these changes the compilation and installation went through without further problems.

Listing A.1: Steps to install the current version of CryptDB

sudo a p t i t u d e i n s t a l l g i t ruby
g i t c l o n e −b p u b l i c g i t : / / g . c s a i l . mi t . edu / c r y p t d b
cd c r y p t d b
sudo . / s c r i p t s / i n s t a l l . r b .

B. Appendix Logs and Errors

This appendix chapter should serve as a place to reference errors or logs that would require to much space in
their respective chapter and are therefore separated here. Please refer to the corresponding text if you have
any questions, as this section is not meant to explain anything.

B.1. Adapting Applications

B.1.1. Sample Applications

B.1.1.1. Wordpress 4.3

Listing B.1: Working CREATE TABLE queries
CREATE TABLE IF NOT EXISTS ‘wp_links‘ (

‘link_id‘ bigint(20) unsigned NOT NULL AUTO_INCREMENT,
‘link_url‘ varchar(255) COLLATE utf8mb4_unicode_ci NOT NULL DEFAULT ’’,
‘link_name‘ varchar(255) COLLATE utf8mb4_unicode_ci NOT NULL DEFAULT ’’,
‘link_image‘ varchar(255) COLLATE utf8mb4_unicode_ci NOT NULL DEFAULT ’’,
‘link_target‘ varchar(25) COLLATE utf8mb4_unicode_ci NOT NULL DEFAULT ’’,
‘link_description‘ varchar(255) COLLATE utf8mb4_unicode_ci NOT NULL DEFAULT ’’,
‘link_visible‘ varchar(20) COLLATE utf8mb4_unicode_ci NOT NULL DEFAULT ’Y’,
‘link_owner‘ bigint(20) unsigned NOT NULL DEFAULT ’1’,
‘link_rating‘ int(11) NOT NULL DEFAULT ’0’,
‘link_updated‘ datetime NOT NULL DEFAULT ’0000-00-00 00:00:00’,
‘link_rel‘ varchar(255) COLLATE utf8mb4_unicode_ci NOT NULL DEFAULT ’’,
‘link_notes‘ mediumtext COLLATE utf8mb4_unicode_ci NOT NULL,
‘link_rss‘ varchar(255) COLLATE utf8mb4_unicode_ci NOT NULL DEFAULT ’’,
PRIMARY KEY (‘link_id‘),
KEY ‘link_visible‘ (‘link_visible‘)

) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4 COLLATE=utf8mb4_unicode_ci AUTO_INCREMENT=1 ;

CREATE TABLE IF NOT EXISTS ‘wp_options‘ (
‘option_id‘ bigint(20) unsigned NOT NULL AUTO_INCREMENT,
‘option_name‘ varchar(64) COLLATE utf8mb4_unicode_ci NOT NULL DEFAULT ’’,
‘option_value‘ longtext COLLATE utf8mb4_unicode_ci NOT NULL,
‘autoload‘ varchar(20) COLLATE utf8mb4_unicode_ci NOT NULL DEFAULT ’yes’,
PRIMARY KEY (‘option_id‘),
UNIQUE KEY ‘option_name‘ (‘option_name‘)

) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4 COLLATE=utf8mb4_unicode_ci AUTO_INCREMENT=127 ;

CREATE TABLE IF NOT EXISTS ‘wp_term_relationships‘ (
‘object_id‘ bigint(20) unsigned NOT NULL DEFAULT ’0’,
‘term_taxonomy_id‘ bigint(20) unsigned NOT NULL DEFAULT ’0’,
‘term_order‘ int(11) NOT NULL DEFAULT ’0’,
PRIMARY KEY (‘object_id‘,‘term_taxonomy_id‘),
KEY ‘term_taxonomy_id‘ (‘term_taxonomy_id‘)

) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4 COLLATE=utf8mb4_unicode_ci;

CREATE TABLE IF NOT EXISTS ‘wp_term_taxonomy‘ (
‘term_taxonomy_id‘ bigint(20) unsigned NOT NULL AUTO_INCREMENT,
‘term_id‘ bigint(20) unsigned NOT NULL DEFAULT ’0’,
‘taxonomy‘ varchar(32) COLLATE utf8mb4_unicode_ci NOT NULL DEFAULT ’’,
‘description‘ longtext COLLATE utf8mb4_unicode_ci NOT NULL,
‘parent‘ bigint(20) unsigned NOT NULL DEFAULT ’0’,
‘count‘ bigint(20) NOT NULL DEFAULT ’0’,
PRIMARY KEY (‘term_taxonomy_id‘),
UNIQUE KEY ‘term_id_taxonomy‘ (‘term_id‘,‘taxonomy‘),
KEY ‘taxonomy‘ (‘taxonomy‘)

) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4 COLLATE=utf8mb4_unicode_ci AUTO_INCREMENT=2 ;

CREATE TABLE IF NOT EXISTS ‘wp_users‘ (
‘ID‘ bigint(20) unsigned NOT NULL AUTO_INCREMENT,
‘user_login‘ varchar(60) COLLATE utf8mb4_unicode_ci NOT NULL DEFAULT ’’,
‘user_pass‘ varchar(64) COLLATE utf8mb4_unicode_ci NOT NULL DEFAULT ’’,
‘user_nicename‘ varchar(50) COLLATE utf8mb4_unicode_ci NOT NULL DEFAULT ’’,
‘user_email‘ varchar(100) COLLATE utf8mb4_unicode_ci NOT NULL DEFAULT ’’,
‘user_url‘ varchar(100) COLLATE utf8mb4_unicode_ci NOT NULL DEFAULT ’’,
‘user_registered‘ datetime NOT NULL DEFAULT ’0000-00-00 00:00:00’,
‘user_activation_key‘ varchar(60) COLLATE utf8mb4_unicode_ci NOT NULL DEFAULT ’’,

B.1 Adapting Applications 37

‘user_status‘ int(11) NOT NULL DEFAULT ’0’,
‘display_name‘ varchar(250) COLLATE utf8mb4_unicode_ci NOT NULL DEFAULT ’’,
PRIMARY KEY (‘ID‘),
KEY ‘user_login_key‘ (‘user_login‘),
KEY ‘user_nicename‘ (‘user_nicename‘)

) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4 COLLATE=utf8mb4_unicode_ci AUTO_INCREMENT=2 ;

Listing B.2: Not working CREATE TABLE queries
CREATE TABLE IF NOT EXISTS ‘wp_commentmeta‘ (

‘meta_id‘ bigint(20) unsigned NOT NULL AUTO_INCREMENT,
‘comment_id‘ bigint(20) unsigned NOT NULL DEFAULT ’0’,
‘meta_key‘ varchar(255) COLLATE utf8mb4_unicode_ci DEFAULT NULL,
‘meta_value‘ longtext COLLATE utf8mb4_unicode_ci,
PRIMARY KEY (‘meta_id‘),
KEY ‘comment_id‘ (‘comment_id‘),
KEY ‘meta_key‘ (‘meta_key‘(191))

) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4 COLLATE=utf8mb4_unicode_ci AUTO_INCREMENT=1 ;

CREATE TABLE IF NOT EXISTS ‘wp_comments‘ (
‘comment_ID‘ bigint(20) unsigned NOT NULL AUTO_INCREMENT,
‘comment_post_ID‘ bigint(20) unsigned NOT NULL DEFAULT ’0’,
‘comment_author‘ tinytext COLLATE utf8mb4_unicode_ci NOT NULL,
‘comment_author_email‘ varchar(100) COLLATE utf8mb4_unicode_ci NOT NULL DEFAULT ’’,
‘comment_author_url‘ varchar(200) COLLATE utf8mb4_unicode_ci NOT NULL DEFAULT ’’,
‘comment_author_IP‘ varchar(100) COLLATE utf8mb4_unicode_ci NOT NULL DEFAULT ’’,
‘comment_date‘ datetime NOT NULL DEFAULT ’0000-00-00 00:00:00’,
‘comment_date_gmt‘ datetime NOT NULL DEFAULT ’0000-00-00 00:00:00’,
‘comment_content‘ text COLLATE utf8mb4_unicode_ci NOT NULL,
‘comment_karma‘ int(11) NOT NULL DEFAULT ’0’,
‘comment_approved‘ varchar(20) COLLATE utf8mb4_unicode_ci NOT NULL DEFAULT ’1’,
‘comment_agent‘ varchar(255) COLLATE utf8mb4_unicode_ci NOT NULL DEFAULT ’’,
‘comment_type‘ varchar(20) COLLATE utf8mb4_unicode_ci NOT NULL DEFAULT ’’,
‘comment_parent‘ bigint(20) unsigned NOT NULL DEFAULT ’0’,
‘user_id‘ bigint(20) unsigned NOT NULL DEFAULT ’0’,
PRIMARY KEY (‘comment_ID‘),
KEY ‘comment_post_ID‘ (‘comment_post_ID‘),
KEY ‘comment_approved_date_gmt‘ (‘comment_approved‘,‘comment_date_gmt‘),
KEY ‘comment_date_gmt‘ (‘comment_date_gmt‘),
KEY ‘comment_parent‘ (‘comment_parent‘),
KEY ‘comment_author_email‘ (‘comment_author_email‘(10))

) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4 COLLATE=utf8mb4_unicode_ci AUTO_INCREMENT=2 ;

CREATE TABLE IF NOT EXISTS ‘wp_postmeta‘ (
‘meta_id‘ bigint(20) unsigned NOT NULL AUTO_INCREMENT,
‘post_id‘ bigint(20) unsigned NOT NULL DEFAULT ’0’,
‘meta_key‘ varchar(255) COLLATE utf8mb4_unicode_ci DEFAULT NULL,
‘meta_value‘ longtext COLLATE utf8mb4_unicode_ci,
PRIMARY KEY (‘meta_id‘),
KEY ‘post_id‘ (‘post_id‘),
KEY ‘meta_key‘ (‘meta_key‘(191))

) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4 COLLATE=utf8mb4_unicode_ci AUTO_INCREMENT=2 ;

CREATE TABLE IF NOT EXISTS ‘wp_posts‘ (
‘ID‘ bigint(20) unsigned NOT NULL AUTO_INCREMENT,
‘post_author‘ bigint(20) unsigned NOT NULL DEFAULT ’0’,
‘post_date‘ datetime NOT NULL DEFAULT ’0000-00-00 00:00:00’,
‘post_date_gmt‘ datetime NOT NULL DEFAULT ’0000-00-00 00:00:00’,
‘post_content‘ longtext COLLATE utf8mb4_unicode_ci NOT NULL,
‘post_title‘ text COLLATE utf8mb4_unicode_ci NOT NULL,
‘post_excerpt‘ text COLLATE utf8mb4_unicode_ci NOT NULL,
‘post_status‘ varchar(20) COLLATE utf8mb4_unicode_ci NOT NULL DEFAULT ’publish’,
‘comment_status‘ varchar(20) COLLATE utf8mb4_unicode_ci NOT NULL DEFAULT ’open’,
‘ping_status‘ varchar(20) COLLATE utf8mb4_unicode_ci NOT NULL DEFAULT ’open’,
‘post_password‘ varchar(20) COLLATE utf8mb4_unicode_ci NOT NULL DEFAULT ’’,
‘post_name‘ varchar(200) COLLATE utf8mb4_unicode_ci NOT NULL DEFAULT ’’,
‘to_ping‘ text COLLATE utf8mb4_unicode_ci NOT NULL,
‘pinged‘ text COLLATE utf8mb4_unicode_ci NOT NULL,
‘post_modified‘ datetime NOT NULL DEFAULT ’0000-00-00 00:00:00’,
‘post_modified_gmt‘ datetime NOT NULL DEFAULT ’0000-00-00 00:00:00’,
‘post_content_filtered‘ longtext COLLATE utf8mb4_unicode_ci NOT NULL,
‘post_parent‘ bigint(20) unsigned NOT NULL DEFAULT ’0’,
‘guid‘ varchar(255) COLLATE utf8mb4_unicode_ci NOT NULL DEFAULT ’’,
‘menu_order‘ int(11) NOT NULL DEFAULT ’0’,
‘post_type‘ varchar(20) COLLATE utf8mb4_unicode_ci NOT NULL DEFAULT ’post’,
‘post_mime_type‘ varchar(100) COLLATE utf8mb4_unicode_ci NOT NULL DEFAULT ’’,
‘comment_count‘ bigint(20) NOT NULL DEFAULT ’0’,
PRIMARY KEY (‘ID‘),
KEY ‘post_name‘ (‘post_name‘(191)),
KEY ‘type_status_date‘ (‘post_type‘,‘post_status‘,‘post_date‘,‘ID‘),
KEY ‘post_parent‘ (‘post_parent‘),
KEY ‘post_author‘ (‘post_author‘)

) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4 COLLATE=utf8mb4_unicode_ci AUTO_INCREMENT=4 ;

CREATE TABLE IF NOT EXISTS ‘wp_terms‘ (
‘term_id‘ bigint(20) unsigned NOT NULL AUTO_INCREMENT,
‘name‘ varchar(200) COLLATE utf8mb4_unicode_ci NOT NULL DEFAULT ’’,
‘slug‘ varchar(200) COLLATE utf8mb4_unicode_ci NOT NULL DEFAULT ’’,
‘term_group‘ bigint(10) NOT NULL DEFAULT ’0’,

B.1 Adapting Applications 38

PRIMARY KEY (‘term_id‘),
KEY ‘slug‘ (‘slug‘(191)),
KEY ‘name‘ (‘name‘(191))

) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4 COLLATE=utf8mb4_unicode_ci AUTO_INCREMENT=2 ;

CREATE TABLE IF NOT EXISTS ‘wp_usermeta‘ (
‘umeta_id‘ bigint(20) unsigned NOT NULL AUTO_INCREMENT,
‘user_id‘ bigint(20) unsigned NOT NULL DEFAULT ’0’,
‘meta_key‘ varchar(255) COLLATE utf8mb4_unicode_ci DEFAULT NULL,
‘meta_value‘ longtext COLLATE utf8mb4_unicode_ci,
PRIMARY KEY (‘umeta_id‘),
KEY ‘user_id‘ (‘user_id‘),
KEY ‘meta_key‘ (‘meta_key‘(191))

) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4 COLLATE=utf8mb4_unicode_ci AUTO_INCREMENT=16 ;

B.1.1.2. Joomla

Listing B.3: Error displayed after first opening the page
Error: Database discrepancry! FILE: main/dml_handler.cc LINE: 729 SQL=SELECT a.id, a.title, a.alias, a.introtext, a.fulltext, a.

y

checked_out, a.checked_out_time, a.catid, a.created, a.created_by, a.created_by_alias, CASE WHEN a.modified = ’0000-00-00

y

00:00:00’ THEN a.created ELSE a.modified END as modified, a.modified_by, uam.name as modified_by_name,CASE WHEN a.publish_up

y

= ’0000-00-00 00:00:00’ THEN a.created ELSE a.publish_up END as publish_up,a.publish_down, a.images, a.urls, a.attribs, a.

y

metadata, a.metakey, a.metadesc, a.access, a.hits, a.xreference, a.featured, a.language, LENGTH(a.fulltext) AS readmore,CASE

y

WHEN badcats.id is not null THEN 0 ELSE a.state END AS state,c.title AS category_title, c.path AS category_route, c.access

y

AS category_access, c.alias AS category_alias,CASE WHEN a.created_by_alias > ’ ’ THEN a.created_by_alias ELSE ua.name END AS

y

author,ua.email AS author_email,parent.title as parent_title, parent.id as parent_id, parent.path as parent_route, parent.

y

alias as parent_alias,ROUND(v.rating_sum / v.rating_count, 0) AS rating, v.rating_count as rating_count,c.published, CASE

y

WHEN badcats.id is null THEN c.published ELSE 0 END AS parents_published FROM fdnag_content AS a LEFT JOIN fdnag_categories

y

AS c ON c.id = a.catid LEFT JOIN fdnag_users AS ua ON ua.id = a.created_by LEFT JOIN fdnag_users AS uam ON uam.id = a.

y

modified_by LEFT JOIN fdnag_categories as parent ON parent.id = c.parent_id LEFT JOIN fdnag_content_rating AS v ON a.id = v.

y

content_id LEFT OUTER JOIN (SELECT cat.id as id FROM fdnag_categories AS cat JOIN fdnag_categories AS parent ON cat.lft

y

BETWEEN parent.lft AND parent.rgt WHERE parent.extension = ’com_content’ AND parent.published != 1 GROUP BY cat.id) AS

y

badcats ON badcats.id = c.id INNER JOIN fdnag_content_frontpage AS fp ON fp.content_id = a.id WHERE a.access IN (1,1,5) AND

y

c.access IN (1,1,5) AND CASE WHEN badcats.id is null THEN a.state ELSE 0 END = 1 AND (a.publish_up = ’0000-00-00 00:00:00’

y

OR a.publish_up <= ’2015-09-16 13:47:06’) AND (a.publish_down = ’0000-00-00 00:00:00’ OR a.publish_down >= ’2015-09-16

y

13:47:06’) ORDER BY c.lft, a.featured DESC, fp.ordering, CASE WHEN a.publish_up = ’0000-00-00 00:00:00’ THEN a.created ELSE

y

a.publish_up END DESC , a.created DESC LIMIT 0, 4
Error: Database discrepancry! FILE: main/dml_handler.cc LINE: 729 SQL=SELECT COUNT(*) FROM fdnag_content AS a LEFT JOIN

y

fdnag_categories AS c ON c.id = a.catid LEFT JOIN fdnag_users AS ua ON ua.id = a.created_by LEFT JOIN fdnag_users AS uam ON

y

uam.id = a.modified_by LEFT JOIN fdnag_categories as parent ON parent.id = c.parent_id LEFT JOIN fdnag_content_rating AS v

y

ON a.id = v.content_id LEFT OUTER JOIN (SELECT cat.id as id FROM fdnag_categories AS cat JOIN fdnag_categories AS parent ON

y

cat.lft BETWEEN parent.lft AND parent.rgt WHERE parent.extension = ’com_content’ AND parent.published != 1 GROUP BY cat.id)

y

AS badcats ON badcats.id = c.id INNER JOIN fdnag_content_frontpage AS fp ON fp.content_id = a.id WHERE a.access IN (1,1,5)

y

AND c.access IN (1,1,5) AND CASE WHEN badcats.id is null THEN a.state ELSE 0 END = 1 AND (a.publish_up = ’0000-00-00

y

00:00:00’ OR a.publish_up <= ’2015-09-16 13:47:06’) AND (a.publish_down = ’0000-00-00 00:00:00’ OR a.publish_down >=

y

’2015-09-16 13:47:06’)

Listing B.4: Working CREATE TABLE queries
CREATE TABLE IF NOT EXISTS ‘piwik_log_visit‘ (

‘idvisit‘ int(10) unsigned NOT NULL AUTO_INCREMENT,
‘idsite‘ int(10) unsigned NOT NULL,
‘idvisitor‘ binary(8) NOT NULL,
‘visit_last_action_time‘ datetime NOT NULL,
‘config_id‘ binary(8) NOT NULL,
‘location_ip‘ varbinary(16) NOT NULL,
‘location_longitude‘ float(10,6) DEFAULT NULL,
‘location_latitude‘ float(10,6) DEFAULT NULL,
‘location_region‘ char(2) DEFAULT NULL,
‘visitor_localtime‘ time NOT NULL,
‘location_country‘ char(3) NOT NULL,
‘location_city‘ varchar(255) DEFAULT NULL,
‘config_device_type‘ tinyint(100) DEFAULT NULL,
‘config_device_model‘ varchar(100) DEFAULT NULL,
‘config_os‘ char(3) NOT NULL,
‘config_os_version‘ varchar(100) DEFAULT NULL,
‘visit_total_events‘ smallint(5) unsigned NOT NULL,
‘visitor_days_since_last‘ smallint(5) unsigned NOT NULL,
‘config_quicktime‘ tinyint(1) NOT NULL,
‘config_pdf‘ tinyint(1) NOT NULL,
‘config_realplayer‘ tinyint(1) NOT NULL,
‘config_silverlight‘ tinyint(1) NOT NULL,
‘config_windowsmedia‘ tinyint(1) NOT NULL,
‘config_java‘ tinyint(1) NOT NULL,
‘config_gears‘ tinyint(1) NOT NULL,
‘config_resolution‘ varchar(9) NOT NULL,
‘config_cookie‘ tinyint(1) NOT NULL,
‘config_director‘ tinyint(1) NOT NULL,
‘config_flash‘ tinyint(1) NOT NULL,
‘config_device_brand‘ varchar(100) DEFAULT NULL,
‘config_browser_version‘ varchar(20) NOT NULL,
‘visitor_returning‘ tinyint(1) NOT NULL,

B.1 Adapting Applications 39

‘visitor_days_since_order‘ smallint(5) unsigned NOT NULL,
‘visitor_count_visits‘ smallint(5) unsigned NOT NULL,
‘visit_entry_idaction_name‘ int(11) unsigned NOT NULL,
‘visit_entry_idaction_url‘ int(11) unsigned NOT NULL,
‘visit_first_action_time‘ datetime NOT NULL,
‘visitor_days_since_first‘ smallint(5) unsigned NOT NULL,
‘visit_total_time‘ smallint(5) unsigned NOT NULL,
‘user_id‘ varchar(200) DEFAULT NULL,
‘visit_goal_buyer‘ tinyint(1) NOT NULL,
‘visit_goal_converted‘ tinyint(1) NOT NULL,
‘visit_exit_idaction_name‘ int(11) unsigned NOT NULL,
‘visit_exit_idaction_url‘ int(11) unsigned DEFAULT ’0’,
‘referer_url‘ text NOT NULL,
‘location_browser_lang‘ varchar(20) NOT NULL,
‘config_browser_engine‘ varchar(10) NOT NULL,
‘config_browser_name‘ varchar(10) NOT NULL,
‘referer_type‘ tinyint(1) unsigned DEFAULT NULL,
‘referer_name‘ varchar(70) DEFAULT NULL,
‘visit_total_actions‘ smallint(5) unsigned NOT NULL,
‘visit_total_searches‘ smallint(5) unsigned NOT NULL,
‘referer_keyword‘ varchar(255) DEFAULT NULL,
‘location_provider‘ varchar(100) DEFAULT NULL,
‘custom_var_k1‘ varchar(200) DEFAULT NULL,
‘custom_var_v1‘ varchar(200) DEFAULT NULL,
PRIMARY KEY (‘idvisit‘),
KEY ‘index_idsite_config_datetime‘ (‘idsite‘,‘config_id‘,‘visit_last_action_time‘),
KEY ‘index_idsite_datetime‘ (‘idsite‘,‘visit_last_action_time‘),
KEY ‘index_idsite_idvisitor‘ (‘idsite‘,‘idvisitor‘)

) ENGINE=InnoDB DEFAULT CHARSET=utf8 AUTO_INCREMENT=1 ;

ALTER TABLE piwik_log_visit ADD ‘custom_var_k2‘ varchar(200) DEFAULT NULL;
ALTER TABLE piwik_log_visit ADD ‘custom_var_v2‘ varchar(200) DEFAULT NULL;
ALTER TABLE piwik_log_visit ADD ‘custom_var_k3‘ varchar(200) DEFAULT NULL;
ALTER TABLE piwik_log_visit ADD ‘custom_var_v3‘ varchar(200) DEFAULT NULL;
ALTER TABLE piwik_log_visit ADD ‘custom_var_k4‘ varchar(200) DEFAULT NULL;
ALTER TABLE piwik_log_visit ADD ‘custom_var_v4‘ varchar(200) DEFAULT NULL;
ALTER TABLE piwik_log_visit ADD ‘custom_var_k5‘ varchar(200) DEFAULT NULL;
ALTER TABLE piwik_log_visit ADD ‘custom_var_v5‘ varchar(200) DEFAULT NULL;

Listing B.5: Not working CREATE TABLE queries
CREATE TABLE IF NOT EXISTS ‘piwik_log_visit‘ (

‘idvisit‘ int(10) unsigned NOT NULL AUTO_INCREMENT,
‘idsite‘ int(10) unsigned NOT NULL,
‘idvisitor‘ binary(8) NOT NULL,
‘visit_last_action_time‘ datetime NOT NULL,
‘config_id‘ binary(8) NOT NULL,
‘location_ip‘ varbinary(16) NOT NULL,
‘location_longitude‘ float(10,6) DEFAULT NULL,
‘location_latitude‘ float(10,6) DEFAULT NULL,
‘location_region‘ char(2) DEFAULT NULL,
‘visitor_localtime‘ time NOT NULL,
‘location_country‘ char(3) NOT NULL,
‘location_city‘ varchar(255) DEFAULT NULL,
‘config_device_type‘ tinyint(100) DEFAULT NULL,
‘config_device_model‘ varchar(100) DEFAULT NULL,
‘config_os‘ char(3) NOT NULL,
‘config_os_version‘ varchar(100) DEFAULT NULL,
‘visit_total_events‘ smallint(5) unsigned NOT NULL,
‘visitor_days_since_last‘ smallint(5) unsigned NOT NULL,
‘config_quicktime‘ tinyint(1) NOT NULL,
‘config_pdf‘ tinyint(1) NOT NULL,
‘config_realplayer‘ tinyint(1) NOT NULL,
‘config_silverlight‘ tinyint(1) NOT NULL,
‘config_windowsmedia‘ tinyint(1) NOT NULL,
‘config_java‘ tinyint(1) NOT NULL,
‘config_gears‘ tinyint(1) NOT NULL,
‘config_resolution‘ varchar(9) NOT NULL,
‘config_cookie‘ tinyint(1) NOT NULL,
‘config_director‘ tinyint(1) NOT NULL,
‘config_flash‘ tinyint(1) NOT NULL,
‘config_device_brand‘ varchar(100) DEFAULT NULL,
‘config_browser_version‘ varchar(20) NOT NULL,
‘visitor_returning‘ tinyint(1) NOT NULL,
‘visitor_days_since_order‘ smallint(5) unsigned NOT NULL,
‘visitor_count_visits‘ smallint(5) unsigned NOT NULL,
‘visit_entry_idaction_name‘ int(11) unsigned NOT NULL,
‘visit_entry_idaction_url‘ int(11) unsigned NOT NULL,
‘visit_first_action_time‘ datetime NOT NULL,
‘visitor_days_since_first‘ smallint(5) unsigned NOT NULL,
‘visit_total_time‘ smallint(5) unsigned NOT NULL,
‘user_id‘ varchar(200) DEFAULT NULL,
‘visit_goal_buyer‘ tinyint(1) NOT NULL,
‘visit_goal_converted‘ tinyint(1) NOT NULL,
‘visit_exit_idaction_name‘ int(11) unsigned NOT NULL,
‘visit_exit_idaction_url‘ int(11) unsigned DEFAULT ’0’,
‘referer_url‘ text NOT NULL,
‘location_browser_lang‘ varchar(20) NOT NULL,
‘config_browser_engine‘ varchar(10) NOT NULL,

B.1 Adapting Applications 40

‘config_browser_name‘ varchar(10) NOT NULL,
‘referer_type‘ tinyint(1) unsigned DEFAULT NULL,
‘referer_name‘ varchar(70) DEFAULT NULL,
‘visit_total_actions‘ smallint(5) unsigned NOT NULL,
‘visit_total_searches‘ smallint(5) unsigned NOT NULL,
‘referer_keyword‘ varchar(255) DEFAULT NULL,
‘location_provider‘ varchar(100) DEFAULT NULL,
‘custom_var_k1‘ varchar(200) DEFAULT NULL,
‘custom_var_v1‘ varchar(200) DEFAULT NULL,
‘custom_var_k2‘ varchar(200) DEFAULT NULL,
‘custom_var_v2‘ varchar(200) DEFAULT NULL,
‘custom_var_k3‘ varchar(200) DEFAULT NULL,
‘custom_var_v3‘ varchar(200) DEFAULT NULL,
‘custom_var_k4‘ varchar(200) DEFAULT NULL,
‘custom_var_v4‘ varchar(200) DEFAULT NULL,
‘custom_var_k5‘ varchar(200) DEFAULT NULL,
‘custom_var_v5‘ varchar(200) DEFAULT NULL,
PRIMARY KEY (‘idvisit‘),
KEY ‘index_idsite_config_datetime‘ (‘idsite‘,‘config_id‘,‘visit_last_action_time‘),
KEY ‘index_idsite_datetime‘ (‘idsite‘,‘visit_last_action_time‘),
KEY ‘index_idsite_idvisitor‘ (‘idsite‘,‘idvisitor‘)

) ENGINE=InnoDB DEFAULT CHARSET=utf8 AUTO_INCREMENT=1 ;

Bibliography

[1] R. Popa, N. Zeldovich, and H. Balakrishnan, “Cryptdb: A practical encrypted relational dbms. techni-
cal report mit-csail-tr-2011-005,” 2011.

[2] Experian, “Online id od: illegal web trade in personal information soars (ac-
cessed 2015-09-25),” 2012. [Online]. Available: https://www.experianplc.com/media/news/2012/
illegal-web-trade-in-personal-information-soars/

[3] M. Bishop, “The insider problem revisited,” in Proceedings of the 2005 workshop on New security
paradigms, ser. NSPW ’05. New York, NY, USA: ACM, 2005, pp. 75–76. [Online]. Available:
http://doi.acm.org/10.1145/1146269.1146287

[4] B. Schneier, Secrets and lies: digital security in a networked world, ser. Wiley computer publishing.
John Wiley, 2000. [Online]. Available: https://books.google.de/books?id=eNhQAAAAMAAJ

[5] Oxford English Dictionary, “"database, n.".” accessed: 2015-07-13. [Online]. Available:
http://www.oed.com/view/Entry/47411?redirectedFrom=Database&

[6] breachalert.com, “Breachalert (accessed 2015-09-25),” 2015. [Online]. Available: https://breachalarm.
com/

[7] “Online cheating site ashleymadison hacked (accessed 2015-09-25),” http://krebsonsecurity.com/2015/
07/online-cheating-site-ashleymadison-hacked/, 2015. [Online]. Available: http://krebsonsecurity.
com/2015/07/online-cheating-site-ashleymadison-hacked/

[8] WallStreetJournal, “Irs says cyberattacks more extensive than previously re-
ported (accessed 2015-09-25),” 2015. [Online]. Available: http://www.wsj.com/articles/
irs-says-cyberattacks-more-extensive-than-previously-reported-1439834639

[9] ——, “U.s. suspects hackers in china breached about 4 million peo-
ple’s records, officials say,” 2015. [Online]. Available: http://www.wsj.com/articles/
u-s-suspects-hackers-in-china-behind-government-data-breach-sources-say-1433451888

[10] I. ISO, “Iec 9075: 2011 information technology, database languages,” 2011.

[11] “Db-engines ranking,” 2015. [Online]. Available: http://db-engines.com/en/ranking/relational+dbms

[12] M. Cooney, “Ibm touts encryption innovation; new technology performs calculations on encrypted data
without decrypting it,” Computer World, June, 2009.

[13] P. Paillier, “Public-key cryptosystems based on composite degree residuosity classes,” in Advances in
cryptology (EUROCRYPT) 99. Springer, 1999, pp. 223–238.

[14] T. Ge and S. Zdonik, “Answering aggregation queries in a secure system model,” in Proceedings of the
33rd international conference on Very large data bases. VLDB Endowment, 2007, pp. 519–530.

https://www.experianplc.com/media/news/2012/illegal-web-trade-in-personal-information-soars/
https://www.experianplc.com/media/news/2012/illegal-web-trade-in-personal-information-soars/
http://doi.acm.org/10.1145/1146269.1146287
https://books.google.de/books?id=eNhQAAAAMAAJ
http://www.oed.com/view/Entry/47411?redirectedFrom=Database&
https://breachalarm.com/
https://breachalarm.com/
http://krebsonsecurity.com/2015/07/online-cheating-site-ashleymadison-hacked/
http://krebsonsecurity.com/2015/07/online-cheating-site-ashleymadison-hacked/
http://krebsonsecurity.com/2015/07/online-cheating-site-ashleymadison-hacked/
http://krebsonsecurity.com/2015/07/online-cheating-site-ashleymadison-hacked/
http://www.wsj.com/articles/irs-says-cyberattacks-more-extensive-than-previously-reported-1439834639
http://www.wsj.com/articles/irs-says-cyberattacks-more-extensive-than-previously-reported-1439834639
http://www.wsj.com/articles/u-s-suspects-hackers-in-china-behind-government-data-breach-sources-say-1433451888
http://www.wsj.com/articles/u-s-suspects-hackers-in-china-behind-government-data-breach-sources-say-1433451888
http://db-engines.com/en/ranking/relational+dbms

Bibliography 42

[15] D. X. Song, D. Wagner, and A. Perrig, “Practical techniques for searches on encrypted data,” in Secu-
rity and Privacy, 2000. S&P 2000. Proceedings. 2000 IEEE Symposium on. IEEE, 2000, pp. 44–55.

[16] A. Boldyreva, N. Chenette, Y. Lee, and A. O’neill, “Order-preserving symmetric encryption,” in Ad-
vances in Cryptology-EUROCRYPT 2009. Springer, 2009, pp. 224–241.

[17] R. Agrawal, J. Kiernan, R. Srikant, and Y. Xu, “Order preserving encryption for numeric data,” in
Proceedings of the 2004 ACM SIGMOD international conference on Management of data. ACM,
2004, pp. 563–574.

[18] R. A. Popa, C. Redfield, N. Zeldovich, and H. Balakrishnan, “Cryptdb: protecting confidentiality
with encrypted query processing,” in Proceedings of the Twenty-Third ACM Symposium on Operating
Systems Principles. ACM, 2011, pp. 85–100.

[19] I. H. Akin and B. Sunar, “On the difficulty of securing web applications using cryptdb,” in Big Data
and Cloud Computing (BdCloud), 2014 IEEE Fourth International Conference on. IEEE, 2014, pp.
745–752.

[20] C. V. W. Muhammad Naveed, Seny Kamara, “Inference attacks on property-preserving encrypted
databases,” 2015. [Online]. Available: http://research.microsoft.com/en-us/um/people/senyk/pubs/
edb.pdf

[21] Google, “Encrypted bigquery client,” https://github.com/google/encrypted-bigquery-client, 2015.

[22] P. Grofig, M. Haerterich, I. Hang, F. Kerschbaum, M. Kohler, A. Schaad, A. Schroepfer, and W. Tighz-
ert, “Experiences and observations on the industrial implementation of a system to search over out-
sourced encrypted data.” in Sicherheit, 2014, pp. 115–125.

[23] dev.mysql.com, MySQL Documentation (accessed 2015-08-05), 2015. [Online]. Available:
https://dev.mysql.com/doc/refman/5.0/en/compatibility.html

[24] S. Harizopoulos, D. J. Abadi, S. Madden, and M. Stonebraker, “Oltp through the looking glass,
and what we found there,” in Proceedings of the 2008 ACM SIGMOD International Conference on
Management of Data, ser. SIGMOD ’08. New York, NY, USA: ACM, 2008, pp. 981–992. [Online].
Available: http://doi.acm.org/10.1145/1376616.1376713

[25] A. Kopytov, “Sysbench: a system performance benchmark,” URL: http://sysbench.sourceforge.net,
2004.

[26] MySQL AB, “Mysql performance benchmarks,” A MySQL Technical White Paper, 2005. [Online].
Available: http://www.jonahharris.com/osdb/mysql/mysql-performance-whitepaper.pdf

[27] J. Clarke, SQL injection attacks and defense. Elsevier, 2009.

[28] git scm.com, Git - git-clone Documentation (accessed 2015-07-25), 2015. [Online]. Available:
http://git-scm.com/docs/git-clone

http://research.microsoft.com/en-us/um/people/senyk/pubs/edb.pdf
http://research.microsoft.com/en-us/um/people/senyk/pubs/edb.pdf
https://github.com/google/encrypted-bigquery-client
https://dev.mysql.com/doc/refman/5.0/en/compatibility.html
http://doi.acm.org/10.1145/1376616.1376713
http://www.jonahharris.com/osdb/mysql/mysql-performance-whitepaper.pdf
http://git-scm.com/docs/git-clone

	List of Figures
	List of Tables
	Introduction
	Foundation
	Databases and Database Systems
	Database Management System (DBMS)
	The Query Language SQL

	CryptDB
	General Setup
	Onion Layers
	Encryption Types
	Related Work

	Benchmark
	Preliminary Considerations
	Benchmarks
	Results
	Conclusion

	Adapting Applications
	Preliminary Considerations and Restrictions
	Techniques
	Sample Applications
	Conclusion

	Conclusions
	Appendix General
	Testing Environment
	Installing CryptDB

	Appendix Logs and Errors
	Adapting Applications

	Bibliography

