
Guardians of the Clouds:
When Identity Providers Fail

Andreas Mayer
Adolf Würth GmbH & Co. KG

Künzelsau-Gaisbach, Germany
andreas.mayer@wuerth.com

Marcus Niemietz, Vladislav Mladenov
∗

,
Jörg Schwenk

Horst Görtz Institute for IT-Security
Bochum, Germany

firstname.lastname@rub.de

ABSTRACT
Many cloud-based services offer interfaces to Single Sign-On
(SSO) systems. This helps companies and Internet users to
keep control over their data: By using an Identity Provider
(IdP), they are able to enforce various access control strate-
gies (e.g., RBAC) on data processed in the cloud.

On the other hand, IdPs provide a valuable single point
of attack: If the IdP can be compromised, all cloud services
are affected, including well-protected applications such as
Google Apps and Salesforce. This increases the impact of
the attack by several orders of magnitude.

In this paper, we analyze the security of six real-world
SAML-based IdPs (OneLogin, Okta, WSO2 Stratos, Cloud-
seal, SSOCircle, and Bitium) which are used to protect cloud
services. We present a novel attack technique (ACS Spoof-
ing), which allows the adversary to successfully impersonate
the victim in four of these SSO systems. To complete our
survey on IdP security, we additionally evaluated the secu-
rity of these six IdPs against well-known web attacks, and
we were successful against four of them. In summary, we
were able to break all six SSO systems.

We present a online penetration test tool, ACSScanner1,
which is able to detect ACS Spoofing vulnerabilities on arbi-
trary IdPs. Additionally, we discuss several countermeasures
for each attack type, ranging from simple whitelisting to the
signing of authentication requests, and from anti-CSRF to-
kens and HTTP-Only cookies to cookie-TLS-bindings. We
have implemented a combination of two advanced counter-
measures.

Categories and Subject Descriptors
K.6.5 [Security and Protection]: Unauthorized access

∗The author was supported by the SkIDentity project of
the German Federal Ministry of Economics and Technology
(BMWi, FKZ: 01MD11030).
1http://ssoattacks.org:8080/acsscanner/

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
CCSW’14, November 7, 2014, Scottsdale, Arizona, USA.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-3239-2/14/11 ...$15.00.
http://dx.doi.org/10.1145/2664168.2664171.

General Terms
Security

Keywords
Holder-of-Key; identity theft; SAML; SSO; web security

1. INTRODUCTION
Access to cloud services can either be managed directly

through a web interface, or by using one of the APIs offered
by the cloud service. In the first case, users are typically
identified though the combination of username/password.
This aspect is not only cumbersome but also seriously in-
secure, as users frequently choose weak (easy to remem-
ber) passwords and/or reuse them on different websites [17].
Moreover, password-based solutions are susceptible to phish-
ing and web spoofing attacks.

Using an API for authentication and authorization gives
more flexibility (e.g., Role Based Access Control) and of-
fers the possibility to get better security. The Security As-
sertion Markup Language (SAML) [8] is the industry stan-
dard for such an API, and is offered by many cloud services
(e.g., Google Apps, Salesforce, Cisco WebEx, and Work-
day). SAML defines the exchange of authentication and au-
thorization statements in security tokens called assertions.
This standardized API is used to facilitate browser-based
Single Sign-On (SSO) to tackle the usability, management,
and security issues of classical password-based login.

With browser-based SSO (cf. Figure 1) the user (U)
authenticates once to a trusted party called the Identity
Provider (IdP). Subsequently, U gains access to all feder-
ated cloud services, referred to as Service Providers (SP s),
without being prompted with another login dialog. The user
participates in the SSO flow with his user agent (UA), which
is usually a web browser.

The security of an SSO system is only as strong as the
security of its weakest part. SSO systems combine HTTP,
HTML, JavaScript, and XML technologies. Thus, SSO of-
fers an attractive target to attackers: A security bug in the
IdP implementation based on one of these technologies may
allow to access all federated cloud services and websites.

Attacks. We present successful attacks on six prominent
cloud-based IdPs (OneLogin [34], Okta [33], SSOCircle [43],
WSO2 Stratos [50], Cloudseal [12], and Bitium [6]), using
two different attack classes:

1. Class 1: AssertionConsumerService (ACS) Spoofing
(Section 6). We describe a novel attack against the

Table 1: Results of our practical evaluation.
Affected ACS Cookie Common Vulnerabilities

SSO System Website SPs Spoofing theft and Exposures (CVE)
OneLogin www.onelogin.com ≈3,600 X X CVE-2012-4962, -4963
Okta www.okta.com ≈3,000 – X CVE-2013-0114
WSO2 Stratos www.wso2.org Opena X – CVE-2012-4961
Cloudseal www.cloudseal.com Openb – X Assignment in process
SSOCircle www.ssocircle.com Openb X X CVE-2013-0115, -0116, -0117
Bitium www.bitium.com ≈1,750 X – Direct communication
a All SPs that accept SAML assertions issued by these IdPs are affected.
b All federated SPs are affected.

SAML Web SSO Profile [9]. This attack allows the
adversary to redirect the security token issued by the
IdP to himself, and thus to impersonate the victim to
every federated SP. The only prerequisite for this at-
tack is that the victim has to visit a webpage controlled
by the adversary. We show the practical feasibility of
this attack in four popular SAML-based SSO solutions
(cf. Table 1).

2. Class 2: Attacks against the IdP web application (Sec-
tion 7). We discovered multiple cross-site scripting
(XSS) [54] vulnerabilities in all six real-world IdPs.
These flaws allowed us (in two cases only in combina-
tion with a UI redressing attack) to steal the victim’s
HTTP session cookies set by four IdPs (cf. Table 1),
resulting in a complete identity theft of the victim.
Again, the victim only has to visit a webpage con-
trolled by the adversary, and in two cases (Okta and
Cloudseal) to perform a few additional mouse clicks or
drag-and-drop actions on this webpage.

The attacks presented break SSO systems even if strong
multi-factor authentication (MFA) is deployed: MFA only
protects the initial authentication with the IdP, but we tar-
get the system only after the user is authenticated. If a user
is not yet logged in to the IdP, we may simply masquerade
the attacker’s web servers as a Service Provider: Since the
normal workflow in this case is to authenticate to the IdP
first (possibly using MFA), no doubts will be raised by the
victim.

Results, Impact, and Responsible Disclosure. In sum-
mary, all six evaluated IdP systems exposed severe security
flaws (cf. Table 1). All IdPs are high-profile IdPs with thou-
sands of customers (e.g., London Gatwick Airport, Western
Union, Groupon, LinkedIn). They are be used by millions of
users to authenticate to many security critical cloud services
(e.g., Google Apps and Salesforce).

We promptly reported all vulnerabilities found to the li-
able security teams as well as to the leading Computer Emer-
gency Response Team (CERT) at Carnegie Mellon Univer-
sity [10]. All parties have acknowledged and fixed the re-
ported vulnerabilities.

Countermeasures. Unfortunately, all known countermea-
sures to mitigate ACS Spoofing (including those proposed
by the SAML standard) have a high administrative over-
head, are incompatible with each other, or may be subject
to advanced attacks (Section 8.1). To protect against XSS,
several best practice technologies exist, but are rarely de-
ployed. None of these technologies offer full protection, since
workarounds are known in each case (Section 8.2).

To mitigate both attack classes simultaneously, we investi-
gate the standardized, but rarely deployed, OASIS Holder-
of-Key (HoK) Profile [28]. HoK binds each SAML asser-
tion to the TLS [14] client certificate of the browser. We
extend this strong cryptographic binding to a more holistic
approach and additionally bind the HTTP session cookies of
IdP and SP to the same client certificate (along the lines of
[15]). Please note that client certificates may be self-signed,
thus we do not rely on a PKI. Our extended approach can,
in contrast to [15], be applied without changing existing in-
frastructures (e.g., web server and web browser) and with
minimal performance impact (see Section 8.3).

Contribution. Our main achievements can be summarized
as follows:

• Novelty. We describe a novel and high-impact attack
on SAML-based SSO services (ACS Spoofing), result-
ing from a logical flaw in the information flow. Further-
more, to our best knowledge, we are the first that an-
alyze the security of cloud-based IdPs against XSS/UI
redressing attacks and evaluate the impact of such at-
tacks within the SSO based authentication.

• Impact. We show that IdPs that are not vulnerable to
ACS Spoofing may still be broken with a combination
of XSS and UI redressing attacks. Thus by compromis-
ing all six investigated IdPs we show that IdP security
must be improved, since an IdP vulnerability affects
all federated SPs.

• ACS Scanner. Based on our crucial findings, we de-
veloped a ACS Spoofing penetration test tool, which
is online available. ACS Scanner can be configured via
the web interface and it automatically tests the secu-
rity of the IdP. Therefore, customers and developers
can easily test if their IdP is vulnerable against ACS
Spoofing.

• Mitigation. We investigate several countermeasures
against ACS Spoofing for their practical applicabil-
ity. We broaden the scope of the HoK approach to
include HTTP session cookies along the lines of [15],
and present a proof-of-concept implementation of this
concept for the popular open source framework Sim-
pleSAMLphp [47], together with a performance evalu-
ation.

Outline. The rest of the paper is organized as follows.
Related work is given in Section 2. In Section 3 we will
briefly introduce SSO, SAML, and HTTP session cookies.

The adversarial model of our attacks is explained in Sec-
tion 4. Next, we introduce six prominent SSO systems tar-
geted by our analyzes and explain our attack methodology
in Section 5. The ACS Spoofing attack, ACS Scanner, and
a practical evaluation of vulnerable real-world IdPs are pre-
sented in Section 6. Results of combined XSS/UI redressing
attacks are supplied in Section 7. Several countermeasures
against ACS Spoofing and cookie theft along with our pre-
ferred countermeasure are discussed in Section 8. Finally,
we conclude and propose future research directions.

2. RELATED WORK
Single-Sign-On (SSO). A variety of vulnerabilities have
been identified in browser-based SSO protocols that emerged
over the last two decades.

Research on SSO security started with Rubin [29] and
Slemko [41] analyzing Microsoft Passport, and Groß [20] de-
scribing several attacks for the SAML Browser Artifact Pro-
file. Later, Groß analyzed a revised version of SAML, finding
a need for improvement once again [21]. Similar flaws have
also been found in the Liberty Single Sign-On protocol [39].

In 2008, Armando et al. [3] built a formal model of the
SAML V2.0 Web SSO Profile [9] and have analyzed it with
the model checker SATMC. By introducing a malicious SP,
they have found a practical attack on the SAML implemen-
tation of Google Apps. Same authors have identified another
attack on the SAML-based SSO of Google Apps in 2011 [2].
The attack model is related to our ACS Spoofing attack.
However, we exploit a logical flaw in the IdP’s SAML inter-
face implementation instead of SP-based XSS flaws.

Somorovsky et al. [42] have published an in-depth analysis
of XML Signature usage in 14 major SAML frameworks and
showed that 11 of them, including Salesforce, Shibboleth,
and IBM XS40, had critical XML Signature wrapping flaws.
Please note that their results do not have any overlap with
our results. They targeted the XML data structure of SAML
assertion, whereas we are looking at information flow and
web security issues.

Wang et al. [48] analyzed the security of commercially
deployed SSO solutions. The authors identified eight seri-
ous logic flaws in high-profile IdPs and SP websites (e.g.,
GoogleID, Facebook, and JanRain), which have allowed an
adversary to sign-in as the victim user. They concentrated
on the message flow in REST-based authentication protocols
like OpenID and did not consider SAML and web applica-
tion attacks like XSS and UI redressing. Later on, the same
authors developed a tool named InteGuard detecting invari-
ance in the communication and preventing logical flaws in
SPs [51]. InteGuard is not able to mitigate the attacks pre-
sented in this paper, since all HTTP messages between the
adversary and the SP are valid and do not show abnormal-
ities.

In 2012 Sun and Beznosov [46] screened 96 OAuth SPs
for known attacks. They discovered several vulnerabilities
caused by implementation flaws.

Recently, Bai et al. [22] have proposed AuthScan, a frame-
work to automatically extract the authentication protocol
specifications from implementations. They have found mul-
tiple security flaws in existing SPs using several important
SSO protocols (e.g., Facebook Connect, BrowserID, and Win-
dows Live Messenger Connect). However, they have not
investigated SAML-based SSO systems. In 2014 Evans et

al. [52] published a tool SSOScan evaluating fully auto-
mated the security of OAuth 2.0 implementations. However,
SSOScan does not support the security analysis of SAML
based SSO systems and does not cover web attacks like XSS,
CSRF, and Clickjacking.

TLS Channel Bindings. In 2007 Karlof et al. [27] have
proposed to strengthen the web browser’s Same Origin Pol-
icy (SOP) by taking the TLS server certificate into account.
The proposed strong-locked SOPs (SLSOP) tags session cook-
ies with the server’s public key and solely returns them
to servers if the public key of the server’s TLS certificate
matches. A similar approach called Web Server Key Enabled
Cookies (WSKECookies) has been presented by Masone et
al. [31].

The use of client certificates in SSO systems was first dis-
cussed in [19] and standardized in [28]. Dietz et al. [15]
have proposed origin-bound certificates (OBC), an approach
aimed at strengthening client authentication for the Web
with the use of a TLS extension. OBC require fundamental
changes of the TLS stack in web server and browser. The
authors are (up to our knowledge) the first to discuss HTTP
cookie bindings to TLS client certificates in detail.

Cross-Site Scripting and UI-Redressing. According to
OWASP Top 10 2013 [36], cross-site scripting (XSS) is the
most prevalent security flaw in today’s web applications.
XSS vulnerabilities are based on improperly filtered data
(e.g., script code) that is injected in a webpage and sent to
the browser. Afterwards, the injected malicious content is
executed in the victim’s browser. XSS has been discovered
in 2000 [11] and is categorized into five classes: reflected,
persistent, DOM-based, self, and mutation-based XSS [26].
Recently, Heiderich et al. have demonstrated that an adver-
sary can inject scriptless data to execute XSS attacks [25].

In 2002 Ruderman [40] pointed out that it is possible to
make webpage elements transparent and that a victim can
click on these elements without getting any notice. This
attack was called UI redressing. In 2008 Hansen and Gross-
mann have presented clickjacking [23], which is based on UI
redressing. They have shown that an adversary could use
transparent iFrames in combination with the Adobe Flash
Player to get access to the camera and microphone of the
victim by hijacking a few clicks. UI redressing attacks can
be combined with XSS to make them more powerful (cf.
Section 7).

3. FOUNDATIONS

3.1 Single Sign-On
A high-level description of Single Sign-On (SSO) is given

in Figure 1. User U directs his web browser (UA) to visit
Service Provider SP (1). SP issues a token request (2) to
UA (3), who forwards it to the Identity Provider IdP (4).
After verifying the clients identity, IdP issues a token for
U containing several claims (e.g., user’s identity, expiration
time, and access rights). In order to guarantee authenticity
and integrity of these claims, the token is signed (5). Sub-
sequently, the token is sent to UA (6), who forwards it to
SP (7). SP validates the signature and, in case of success,
grants access to the protected service or resource of SP. This
access-control decision relies on the claims in the validated
token. Please note that the whole conversation typically is
secured only through server-authenticated TLS channels.

UA SPIdP

4
5

Issue signed
Token

Token
Request

6
Token

7
Token

8

● Verify signature
● Evaluate Token
● Authorize
 User
 [TLS]

3

Token
Request

1

Login
Request

[TLS]

2

Issue
Token
Request

 U

Figure 1: A typical browser-based SSO scenario:
The user visits the SP (1), which generates a re-
quest token (2+3). He redirects this token to the
IdP (4). The issued identity token (5) is sent to the
user (6) and forwarded to the SP (7). The whole
conversation is secured through TLS channels.

<AuthnRequest ID Version IssueInstant
 AssertionConsumerServiceURL?>
 <Issuer>?
 <Subject>?
 <NameIDPolicy>?
 <Extensions>?
 <Signature>?
 <Conditions>?
 <RequestedAuthnContext>?
 <Scoping>?
</AuthnRequest>

<Assertion Version ID IssueInstant>
 <Issuer>
 <Signature>?
 <Subject>?
 <SubjectConfirmation Method>*
 <SubjectConfirmationData
 InResponseTo? Recipient?>?
 <Conditions>?
 <Advice>?
 <AuthnStatement>*
 <AuthzDecisionStatement>*
 <AttributeStatement>*
</Assertion>

a) b)

Figure 2: <AuthnRequest> and <Assertion> structure
(regular expression notation).

3.2 SAML
The Security Assertion Markup Language (SAML) is a

widely-used XML-based standard for exchanging authenti-
cation and authorization statements about subjects. These
statements are contained in security tokens called assertions.
SAML consists of three other building blocks: (1) protocols
define how assertions are exchanged between the actors; (2)
bindings specify how to embed assertions into transport pro-
tocols (e.g., HTTP or SOAP) and (3) profiles define the
interplay of assertions, protocols, and bindings that are nec-
essary for the needs of a specific use case to be met. The
investigated SAML Web Browser SSO Profile [9] is the most
commonly deployed application scenario.

In order to request an assertion, SAML defines the <Au-

thnRequest> message (i.e. token request). The simplified
structure is shown in Figure 2a).

Mandatory attributes are: Version states the SAML ver-
sion in use, ID supplies the unique and randomly chosen
request identifier, and the time of issuing is identified in Is-

sueInstant. The optional AssertionConsumerServiceURL
(ACSURL) attribute specifies the endpoint URL to which
the IdP must deliver the issued assertion. The <Issuer>

element includes the EntityID of the SP. The <Subject>,
<NameIDPolicy> and <Extensions> elements are seldom used
and are irrelevant for the paper. The authentication request
may be protected by a digital signature (<Signature>) fol-
lowing the XML Signature standard. In practice, signing is
used rarely.

The structure of an assertion (i.e. token), which is issued
for the requesting SP, is defined in Figure 2b). The Ver-

sion, ID, and IssueInstant attributes are required, having
the same purpose as in the <AuthnRequest>. The <Issuer>

element specifies the SAML authority (the IdP) that certifies
the claim(s). <Subject> defines the principal about whom
all statements within the assertion are made. <Subject-

Confirmation> is an optional element utilized for specifying
methods (e.g., bearer or HoK) that the SP has to use to
verify the validity of the assertion. <SubjectConfirmation-
Data> specifies constraints or data required for the subject
confirmation. The value of InResponseTo must match the
ID of the <AuthnRequest>, if a correlation of the assertion to
the request is to be made. To prevent malicious forwarding
of assertions to unintended recipients, the optional Recipi-
ent attribute and the ACSURL of the request must be equal.
The <*Statement> and <Advice> elements are optional and
not relevant for this paper. To assure the integrity and au-
thenticity of the claims made, the whole <Assertion> must
be protected by an XML Signature.

3.3 Session Management with Cookies
HTTP is a stateless protocol. Regarding the authentica-

tion a user would be forced to re-enter his login information
repeatedly, since the web server treats every HTTP request
as a new independent connection. HTTP cookies [4] are
used to store the result of an initial authentication and rep-
resent afterwards the session state of an authenticated user.
We will call such cookies session cookies. HTTP cookies
can be set or modified with each HTTP response, where the
web server includes an additional HTTP header Set-Cookie
and the according cookie value. Additionally, cookies con-
tain further session information such as domain and path to
define the scope of a cookie (e.g., docs.foo.com/accounts)
and a timestamp. Once a cookie is set, it is sent along with
every HTTP request from the browser to the web server.
Session cookies are a valuable target because they allow iden-
tity theft (see Section 7).

4. ADVERSARIAL MODEL
We assume that user agent (e.g., browser) and computer

of the victim are not compromised. Furthermore, IdP and
SP are benign.

For the attacks described in this paper we use the web at-
tacker model [46]. By this means, the adversary only needs
to register a domain and set up a malicious website. Visiting
this malicious website can enforce the victim’s browser to is-
sue HTTP requests to the IdP. We assume an adversary able
to lure the victim to a website controlled by him. This may
be easily done through phishing [13] and malicious advertis-
ing [16]. Additionally, we assume that the victim is already
authenticated to the IdP and therefore session cookies are
set up.2

Our adversary has far fewer resources than the classi-
cal network-based attacker, who acts as man-in-the-middle
(MITM) within the victim’s communication. Since there is
no need to read the network traffic, we assume that the user
agent of the victim always communicates over encrypted
TLS channels. Moreover, the victim only accepts communi-
cation partners with valid and trusted server certificates.

The goal of the adversary is to authenticate as victim to
the attacked SP with stolen SAML assertions (Class 1: ACS
Spoofing) or to authenticate as victim to the IdP with stolen
session cookies (Class 2: XSS/UI redressing attacks).

2As the victim is using an IdP to reduce sign-on tasks, this
is a very likely assumption.

5. METHODOLOGY
In this section we describe the selection criteria for the

chosen cloud-based IdPs, introduce them, and explain the
testing methodology.

5.1 Targeted Cloud IdPs
We selected six real-world SSO IdPs based on Wikipedia’s

comprehensive “SAML-based products and services” list [49]
and Network World’s review of eight prominent cloud-based
SSO products [45].

As selection criteria, we applied the following conditions:
(1) On-demand. We chose IdPs that are available as a
Software-as-a-Service (SaaS), do not require installation, and
configuration is done on the client’s side. (2) Widespread.
They must be widespread and are used by enterprises. (3)
Free accounts. The IdPs offer free trail accounts with an
activated SAML interface.

We strictly chose cloud-based SSO products and excluded
on-premise software products like Shibboleth or OpenAM,
that must be downloaded, installed, and configured. De-
pending on configuration, activated modules, and extensions
the verification logic may vary. Therefore, a statement re-
garding the security of such frameworks, covering all existing
deployments, cannot be made.

OneLogin. OneLogin [34] offers identity and access man-
agement as a cloud service for over 700 customers, includ-
ing Netflix, Steelcase, Pandora, PBS, and has more than 12
millions of licensed users. OneLogin supports identity man-
agement features, user directory integration (e.g., Microsoft
Active Directory), and various strong authentication meth-
ods (e.g., MFA and client certificate). The IdP supports
SAML-based SSO with over 450 SPs, including Box, Con-
cur, Google Apps, NetSuite, Salesforce, Workday, Yammer,
and Zendesk.3 Furthermore, it is important to remark that
OneLogin also supports SSO with more than 3,600 websites
by applying form-based authentication.

Okta. Okta [33] is a leading on-demand identity and ac-
cess management service for enterprises with over 1,200 cus-
tomers (e.g., London Gatwick Airport, Western Union, and
LinkedIn). The IdP supports a large variety of SAML-based
SPs, including Google Apps, Salesforce, Citrix GoToMeet-
ing, and EchoSign. Okta also supports SSO with more than
3,000 websites by applying form-based authentication.

CloudSeal. Cloudseal [12] is a SAML-based IdP service of-
fering MFA and support for a wide range of SPs (e.g., Sales-
force and Google Apps). Additionally, Cloudseal provides a
Java SDK to integrate SAML-based SSO into existing ap-
plications. At the time of this writing no official customer
list is available.

SSOCircle. SSOCircle [43] is a free public SAML IdP that
facilitates various strong authentication methods. The IdP
supports SAML compliant SPs (e.g., Google Apps, GMail,
Salesforce, and ServiceNow). We do not have any informa-
tion about the number of current users.

WSO2 Stratos. WSO2 Stratos [50] is a cloud middleware
that includes WSO2 Identity Server (IS) to provide security
and identity management for web applications, services, and
APIs. WSO2 IS supports SAML-based SSO and is also used
as standalone product in large enterprises.

3http://www.onelogin.com/blog/onelogin-adds-45oth-
saml-enabled-saas-vendor-to-sso-catalog/

 Benign Malicious

SPIdPAdversary
computer

Registration1

Sign In2

Security
analysis

3

Phase II: Security analysis

SPIdP
Victim

computer

Registration1

Sign In2

Phase I: Set Up

SPIdPVictim
computer

Phase III: Attack

Adversary
web server

Access1

Attack2

Harvest
cookies/assertions

3

Adversary
computer

SPIdPVictim
computer

Phase IV: Exploit

Adversary
web server

Adversary
computer

Dowload
cookies/assertions

1

Authenticate
as victim2

cookies

assertions

Figure 3: The four phases of our testing methodol-
ogy assessment process.

Bitium. Bitium [6] is a SaaS IdP enabling identity manage-
ment between different web applications via SAML-based
SSO. It supports more than 1,750 different cloud applica-
tions like Google Apps, Salesforce, and NetSuite.

5.2 Testing Methodology
We had no access to the implementation code of the cloud-

based SSO products. Therefore, we treated the IdPs as black
boxes. In order to provide the security analysis and verify
the results, we set up three strictly separated test systems:

• Victim computer used for registration on the tar-
get IdP, corresponding configuration, and SSO. In this
manner, we simulated all actions a victim user would
be able to perform.

• Adversary web server where the attack vectors (i.e.
malicious website, iFrames, and AuthnRequests) were
deployed. This server was accessible over the Inter-
net. Additionally, a service on this server provides the
harvested assertions and session cookies.

• Adversary computer used to send the stolen session
cookies and assertions in order to authenticate as the
victim.

For each IdP we conducted the following assessment pro-
cess (see Figure 3):

Phase I: Set Up. (1) The victim registers and configures a
victim account V icAcc from his victim computer. (2) V icAcc

logs in on the IdP and uses the offered services.

Phase II: Security analysis. (1) The adversary regis-
ters and configures an adversary account AdvAcc from his
adversary computer. (2) AdvAcc logs in on the IdP and
evaluates the security of the application. (2) In order to
find ACS Spoofing vulnerabilities, the adversary uses ACS
Scanner. To discover Class 2: XSS and UI redressing flaws,
he manually executes a penetration test. Finally, he creates
the attack vectors and deploys them on the adversary web
server.

Phase II: Attack. (1) The victim accesses the adversary
web server from his victim computer. (2) By clicking on a
link, the attacks discovered in Phase 2 will be executed. (3)
The adversary web server harvests the assertions and session
cookies.

Phase IV: Exploit. (1) In order to verify the success of the
attack and to mitigate false positives results, the adversary
downloads the cookies and/or assertions from the adversary
web server to his adversary computer. (2) Thereafter, the
cookies are used by the adversary to authenticate as V icAcc

to the IdP and the assertions are used to authenticate as
V icAcc to SP.

6. NOVEL ATTACK: ACS SPOOFING
This novel attack relies on a logical flaw in the IdP’s

SAML interface implementation, at the interplay between
XML and HTTP, and allows to steal fresh and valid asser-
tions. It affects all SPs having a trust relationship with the
IdP.

6.1 Attack Description
Precondition. When the victim visits the malicious web-
site A, the attack is carried out automatically. If the user is
already authenticated to IdP , the attack executes in a fully
transparent manner, without any further user interaction.
Otherwise, the adversary may mask the malicious website

A as a Service Provider S̃P , thus the victim who has to
authenticate to IdP believes that he has started an SSO
protocol, which is in fact run with the accessed (malicious)

S̃P . Setting up a “Bad SP” is not harder than setting up an
ordinary website, since no trust relationship with IdP must
be established.

Attack. Figure 4 illustrates the detailed flow of the ACS
Spoofing attack. It consists of the following steps:

1. UA → A: User U navigates its user agent UA to the
malicious website A.

Please note that the next two messages (step 2 and
3) are optional. They will only be executed if SP re-
quires and validates the InResponseTo attribute of the
assertion. For that purpose, A needs a valid ID for
<AuthnRequest>, which was freshly generated by SP .

2. A → SP: A requests a protected resource URLSP on
an arbitrary SP resulting in a new SSO protocol run.
This request can be made via a simple script call, e.g.,
curl4, or a web browser.

3. SP→ A: SP determines that no valid security context
exists. Accordingly, SP issues an authentication re-
quest <AuthnRequest(ID, SP, ACSURL)> and sends
it Base64 encoded, along with URLSP , as an HTTP
302 (redirect to IdP) to A. ID is a fresh random string
and SP the identifier of the Service Provider. ACSURL,
included in the SP ’s <AuthnRequest>, specifies the
endpoint to where the IdP must send the assertion.

4. A→ UA: A generates a <AuthnRequest> and includes
the ACSURL = BadURL, which is a URL controlled
by the adversary. In the case that the InResponseTo

attribute is validated by SP , A copies the ID of the
<AuthnRequest> received in step 3, into its malicious
<AuthnRequest>.

5. UA→ IdP: Triggered by the HTTP redirect, a server-
authenticated TLS connection is established between
UA and IdP . UA uses the established TLS channel to
transport <AuthnRequest(ID, SP, BadURL)>, along
with URLSP , to IdP .

4http://curl.haxx.se/

6. UA ↔ IdP: If the user is not yet authenticated, IdP
identifies U by an arbitrary authentication mechanism
(e.g., MFA).

7. IdP → UA: The signed assertion AA is embedded
into a <Response> message and is sent Base64 encoded
in an HTML form, along with URLSP , to UA. Ac-
cording to the SAML standard, the IdP must use the
ACSURL = BadURL as HTTP POST destination ([8],
Section 3.4.1).

8. UA → A: A JavaScript event in the HTML form
triggers the HTTP POST of <Response> to BadURL

(which is under the control of A).

9. A → SP: A can now impersonate U by submitting
AA to SP .

10. SP → A: SP consumes AA, verifies the XML signa-
ture, and authenticates A as U . Therefore, SP grants
A access to the protected service or resource, doing so
by redirecting him to the originally accessed URLSP .

6.2 Practical Evaluation
OneLogin. This cloud-based IdP is vulnerable to ACS
Spoofing. Furthermore, it was possible to automate the
attack. When the victim accessed the website A, the ad-
versary opened for every supported SP a new iFrame car-
rying a malicious URL along with a self-generated <Authn-

Request> targeted to OneLogin’s SAML endpoint. Subse-
quently, the browser loaded each iFrame and launched mul-
tiple ACS Spoofing attacks in parallel. This attack variant
enabled the adversary to steal assertions for every config-
ured SAML SP with a single access to the malicious website
on victim’s part.

WSO2 Stratos. WSO2 Stratos is vulnerable to ACS Spoof-
ing. Interestingly, when authenticating to WSO2 Stratos,
the <AuthnRequest> did not contain any ACSURL at all.
By inserting a malicious ACSURL = BadURL, the adver-
sary could set a new permanent default ACSURL endpoint.
Therefore, one spoofed <AuthnRequest> was suffice to auto-
matically receive all assertions created in the following. This
technique works for every federated SP.

SSOCircle and Bitium. We discovered that those IdPs do
not verify the trustworthiness of the ACSURL. Thus, ACS
Spoofing was applicable.

6.3 ACS Scanner
In order to facilitate the security tests against ACS Spoof-

ing we developed ACS Scanner – an automated penetration
test tool available on the Internet.5 Thus, ACS Scanner is
platform independent and does not require any installation
of additional software.

Configuration. There are three parameters, which can be
configured in ACS Scanner:

• IdP Endpoint URL defines the URL where the attacked
IdP is deployed. The malicious SAML Request will be
sent to this URL.

• SAML Request Issuer defines the issuer of the SAML
Request, e.g., http://google.com. In many cases,
IdPs use this value for the generation of the assertion.
Thus, ACS Scanner allows the change of the value.

5http://ssoattacks.org:8080/acsscanner/

UA AIdP

1. HTTP GET URL

4. HTTP 302 IdP, <AuthnRequest
(ID, SP, Bad

URL
)>, URL

SP
)

5. HTTP GET IdP, (<AuthnRequest
(ID, SP, Bad

URL
)>, URL

SP
)

6. User authentication

10. HTTP 302 URL
SP

8. HTTP POST Bad
URL

,

(<Response(AA)>, URL
SP

)

7. HTTP 200 Form(
<Response(AA)>,URL

SP
,Bad

URL
)

TLS Handshake with
server authentication

TLS Handshake with
server authentication

Generate assertion:
AA={ID, IdP, SP, U}

K
IdP
-1

 U SP

Verify and
evaluate
assertion.

No security
context. User not
identifiable.

2. HTTP GET URL
SP

3. HTTP 302 IdP, (<AuthnRequest
(ID, SP, ACS

URL
)>, URL

SP
)

9. HTTP POST ACS
URL

,

(<Response(AA)>, URL
SP

)

TLS Handshake with
server authentication

[TLS]

https://IdP.com https://ssoattacks.org https://sp.com

[TLS] [TLS]

optionalmandatory

Figure 4: ACS Spoofing attack on standard SAML Web Browser SSO.

• SAML Request is an input field, where the malicious
SAML authentication request can be configured man-
ually. For normal operations this is not necessary, but
experts have the option to build their own handcrafted
request message. For example, when the SP verifies
the InResponseTo attribute of the assertion, the pen-
tester can use this field to provide a freshly created
<AuthnRequest> from a federated SP. ACS Scanner
provides a default SAML <AuthnRequest> as an ex-
ample.

Evaluation. By clicking on the “Start Test” button ACS
Scanner will start the security analysis:

1. ACS Scanner generates an unique ID (ID1) and binds
it to the malicious SAML Request. Then, both values
are stored in the internal database.

2. ID1 is attached to the ACS URL in the SAML Re-
quest, ACSURL = ssoattacks.org/acsscanner/ID1.
In case that the tested IdP is vulnerable against ACS
Spoofing, it will sent the token to ACSURL.

3. ACS Scanner calls the URL of the IdP in a new browser
tab. The user has to authenticate himself to the IdP if
he is not already authenticated. Please note that ACS
Scanner does not act as MITM and cannot intercept
any credentials used on the IdP for the authentication.

4. If the IdP is vulnerable against ACS Spoofing, it will
process the SAML Request and send the assertion to
ACSURL.

5. In case that ACS Scanner receives an assertion, it cre-
ates a relation between ID1 ↔ SAML Request ↔
SAML Response. Based on this data, ACS Scanner

classifies the according IdP as vulnerable and displays
the results.

7. WEB ATTACKS AGAINST IDPS
Of the six IdPs tested, only Cloudseal and Okta were not

vulnerable to ACS Spoofing, as they whitelist or ignore the
ACSURL parameter. However, we were able to compro-
mise the security of both IdPs with a combination of XSS
and UI redressing attacks. Our penetration test revealed
that no IdP applies X-Frame-Options in HTTP response
headers to mitigate framing attacks like clickjacking. While
four IdPs (Okta, OneLogin, WSO2 Stratos, and Bitium) use
the secure flag to protect session cookies during transit,
only WSO2 Stratos and Bitium apply HTTP-Only cookies
to prevent cookie theft through XSS attacks.

7.1 XSS and UI Redressing
A valid XSS attack allows to execute adversary-contributed

script code within the web origin of a trusted site. To do
so, generally a string is sent to the attacked site which will
be embedded in the delivered webpage. In contrast to XSS
an adversary needs trusted events like mouse clicks or key
strokes to carry out UI redressing attacks. It is important to
know that both attacks can be combined so that an adver-
sary can use only XSS, only UI redressing or UI redressing
and then XSS (or vice versa). We have operated with these
techniques in our practical evaluation to attack the SSO sys-
tems.

Please note that drag-and-drop attacks in combination
with XSS are novel in the areas of SSO and IdPs. Though
drag-and-drop attacks were introduced in April 2010 by
Stone [44], they are still a critical issue. This statement will
be underlined with XSS as it is described in the following
practical evaluation.

7.2 Practical Evaluation
Okta. The attack we found requires a few specific clicks
and a drag-and-drop event to insert a malicious XSS vector.
Note that all these actions appear harmless to the victim.
The combination allowed us to steal sensitive data, such as
the IdP’s session cookie. The victim, with a web browser
like Firefox, has to perform the following steps (invisible to
him) for a successful attack:

1. First, the victim has to visit a webpage controlled by the
adversary. This webpage consists of three different ele-
ments: an iFrame rendered invisible by using the CSS
property opacity and two elements for social engineering.
In our proof of concept, these are two images: a ball and a
basket (cf. Figure 5). The iFrame is loaded from the URL
https://foo.okta-admin.com/admin/settings/emails

– the wildcard foo should be replaced with the subdo-
main of the victim. At the time of the attack, the victim
has to be logged in to Okta.

2. The Okta webpage inside the invisible iFrame has a User
Activation button, which allows us to open a View/Edit
User Activation Email window. We reach this window by
triggering user’s click on this invisible button, for example
by asking the victim to press a “Start Game” button.

3. Inside this window, there is a form field where the user
can type in the title. The information submitted via
this title field is not filtered sufficiently by the server.
Thus, we can inject JavaScript code, which will then be
executed in the victim’s browser (e.g., <img src=x on-

error=alert(document.cookie) x="). However, the vic-
tim has to actively inject the JavaScript code; we cannot
directly fire an HTTP POST request due to an existing
CSRF [35] protection. This can be achieved by using
the two pictures where the ball contains the malicious
JavaScript code and where a drag of this ball injects this
code into a dragable element like the title field.

4. The crucial point of the attack is to get the victim to in-
ject the XSS vector of the adversary into the title field.
In order to do so, the victim has to drag the ball into the
basket. In our case, the ball has the HTML5 event han-
dler ondragstart with our XSS vector as its data. Upon
the event of dragging the ball into the basket, the vector
will be automatically dropped into the title field, for the
reasons of the basket being placed exactly over it.

5. The victim has to submit the form with the XSS vector
inside its title field by clicking on the Submit button. This
can be done with an element like the moving basket. To
compel the victim to clicking on the basket, a game score
that increases with each click may be introduced.

6. When the form is submitted, the malicious code will be
automatically saved and executed. This allows the ad-
versary to retrieve the session cookie of the IdP stored
in the browser, and thus impersonate the victim (e.g., as
an administrator). As IdP administrator the adversary is
able to compromise the security of the whole Okta service.
Please note that we also have a stored XSS vulnerability
here.

OneLogin. The XSS flaw in https://app.onelogin.com

can be easily exploited due to the fact that there is no CSRF
protection. A simple HTTP GET request triggered by the
browser (e.g., by image loading) is sufficient.

Figure 5: Combined XSS/UI redressing attack on
Okta. The victim clicks on the ball, drags it to the
basket, and drops it over the basket. By doing this,
the session cookie will be hijacked by executing the
inserted XSS code.

Cloudseal. We found one persistent XSS that allowed us
to steal the session cookies with a combined XSS/UI redress-
ing attack.

SSOCircle. Out of the four XSS vulnerabilities we found
in SSOCircle, two could be exploited by HTTP GET re-
quests. As in the case of OneLogin, no CSRF protection
was deployed.

WSO2 Stratos. Five out of seven XSS vulnerabilities
we found were persistent and feasible through the use of
HTTP requests. WSO2 Stratos deploys HTTP-Only cook-
ies. Therefore, we were not able to steal the session cook-
ies. Nevertheless, these findings are severe, as there are
many other ways to exploit XSS, aside from cookie theft.
The Browser Exploitation Framework6 arrestingly demon-
strates several methods (e.g., capturing and transmitting
user’s keystrokes).

Bitium. We found several XSS vulnerabilities in Bitium
but cookie theft was not possible as HTTP-Only cookies
were deployed.

8. COUNTERMEASURES
This section provides countermeasures against ACS spoof-

ing and cookie theft.

8.1 ACS Spoofing Countermeasures
We review four countermeasures against ACS Spoofing,

along with known weaknesses.

Whitelisting. One way to mitigate ACS Spoofing is to use
a whitelist of allowed ACSURL values for each and every SP,
stored at IdP . This may induce a significant management
overhead for large IdPs. The exchange of ACSURL values
could be done with SAML metadata which is used to estab-
lish federations.

Signing Authentication Requests. In theory, signing
authentication requests would make the injection of a ma-
licious ACSURL impossible. According to [8, Section 3.4.1]
the <AuthnRequest> should be signed. However, our inves-

6http://beefproject.com/

tigation shows that this is usually not the case in real-world
implementations. Only one (Cloudseal) out of six evaluated
IdPs uses <AuthnRequest> signing. Additionally, [8] states
that the ACSURL of a signed <AuthnRequest> is always a
trusted destination. This opens another interesting attack
vector. Interestingly, WSO2 Stratos chose to implement
<AuthnRequest> signing to mitigate ACS Spoofing. Our
observations revealed that the XML Signature verification
module of WSO2 Stratos was susceptible to XML Signature
wrapping attacks (in the line of [42]), which renders the
integrity protection of XML signatures useless. Therefore,
ACS Spoofing attacks may be possible even if signed <Au-

thnRequest> messages are used. Furthermore signing au-
thentication requests may require implementation changes
of IdPs and increases the management overhead (registering
public keys at the IdP).

Recipient Attribute Evaluation. To counter ACS Spoof-
ing, the IdP can embed the value of the ACSURL into the
issued assertion as Recipient attribute in the <Subject-

ConfirmationData> element. Only if the Recipient value
is equal to the SP’s own ACS endpoint, the assertion can
be considered valid. Unfortunately, [8, Section 2.4.1.2] man-
dates this attribute as optional. Therefore, only few of the
SPs evaluate it.

OASIS HoK Profile. An effective way to mitigate ACS
Spoofing is using the OASIS HoK Profile [28], which is stan-
dardized but rarely used. The user needs a TLS client certifi-
cate as a prerequisite but any self-signed certificate is suffi-
cient, as neither the IdP nor the SP is required to validate its
trust chain. A self-signed certificate could easily be created
and automatically imported into the browser through inter-
action with a small OpenSSL CA located at the IdP. This
approach is transparent for the user. All major browsers
support client certificates. Firefox, IE, and Chrome can be
configured to automatically select a certificate if a web server
requests one. Then, no user interaction is needed anymore.
The issued assertion is cryptographically bound to this client
certificate by including either the certificate itself or a hash
of it in the signed assertion.

Regarding the standard SSO protocol flow in Figure 1,
the client certificate CertUA is sent to the IdP in the TLS
handshake (step 4). The UA proves possession of the pri-
vate key belonging to the client certificate by successfully
completing the handshake. Upon authentication, the IdP
creates the authentication assertion AA which additionally
includes CertUA and is signed with the IdP’s private key
K−1

IdP (step 5). AA is only valid if it is sent to the SP over
a mutually authenticated TLS channel established by the
UA with the same client certificate. This approach does
not prevent assertion theft (e.g., by ACS Spoofing). How-
ever, stolen authentication tokens are worthless since they
are cryptographically bound to the legitimate browser being
in possession of the certificate’s private key.

The cryptographic binding of the assertion to the TLS
client certificate protects against a wide range of spoofing
(including ACS Spoofing) and MITM attacks during the
SSO protocol run.

8.2 Cookie Theft Countermeasures
In this subsection, we review best-practice countermea-

sures against cookie theft, along with known weaknesses. In
summary, all of these countermeasures can be bypassed in
several ways.

Enforcing Secure Transport. To mitigate cookie theft
effectuated via eavesdropping on the network traffic, the
cookies are sent over TLS connections. This policy is en-
forced by setting the cookie’s secure flag in the Set-Cookie

HTTP response header. Since the rise of comfortable packet
sniffers for cookie theft (e.g., Firesheep [7]), this option is
prevalently used. However, cookie theft via XSS is still pos-
sible because cookies are only protected during transit.

XSS Filtering. XSS attacks can be mitigated by server-
and client-side filtering. In practice, server-side defense of
XSS is primarily used. However, Nadji et al. [32] have
shown, that server-side filtering, as stand-alone countermea-
sure, is insufficient. Furthermore, Bates et al. [5] have ana-
lyzed leading client-side XSS filters and have found severe se-
curity flaws in them. Even a combination of both techniques
cannot prevent all XSS attacks as Heiderich has shown [24].

HTTP-Only Cookies. A simple and effective way to pre-
vent cookie theft through XSS is to use the HTTP-Only flag.
In this case, access of client-side scripts to these cookies
is blocked by the browser. However, other attack tech-
niques such as cross-site tracing [30] and using XMLHttpRe-
quests [37] can be employed, allowing an adversary to steal
HTTP-Only cookies. In addition, HTTP-Only cookies are
not widely deployed and may disrupt a webpage’s function-
ality [53].

Cryptographic Cookie Protocols. Some ineffective ef-
forts to secure cookies by deploying public key-based au-
thentication mechanisms have taken place [38, 18]. The
proposed cookie protocols guarantee authentication, confi-
dentiality, and integrity. However, neither signing nor en-
crypting cookies does deter an adversary from transferring
a cookie from one browser to another.

Anti-CSRF Tokens. To forbid the processing of malicious
server side HTTP requests to do actions like cookie theft
one can use anti-CSRF tokens. In this scenario, the server
checks in the current HTTP request, if the user or rather the
victim is sending a CSRF token, in form of a not guessable
random string, generated by the previous HTTP request. If
so, the server will accept the request; otherwise it will be
rejected. However, this countermeasure does not work in
the case of UI redressing attacks due to the reason that the
victim will be lured to send a valid token to the server.

X-Frame-Options. To mitigate framing attacks like click-
jacking X-Frame-Options have been proposed. By sending
an additional X-Frame-Options header in the HTTP re-
sponse message, a website can instruct a browser not to
render the content of the webpage inside an iFrame. This
mitigates many UI redressing attacks. X-Frame-Options are
supported by all major browsers. However, Heiderich has
shown that this defense can be bypassed via Java applets or
LiveConnect [24].

Phishing. To solve the problem of, for example, being click-
jacked in general, phishing attacks should be prohibited.
Although this problem is obvious, it is still not solved in
practice. Dhamija et al. [13] showed in 2006 that 23% of
the users do not look into cues such as the address or status
bar. Making it nearly impossible for an attacker to lure the
user to a malicious website is thus a heavy task. However,
one way to address it could be to optimize the UI of future
browser versions for a better visibility of warning messages.

8.3 Preventing ACS Spoofing and Cookie Theft
We present a countermeasure that simultaneously protects

an SSO system against ACS Spoofing and cookie theft. It
combines the OASIS HoK Profile [28] for initial authenti-
cation with a strong binding of session cookies to the TLS
channel (along the lines of [15]) for repeated authentication.

Combining HoK with Cookie Binding. The countermea-
sures considered so far are used to strengthen the SSO au-
thentication process by securing the generated token against
spoofing and MITM attacks. However, these mechanisms
do not grant any further protection for the HTTP session
cookies used to authenticate the user against the IdP or SP
afterwards.

Our investigation shows that even if one has a secure SSO
protocol in place, one small flaw in a web application can
break the whole SSO system (cf. Section 7). Therefore,
we propose to extend the usage of the TLS client certificate
applied in the HoK Profile to HTTP session cookies.

According to the ideas introduced in [15], an unforgeable
fusion between the client certificate and the cookie can be
done as follows:

Cbound := v || HMACk(v || CertUA),

where v is the value of a standard HTTP cookie, CertUA is
the client certificate, and HMAC is a message authentication
code computed over v and CertUA with the key k (|| denotes
a string concatenation). In this manner, if the cookie gets
stolen, it can be used only through a TLS channel authen-
ticated with CertUA, which in turn is only possible for the
party who knows the private key of the client’s certificate.

However, this technique of strengthening cookie authenti-
cation process leads to further requirements being imposed
on the service responsible for the HTTP session manage-
ment. Namely, it must have access to the client certificate
applied during the TLS handshake, causing the need for the
service being extended.

In order to demonstrate the feasibility of the combined
countermeasure, we implemented the cookie binding in the
popular open source framework SimpleSAMLphp [47]. We
used HMAC-SHA256 as the keyed hash message authenti-
cation code function for the cookie binding and conducted a
performance evaluation. Compared to the standard cookie
authentication, our cookie binding was only 12,1% slower.
Further details are presented in Appendix A.

9. CONCLUSION
Developing a secure SSO solution is a nontrivial task.

Our findings show that vulnerabilities in actual SAML-based
cloud IdPs can be severely exploited, leading to a complete
failure in regards to the security of the IdP and all SPs.

Due to the fact that SAML is a very flexible and extensi-
ble standard, the corresponding specifications are complex
and distributed over a bulk of documents. Developers can
get lost in the specification and may overlook important
security-relevant constraints. This can result in vulnera-
ble implementations, as the discovered ACS Spoofing at-
tack demonstrates. Nevertheless, SAML is a matured and
well-designed standard. Throughout the specification, mul-
tiple security recommendations are given for the purpose of
avoiding common pitfalls. Still, this does not guarantee the
absence of flaws in real-world implementations.

Even if the SSO protocol is considered secure, the preva-
lent cookie-based client authentication creates an attack-
surface sufficient for identity theft done through XSS/UI

redressing. Our results confirm the significance of these at-
tacks for the security in SSO systems.

In order to fix the mentioned problems, we analyzed sev-
eral countermeasures. Our preferred mitigation is the OASIS
HoK Profile with cookie binding combining the ease of SSO
with a cryptographically strengthened client authentication.
Our solution hardens both the SSO protocol and the ses-
sion cookies by establishing mutually authenticated chan-
nels between the browser and the other participating enti-
ties (i.e. IdP and SP). This builds a holistic authentication
layer that prevents a wide range of attacks, including MITM,
ACS Spoofing, and XSS/UI redressing vulnerabilities. The
practical feasibility of our approach is shown by a proof-of-
concept implementation in the open source framework Sim-
pleSAMLphp. The accompanied performance analysis (cf.
Appendix A) demonstrates that the proposed cookie bind-
ing performs well. No changes of browser, web server, and
TLS protocol are necessary. Finally, our ideas are generic
and can directly be applied to other SSO protocols (e.g.,
OAuth or OpenID).

In future, we plan to extend the functionality of ACS
Scanner in order to cover attacks on signed SAML Requests
(e.g., signature exclusion and XML Signature wrapping)
that bypass the protection of the digital signature.

10. REFERENCES
[1] Apache Software Foundation. JMeter Project.

http://jmeter.apache.org.

[2] A. Armando, R. Carbone, L. Compagna, J. Cuéllar,
G. Pellegrino, and A. Sorniotti. From Multiple
Credentials to Browser-Based Single Sign-On: Are We
More Secure? In SEC, volume 354 of IFIP Advances
in Information and Communication Technology, pages
68–79. Springer, 2011.

[3] A. Armando, R. Carbone, L. Compagna, J. Cuéllar,
and M. L. Tobarra. Formal Analysis of SAML 2.0
Web Browser Single Sign-On: Breaking the
SAML-based Single Sign-On for Google Apps. In
Proceedings of the 6th ACM Workshop on Formal
Methods in Security Engineering, FMSE 2008, pages
1–10, Alexandria and VA and USA, 2008. ACM.

[4] A. Barth. HTTP State Management Mechanism. RFC
6265 (Proposed Standard), Apr. 2011.

[5] D. Bates, A. Barth, and C. Jackson. Regular
expressions considered harmful in client-side XSS
filters. In Proceedings of the 19th international
conference on World wide web, WWW ’10, pages
91–100, New York, NY, USA, 2010. ACM.

[6] Bitium Inc. Bitium. https://www.bitium.com/, 2014.

[7] E. Butler. Firesheep, 2010.
http://codebutler.com/firesheep/.

[8] Cantor, S. et al. Assertions and Protocols for the
OASIS Security Assertion Markup Language (SAML)
V2.0. http://docs.oasis-open.org/security/saml/
v2.0/saml-core-2.0-os.pdf, Mar. 2005.

[9] Cantor, S. et al. Profiles for the OASIS Security
Assertion Markup Language (SAML) V2.0. OASIS
Standard, 15.03.2005, Mar. 2005.
http://docs.oasis-open.org/security/saml/v2.0/

saml-profiles-2.0-os.pdf.

[10] Carnegie Mellon University. CERT Coordination
Center, 1995–2014. http://www.cert.org.

[11] CERT. Advisory CA-2000-02 Malicious HTML Tags
Embedded in Client Web Requests, 2000.
http://www.cert.org/advisories/CA-2000-02.html.

[12] Cloudseal OU. Cloudseal.
http://www.cloudseal.com/, 2011–2014.

[13] R. Dhamija, J. D. Tygar, and M. Hearst. Why
phishing works. In SIGCHI Conference on Human
Factors in Computing Systems, CHI ’06, pages
581–590, New York, NY, USA, 2006. ACM.

[14] T. Dierks and E. Rescorla. The Transport Layer
Security (TLS) Protocol Version 1.2. RFC 5246
(Proposed Standard), Aug. 2008. Updated by RFCs
5746, 5878, 6176.

[15] M. Dietz, A. Czeskis, D. Balfanz, and D. S. Wallach.
Origin-Bound Certificates: A Fresh Approach to
Strong Client Authentication for the Web. In 21st
USENIX Security Symposium, Bellevue, WA, Aug.
2012.

[16] M. Finifter, J. Weinberger, and A. Barth. Preventing
capability leaks in secure javascript subsets. In NDSS,
2010.

[17] D. Florencio and C. Herley. A large-scale study of web
password habits. In Proceedings of the 16th
international conference on World Wide Web, WWW
’07, pages 657–666, New York, NY, USA, 2007. ACM.

[18] K. Fu, E. Sit, K. Smith, and N. Feamster. Dos and
Don’ts of Client Authentication on the Web. In 10th
USENIX Security Symposium, Washington D.C., 2001.

[19] S. Gajek, T. Jager, M. Manulis, and J. Schwenk. A
browser-based Kerberos authentication scheme. In
S. Jajodia and J. López, editors, Computer Security -
ESORICS 2008, 13th European Symposium on
Research in Computer Security, Málaga, Spain,
October 6-8, 2008. Proceedings, volume 5283 of
Lecture Notes in Computer Science, pages 115–129.
Springer, August 2008.

[20] T. Groß. Security analysis of the SAML Single Sign-on
Browser/Artifact profile. In Annual Computer
Security Applications Conference. IEEE Computer
Society, 2003.

[21] T. Groß and B. Pfitzmann. SAML artifact information
flow revisited. Research Report RZ 3643 (99653), IBM
Research, 2006. http://www.zurich.ibm.com/
security/publications/2006.html.

[22] Guangdong, B. et al. AUTHSCAN: Automatic
Extraction of Web Authentication Protocols from
Implementations. In NDSS, 2013.

[23] R. Hansen and J. Grossman. Clickjacking, 2008.
http://www.sectheory.com/clickjacking.htm.

[24] M. Heiderich. Towards Elimination of XSS Attacks
with a Trusted and Capability Controlled DOM. PhD
thesis, Ruhr-University Bochum, Bochum, May 2012.

[25] M. Heiderich, M. Niemietz, F. Schuster, T. Holz, and
J. Schwenk. Scriptless attacks: stealing the pie
without touching the sill. In Proceedings of the 2012
ACM conference on Computer and communications
security, CCS ’12, pages 760–771, New York, NY,
USA, 2012. ACM.

[26] M. Heiderich, J. Schwenk, T. Frosch, J. Magazinius,
and E. Z. Yang. mxss attacks: Attacking well-secured
web-applications by using innerhtml mutations. In
Proceedings of the 2013 ACM SIGSAC Conference on

Computer & Communications Security, CCS ’13,
pages 777–788, New York, NY, USA, 2013. ACM.

[27] C. Karlof, U. Shankar, J. D. Tygar, and D. Wagner.
Dynamic Pharming Attacks and Locked Same-Origin
Policies for Web Browsers. In 14th ACM conference on
Computer and communications security (CCS), pages
58–71, New York, NY, USA, 2007. ACM.

[28] N. Klingenstein. SAML V2.0 Holder-of-Key Web
Browser SSO Profile. OASIS Committee Draft 02,
05.07.2009, 2009. http://www.oasis-
open.org/committees/download.php/33239/sstc-

saml-holder-of-key-browser-sso-cd-02.pdf.

[29] D. Kormann and A. Rubin. Risks of the Passport
single signon protocol. Computer Networks,
33(1–6):51–58, 2000.

[30] A. Manion. Vulnerability Note VU#867593, 2003.
http://www.kb.cert.org/vuls/id/867593.

[31] C. Masone, K.-H. Baek, and S. Smith. WSKE: Web
Server Key Enabled Cookies. In S. Dietrich and
R. Dhamija, editors, Financial Cryptography, volume
4886 of Lecture Notes in Computer Science, pages
294–306. Springer, 2007.

[32] Y. Nadji, P. Saxena, and D. Song. Document
Structure Integrity: A Robust Basis for Cross-site
Scripting Defense. In NDSS, 2009.

[33] Okta Inc. Okta. http://www.okta.com/, 2014.

[34] OneLogin Inc. OneLogin. http://www.onelogin.com/,
2010–2014.

[35] OWASP Foundation. Cross-Site Request Forgery
(CSRF). https://www.owasp.org/index.php/Cross-
Site_Request_Forgery_(CSRF), 2013.

[36] OWASP Foundation. OWASP Top 10 - 2013: The Ten
Most Critical Web Application Security Risks.
https://www.owasp.org/index.php/Top_10_2013,
2013.

[37] W. Palant. (CVE-2009-0357) XMLHttpRequest allows
reading HTTPOnly cookies, 2007. https:
//bugzilla.mozilla.org/show_bug.cgi?id=380418.

[38] J. S. Park and R. S. Sandhu. Secure Cookies on the
Web. IEEE Internet Computing, 4(4):36–44, 2000.

[39] B. Pfitzmann and M. Waidner. Analysis of Liberty
Single-Sign-on with Enabled Clients. IEEE Internet
Computing, 7(6):38–44, 2003.

[40] J. Ruderman. Bug 154957 – iframe content
background defaults to transparent, 2002. https:
//bugzilla.mozilla.org/show_bug.cgi?id=154957.

[41] M. Slemko. Microsoft Passport to Trouble, 2001.
http://www.znep.com/~marcs/passport/.

[42] J. Somorovsky, A. Mayer, J. Schwenk, M. Kampmann,
and M. Jensen. On breaking saml: Be whoever you
want to be. In 21st USENIX Security Symposium,
Bellevue, WA, Aug. 2012.

[43] SSOCircle. SSOCircle. http://www.ssocircle.com/,
2007–2014.

[44] P. Stone. Next Generation Clickjacking.
http://www.contextis.co.uk/documents/5/

Context-Clickjacking_white_paper.pdf, April 2010.

[45] D. Strom. Single sign-on moves to the cloud.
http://www.networkworld.com/article/2161919/

access-control/single-sign-on-moves-to-the-

cloud.html, 2012.

[46] S.-T. Sun and K. Beznosov. The Devil is in the
(Implementation) Details: An Empirical Analysis of
OAuth SSO Systems. In Proceedings of the 2012 ACM
conference on Computer and communications security,
CCS ’12, pages 378–390, New York, NY, USA, 2012.

[47] Uninett AS. SimpleSAMLphp Project, 2014.
http://www.simplesamlphp.org.

[48] R. Wang, S. Chen, and X. Wang. Signing Me onto
Your Accounts through Facebook and Google: a
Traffic-Guided Security Study of Commercially
Deployed Single-Sign-On Web Services. In IEEE,
editor, Security & Privacy 2012, 2012.

[49] Wikipedia. Saml-based products and services.
http://en.wikipedia.org/wiki/SAML-

based_products_and_services, March 2014.

[50] WSO2 Inc. WSO2 StratosLive.
https://stratoslive.wso2.com/, 2014.

[51] L. Xing, Y. Chen, X. Wang, and S. Chen. Integuard:
Toward automatic protection of third-party web
service integrations. In NDSS, 2013.

[52] D. E. Yuchen Zhou. Automated testing of web
applications for single sign-on vulnerabilities. In 23rd
USENIX Security Symposium (USENIX Security 14),
San Diego, CA, Aug. 2014. USENIX Association.

[53] Y. Zhou and D. Evans. Why Aren’t HTTP-only
Cookies More Widely Deployed? In Web 2.0 Security
and Privacy 2010 (W2SP), 2010.

[54] G. Zuchlinski. The Anatomy of Cross Site Scripting.
Hitchhiker’s World, 8, 2003.

APPENDIX
A. IMPLEMENTATION & PERFORMANCE

In order to demonstrate the feasibility of the combined
countermeasure (cf. Section 8.3), we implemented the cookie
binding in SimpleSAMLphp (SSP) [47]. SSP already sup-
ports OASIS HoK (based on the previous work of one of the
co-authors) and thus had to be extended only by the cookie
binding. Additionally, we present a performance evaluation
of our cookie binding implementation.

A.1 Cookie Binding
We introduced a new session.cb configuration parame-

ter to enable or disable cookie binding. Furthermore, we cre-
ated two new class methods. The createBC($rnd, $cert,

$key) method creates a cookie bound to the TLS client cer-
tificate, where $rnd is an arbitrary value (e.g., a random
session ID), $cert is the Base64 encoded client certificate
of the UA, and $key specifies the HMAC secret key k. We
applied the standard PHP 5 HMAC function hash_mac()

which supports several hashing algorithms. The simplified
source code of the class method is:

function createBC($rnd, $cert, $key) {
$data = $rnd . $cert;
$appendix = hash_hmac(’sha256’, $data, $key);
$ret = $rnd . ’_’ . $appendix;
return $ret;

}

To verify the authenticity, integrity, and binding to the
TLS client certificate of the received cookies, verifyBC($cookie,
$rnd, $cert, $key) was introduced, where $cookie defines

Table 2: Performance evaluation results.
Latency (ms)

Test case Avg Median Min Max
1. Unauthenticated 22.48 18 14 230
2. Standard cookie 27.19 27 17 228
3. Bound cookie 30.47 30 21 525

the value of the bound session cookie. All other input pa-
rameters have the same purpose as in the createBC() method.
The simplified source code is shown in the following:

function verifyBC($cookie, $rnd,$cert, $key) {
$nc = createBC($rnd, $cert, $key);
if ($nc === $cookie) { return TRUE; }
else { return FALSE; }

}

To mitigate downgrade attacks, where an adversary cuts
off the HMAC value from the cookie, the usage of cookie
binding is enforced by the session.cb configuration param-
eter. These SSP modifications required 97 modified or added
lines in the SSP source code.

A.2 Cookie Binding Performance
Cookie-based authentication is a performance-critical is-

sue in every web application. Therefore, we conducted a
performance evaluation of our cookie binding implementa-
tion, reporting our findings below.

Test environment All experiments were performed against
an Apache 2.2.2 web server running on a Windows Vista sys-
tem with a 3.0 GHz Core 2 Duo CPU and 2 GB of RAM.
The server and the client were connected to a dedicated Gi-
gabit link with a 0.3 ms roundtrip time. All performance
tests were conducted with Apache JMeter 2.9 [1].

Analysis In order to demonstrate that the performance im-
pact of adding cookie binding to web applications is minimal,
we have evaluated our SSP implementation. We considered
three different test cases using a special crafted webpage in-
cluding the SSP framework:

1. Unauthenticated requests. In order to provide a baseline
for comparison, the webpage is loaded without provid-
ing any authentication cookie. Therefore, no authenti-
cated user session is established.

2. Authentication with cookies. The client sends a valid
SSP authentication cookie to the webpage.

3. Authentication with cookie binding. The client sends a
valid SSP authentication cookie bound to a TLS client
certificate to the webpage which triggers the cookie
binding verification.

For each case, we devised a separate test plan in Apache
JMeter and made 25,000 successive requests to the webpage
using TLS. Test cases 1 and 2 facilitated server-authenticated
channels, while test case 3 dealt with mutually authenticated
TLS channels. Additionally, we ensured that for each test
case the HTTP response message had the same size. We
used HMAC-SHA256 as the keyed hash message authenti-
cation code function for the cookie binding. The results are
shown in Table 2. When compared to the standard cookie
authentication, our cookie binding implementation was only
12,1% slower.

