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Abstract. Due to its flexibility and dynamic character, JavaScript has
become an important tool for attackers. The widespread scripting lan-
guage often helps them to perform a broad variety of malicious activities,
for example to initiate drive-by download exploits or to execute clickjack-
ing attacks. Current defense mechanisms as well as reactive analysis and
forensic approaches are often slow or complicated to set up and conduct
since an attacker can use many different ways to obfuscate the code or
make it hard to obtain a copy of the code in the first place.

In this paper, we introduce a novel approach to analyze this class of at-
tacks by demonstrating how dynamic analysis of websites can be accom-
plished directly in the browser. We present IceShield, a JavaScript based
tool that enables in-line dynamic code analysis as well as de-obfuscation,
and a set of heuristics to detect attempts of attacking either a website
or the user accessing its contents. Special care needs to be taken to im-
plement the instrumentation in a robust and tamper resistant way since
an attacker should not be able to bypass our detection process. We show
how features of ECMA Script 5 can be used to freeze object properties,
so they cannot be modified during runtime. We implemented a prototype
version of IceShield and demonstrate that it detects malicious websites
with a small overhead even on devices with limited computing power such
as smartphones. Furthermore, IceShield can mitigate detected attacks
by changing suspicious elements, so they do not cause harm anymore,
thus actually protecting users from such attacks.

1 Introduction

During the last few years, we observed a shift in attacks against end-users:
instead of attacking network services, many of today’s attacks focus on vulnera-
bilities in client applications. Especially the web browser is a popular target for
attackers. There are many different kinds of threats and attack vectors against
current browsers, such as for example:

– Drive-by download attacks in which a vulnerability in the web browser or
one of its components/extensions (e.g., Acrobat Reader or Flash plugins) is
exploited to execute code of the attacker’s choice [1].
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– Cross-Site Scripting (XSS) vulnerabilities that enable an attacker to inject
arbitrary client-side scripts into web pages [2, 3, 4].

– Clickjacking (also known as UI redressing) is a technique in which an attacker
tricks a web site visitor into clicking on an element of a different page that
is only barely (or not at all) visible [5].

These and similar attack techniques target different vulnerabilities within a
browser or one of its components. The root cause of this problem is the fact that
an attacker can compromise the integrity of almost all DOM properties of a web-
site by injecting malicious JavaScript code into the website’s source code. Several
techniques attempting to address this problem have been proposed. On the one
hand, there are analysis frameworks such as Wepawet [6], performing an offline
analysis of a given page in order to detect drive-by download attacks. Cujo [7]
performs on online analysis, but introduces an overhead of more than 1.5 seconds
on JavaScript-heavy sites such as Facebook, which negatively impacts the user
experience. On the other hand, there is a huge body of work in which different
techniques are proposed to avoid attacks in the first place [8, 9, 10]. Approaches
such as Gatekeeper [8] or Google Caja [9] attempt to find a way to execute
arbitrary JavaScript in a secure environment. Such attempts typically require
working on a subset of the complete JavaScript specification, e.g., Gatekeeper
removes language constructs such as eval() and document.write() from the
JavaScript specification for their analysis. Complementary to these approaches
are novel browser designs, such as Gazelle [10], constructed to address these
problems from the ground up. However, as such approaches tend to focus on a
limited range of attack vectors or lack compatibility with the current infrastruc-
ture, many do not effectively mitigate current threats for the user.

In this paper, we introduce IceShield, a novel approach to perform light-
weight instrumentation of JavaScript, detecting a diverse set of attacks against
the DOM tree, and protecting users against such attacks. The instrumentation is
light-weight in the sense that IceShield runs directly within the context of the
browser, as it is implemented solely in JavaScript. Thus, the runtime overhead
is low, and IceShield even works on embedded browsers used, for example, in
modern smartphones. By performing dynamic analysis, we do not need to worry
about obfuscation since we can inspect the attack attempt during runtime, ex-
actly at the point where the payload is being decoded and available in plain-text.
Furthermore, our approach is (almost) independent of the actual browser since
the detection is implemented in JavaScript, and thus portable across browsers
and platforms.

Special care needs to be taken to implement the instrumentation in a ro-
bust and tamper resistant way: since the tool is implemented in JavaScript,
an attacker could try to overwrite our analysis functions during runtime. We
demonstrate how an instrumentation can be rendered tamper resistant.

By performing the analysis directly in the browser, IceShield can also mit-
igate attacks and protect the user and websites utilizing the tool. We are able
to identify which parts of the page contain suspicious elements and change them
accordingly. To have a minimal impact in case of false positives, we use padding
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to destroy the payload of the potential exploit, but avoid visible impact on the
rendered website. This enables us to actually protect users from attacks, with
only a very low perceivable percentage of false positives.

We have implemented a prototype version of IceShield and evaluated the
tool on a high-end workstation, a netbook, and a smartphone. The runtime
overhead of IceShield is on average below 12 ms for the workstation and 80
ms on a smartphone, and we were able to achieve a detection accuracy of 98%
using live malicious websites. Furthermore, we also successfully detected three
exploits that the tool had never seen before and demonstrate how attacks can
be mitigated successfully.
In summary, we make the following three contributions in this paper:

– We introduce a new way for tamper resistant meta programming in modern
browsers, based on safely overwriting JavaScript core methods and DOM
properties with a minimal performance overhead. This approach works on
all modern browsers supporting ES5.

– We show how specific properties and methods can be overwritten with (al-
most) no footprint by recursivly modifiying the affected toString() and
toSource() methods. This enables the implementation of a robust analysis
framework that an attacker cannot easily detect or affect.

– We implemented a system called IceShield capable of runtime based de-
obfuscation of known and unknown obfuscation techniques based on the
fact that overwriting core methods allows parameter inspection at call time.
IceShield can be used as a framework for detecting and analyzing web
based attacks in real-time with the possibility to defuse malicious payloads
before actual execution.

2 Design Overview

2.1 Motivation and Basic Idea

We assume that almost every JavaScript based attack will have to use native
methods at some point in order to prepare necessary data structures (e.g., to
store the shellcode on the heap or stack) and afterwards perform the actual ex-
ploit by triggering a vulnerable function. This is true for heap and JIT spraying
attacks, exploits against vulnerabilities in a browser plug-in or the user agent
itself, as well as security issues in particular websites. The data set of mali-
cious code samples we assembled during the testing phase of IceShield showed
that most malicious scripts use native JavaScript methods such as concat(),
unescape(), substring(), and similar string functions [11] during preparation
and deployment of their malicious payload. The exploit code utilizing these func-
tions is usually heavily obfuscated, making static code analysis and detection
cumbersome and difficult. The four JavaScript code examples shown in List-
ing 1.1 illustrate several novel obfuscation techniques introduced and discussed
on sla.ckers.org. These code snippets are meant to be a proof-of-concept, thus
performing nothing more than a simple call to alert(/* some data */).

sla.ckers.org
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Listing 1.1. Obfuscated JavaScript code samples executing the alert() method

1) ({0:#0= alert /#0#/#0#(1)});

2) (1.. __proto__.e0=alert )(1.e0);

3) a=a setter=alert;

4) _=[[$,__,,$$,,_$,$_,_$_ ,,,$_$ ]=! ’ ’+[!{}]+{}]

[_$_+$_$+__+$],_()[_$+$_+$$+__+$](-~$)

Especially the last of the four examples in Listing 1.1 is hard to analyze since it
takes advantage of non alpha-numeric characters. This demonstrates the enor-
mous versatility and flexibility of JavaScript and underlines the difficulty of
static JavaScript code analysis. Furthermore, JavaScript allows an attacker to
create morphing code, a fact that has recently been demonstrated by Heyes et
al. [12]. This suggests that an attacker can render any signature based mal-
ware detection lacking advanced de-obfuscation routines useless, similar to the
limitations of signature based shellcode [13] and malware [14] detection. In addi-
tion, filtering mechanisms working on a layer different than the layer to actually
protect against attacks are not capable of detecting obfuscated code as for ex-
ample demonstrated by the large amount of bypasses against the Webkit XSS
Auditor [15] and the Internet Explorer 8 XSS filter [16].

With IceShield, we introduce a new approach to detect and mitigate at-
tacks against web browsers and to protect the integrity of the DOM. We do
not rely on any form of static code analysis, but rather the creation of an alter-
native and light-weight execution context that can be deployed as a script on
arbitrary websites or as a browser extension. We use inline code analysis such
that we do not need to worry about obfuscation: we can perform the analysis
after the de-obfuscation has taken place and can analyze the exploit attempt in
clear text. The analysis itself is based on detecting attack patterns of suspicious
behavior. We describe these patterns in heuristics similar to the ones proposed
by Wepawet [6] and Cujo [7], but we demonstrate how such features can be
extended to cover other attack vectors and be used in a live analysis rather than
in an offline setting. IceShield can be run in a low prioritized execution con-
text such as being included on a website protecting the user of this website from
attacks embedded in the website (e.g. via banner advertisements). The tool can
also be deployed as a browser extension or injected via a proxy to provide a
better protection range and independence from the individual websites poten-
tially including IceShield. Our approach aims to have minimal footprint and
overhead, and we propose a novel way of JavaScript property mimicking which
we discuss in detail in Section 3.

2.2 Dynamic Detection and Protection Framework

IceShield attempts to accomplish several different goals. The first and most
important is to provide the possibility to analyze drive-by download attempts at
the time a malicious websites tries to execute code in the context of the victim’s
browser. By performing this analysis within the context of an actual browser, we
are able to analyze the code dynamically. Thus, IceShield is not affected by any
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level of code obfuscation since it can analyze the code after the decoding/de-
crypting has finished. This is achieved by dynamically instrumenting objects
and functions, and providing an execution context in which we can analyze their
behavior. The instrumentation enables us to perform parameter analysis allow-
ing inspection of the called methods and their parameters during runtime. With
a set of heuristics and a scoring based attestation trained with data mining
techniques, IceShield can determine, if the combination of method call and
parameter setup indicates malicious intent. To illustrate the expressiveness of
the approach, we use a set of heuristics to detect different kinds of attacks. Be-
sides new features, we use several heuristics similar to the ones implemented in
Wepawet. The set of heuristics can easily be extended to enhance IceShield’s
detection features in case completely novel attack vectors become known.

Second, we aim at protecting users against malicious websites: once IceShield
has detected an exploitation attempt, we are able to manipulate potentially ma-
licious code before an attack takes place. This can, for example, be achieved by
modifying or removing malicious content from the DOM tree. This enables us to
protect the victim from the full consequences of an attack and provide detailed
information on the attack technique itself. Preliminary results suggest that this
approach is effective in practice and enables us to effectively mitigate attacks.

The third goal is to implement the instrumentation in a light-weight and
tamper resistant manner. On the one hand, the overhead of our analysis frame-
work should be low such that the temporal impact is small and hardly noticeable
by a user. On the other hand, an attacker should not be able to remove our in-
strumentation since this would enable a way to bypass our system. We achieve
these two objectives by implementing our instrumentation in JavaScript and
introducing a novel way to use latest features of ES5. If the browser correctly
implements ES5 functionality, it is hard for an attacker to bypass the system.

In empirical measurements, we show that the overhead is small: on average,
our instrumentation has an overhead of a few tens of milliseconds even on low-
end systems, which is significantly less compared to the loading time of a web
page. The framework can be used on different browsers and it is portable since
IceShield does not depend on specific features or proprietary extensions.

We successfully tested IceShield with all modern major browsers such as
Firefox 4, Chrome 6-10, Safari 5, and Internet Explorer 9. This enables a deploy-
ment of IceShield on many different devices in diversity and number. For each
page a user visits, IceShield monitors the behavior of this site by dynamically
analyzing the code that was supposed to be executed.

3 System Implementation

In this section, we provide a detailed overview of the dynamic instrumentation
and detection techniques used by IceShield. We discuss how such an instrumen-
tation can be implemented in a robust way and present the different components
and analysis techniques used by the tool.
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3.1 Heuristics to Identify Suspicious Sites

The set of heuristics and rules can be comparably slim, since the parameters
inspected are usually being de-obfuscated by the executing script before hit-
ting the rules. This significantly reduces overhead and enables further and more
detailed analysis on potentially malicious code. Our heuristics are based on a
manual analysis of current attacks, and we tried to generalize the heuristics such
that they are capable of detecting a wide variety of attacks. Some heuristics are
used in a similar way by Wepawet [6], and we extended the coverage by tak-
ing features such as the creation of potentially dangerous elements into account.
Note that these heuristics serve as a proof-of-concept and new heuristics can be
easily added to the system. We found in our empirical tests that our features
already cover all relevant and current attack vectors, and the heuristics can still
be refined if the need arises. The following list describes the heuristics currently
used by our prototype:

1. External domain injection: A script injects an external domain into an exist-
ing HTML element which can indicate malicious activity, for example, link
or form hijacking. We distinguish between injection of <embed>, <object>,
<applet>, and <script> tags, as well as, <iframe> injections.

2. Dangerous MIME type injection: A script applies a MIME type that is po-
tentially dangerous to an existing DOM object such as
application/java-deployment-toolkit.

3. Suspicious Unicode characters: A string used as argument for a native method
containing characters indicating a code execution attempt such as %u0b0c
or %u0c0c.

4. Suspicious decoding results: Decoding functions like unescape() or
decodeURIComponent() that contain suspicious characters indicating code
execution attempts.

5. Overlong decoding results: A decoding function like mentioned above receives
an overlong argument. For now, we use a threshold of 4096 characters based
on our empirical evaluation of current attacks and benign sites.

6. Dangerous element creation: A script attempts to create an element that is
often used in malicious contexts for example, <iframe>, <script>, <applet>
or similar elements. We distinguish between elements being created with and
without an explicit namespace context.

7. URI/CLSID pattern in attribute setter : An element attribute is being applied
with an external URI, data/JavaScript URI or a Class ID (CLSID) string.

8. Dangerous tag injection via the innerHTML property : A script attempts to
set an existing element’s value with a string containing dangerous HTML
elements such as <iframe>, <object>, <script>, or <applet>.

3.2 Dynamic Instrumentation and Detection

We use inline code overwriting and hooking as the basic techniques to perform
the instrumentation such that we can check for the heuristics introduced above.
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We overwrite and wrap the native JavaScript methods into a context that allows
us to dynamically inspect the name of the called function and its parameters dur-
ing runtime. The original, overwritten method is being stored inside IceShield’s
scope in case we want to call it later on. This kind of overwriting is also success-
fully used in other contexts, for example, to perform binary analysis [17,18].

In case the heuristic analysis does not indicate an ongoing attack attempt,
the stored original method will be called with the unmodified set of parameters
to preserve the intended code flow. In case a particular threshold defined by the
internal scoring mechanisms of IceShield has been reached after the analysis,
the method call can either be blocked completely or the set of arguments can
be modified to keep the code flow intact, but prevent the attack. As an example
for mitigating attacks, imagine a long string of shellcode being nulled before
being used as a parameter for the original version of the JavaScript method
unescape(). This approach enables us to generate complete maps, illustrating
the actual code flow of JavaScript code.

IceShield utilizes an ES5 feature called Object.defineProperty() [19] to
implement the instrumentation in a robust way. This method allows us to define
new (and re-define existing) object properties, including methods and native
DOM properties. Furthermore, the method allows us to pass a descriptor literal
specifying the options applying for the defined property.

The most relevant descriptor for IceShield is configurable and the possi-
bility to set it to false, thereby freezing the property state. Freezing means
that no other script can change the property or any of its child properties
again. Even a delete operation will not affect the property value or any of
the descriptor flags. This renders our approach tamper resistant against at-
tackers trying to change or reset the overwritten methods or access the orig-
inal native methods to bypass the inspection and detection process. The same
is true for property retrieval tricks working on Gecko based browsers such as
Components.lookupMethod(top, ’alert’) - an attacker cannot use this tech-
nique to bypass the freezing we used in IceShield either.

The object freezing can also be accomplished by using the method Object.freeze().
Batch processing of several objects to be frozen at once can be accomplished by
using Object.defineProperties() [20].

All modern user agents such as Firefox 4, Chrome 6-10, and Internet Explorer
9 support object freezing. However, older or obscure browsers that do not fully
support ES5 will not provide reliable tamper resistance for IceShield, which
means that an attacker can potentially bypass the system. We performed several
tests to verify the degree to which browsers support the standard. Some of the
tested user agents such as Safari 5 7533.16 allows to overwrite a frozen object
property. These artifacts can be considered to be software bugs: we tested later
versions of the Webkit engine noticing the problem does not exist anymore.

Our tool will not attempt to modify the user agent protected location
object [21]. Most modern browsers forbid getter access to this object and its
child nodes for the sake of user privacy and avoiding security problems. Java-
Script executed via direct location object access – for example, via the vector
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location=name or location.href=’javascript:alert(1)’ – will be executed
in the scope we control, so no additional protection mechanisms need to be ap-
plied. This is the same for location methods like replace(), apply() or the
document.URL property [22].

To make sure that IceShield will notice even more exotic code execu-
tion attempts, it turned out to be not sufficient to just intercept calls to na-
tive methods relating to window and window.document, but also monitor read
and write access for several DOM properties as well as the dynamic creation
and manipulation of HTML elements and tags. Thus, we overwrite the setter
and getter methods of several HTML element prototypes, such as for example,
HTMLScript.prototype.src or any given HTML element prototypes innerHTML
and outerHTML properties. We also overwrite and seal document methods ca-
pable of creating new HTML elements, such as document.createElement()
and document.createElementNS(). Malicious code often creates new DOM el-
ements, applies the necessary attributes, and then attaches the element to the
DOM to execute the payload.

3.3 Scoring Metric

We use techniques from the area of machine learning to decide whether or not a
given site is malicious. Specifically, we use the features discussed in Section 3.1 as
input for a decision function F . We treat these heuristics observed by IceShield
when visiting the site as vector x of the form (f1, f2, . . . , fn) and define a linear
decision function F (x) using a weight vector w and a bias term b as

F (x) =

{
wT x− b > 0 if x is a malicious site
wT x− b ≤ 0 if x is a benign site

The decision surface underlying F is the hyperplane wT x+ b = 0, which also in-
duces a way to distinguish between instances of benign and malicious sites based
on the behavior observed by IceShield. In our proof-of-concept implementation
we use Linear Discriminant Analysis (LDA [23]) to find a linear combination of
weights that separate the two classes, but other machine learning algorithms
could be used as well. To find the optimal weights w and bias term b, we use a
corpus of labeled benign and malicious sites as our training set (see Section 4).

The decision function F (x) induces a scoring metric f(x) that we can use
to actually detect malicious sites. The scoring metric is defined as f(x) = wT x
and f(x) > b indicates an instance of a malicious site, while f(x) ≤ b denotes a
benign site. We can also use the scoring metric as some kind of ranking : higher
values of f(x) indicate a site that tries to exploit multiple vulnerabilities of a
visiting browser. As noted above, other scoring metrics can be integrated into
IceShield, we just chose LDA due to its simplicity and to demonstrate how an
actual metric and data mining algorithm can be incorporated into the tool.
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3.4 User Protection

IceShield is also capable of changing the parameters passed to native methods
in case the heuristic analysis indicates a malicious attempt. The easiest way
to do so is to just overwrite the suspicious argument with an empty string or
add randomly dimensioned padding to maliciously looking strings before passing
them to the actual method. To avoid interference with the user experience, we
null the payload of the possible exploit, which mitigates the danger to the user,
but in most cases has no visible impact. The IceShield prototype currently
defuses a possible exploit payload in case the heuristics indicate any form of
overflow or heap spray. This means that strings longer than 4096 bytes containing
suspicious characters, as well as, suspicious MIME types and CLSID strings
assigned to new and existing DOM elements, are being modified.

Unlike approaches either completely allowing or disallowing JavaScript ex-
ecution such as NoScript or the Internet Explorer XSS Filter, IceShield has
minimal impact on the user experience since only the critical function call is
being defused, whereas the rest of the (possibly benign) JavaScript codeflow is
not affected at all. This also minimizes the negative effects of false positives our
tool might have in practice.

3.5 Implementation as Browser Extension

The purely JavaScript based approach that we introduced so far has a few limi-
tations which we discuss next. We found several ways to circumvent and attack
our own tool while testing our approach, but we also came up with new tech-
niques to be able to harden it against those detection bypasses. In the following,
we first discuss several limitations, before we present a robust design of the
general approach as a browser extension. Note that this reduces the portability
since IceShield needs to be customized for each browser, but the tool is bet-
ter hardened against tampering attempts against our instrumentation. While
the extension is browser-specific, each extension is still portable across operat-
ing systems and hardware platform. Furthermore, the core technology of our
approach remains the same for each browser.

Iframes One of the biggest challenge for our JavaScript approach and compara-
ble tools are <iframe> tags pointing to JavaScript URIs [24] or resources using
the data protocol handler (so called data URIs as defined in RFC 1998 [25]). An
iframe containing a src attribute pointing to such an URL executes the Java-
Script or similar code contained in the URL as soon as the user agent’s parser
has reached this position in the DOM tree. The JavaScript is not being executed
in the window context we can control with our tool, but in an implicitly cre-
ated fresh context. This of course renders our approach useless since there is no
way we are able to monitor the execution in the previously described manner.
Listing 1.2 illustrates this problem, and we verified this behavior in all major
browsers.
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Listing 1.2. Iframe and object tag setup to bypass analysis

<iframe src=" javascript:evil()"></iframe >

<object data="data:x,%3 cscript >evil ()%3c/script >"></object >

The same effect can be observed for <object> tags since most user agents
have them behave similarly to <iframe> tags depending on what source they
point to. The example in Listing 1.2 also shows how an object tag using a data
attribute acts equivalently to an <iframe> with a src attribute.

Links Similar to the previously described iframe problem, a <a> tag applied
with a target attribute either set as _blank, _top, or just a bogus value and
a JavaScript or data URI as href attribute value will have the given code be
executed in a new window context. This again bypasses the detection mecha-
nism and renders an implementation in pure JavaScript bypassable. The target
attribute is usually used to specify if a link should open in the same or rather a
new window. The target attribute can also be used to open a link in a specifically
named window context.

This feature is necessary for websites making heavy use of frame sets, frames,
and pop-up windows. In case the user agent receives a target attribute value
that does not exist in the currently existing scope, the link will open in the same
window, but a new window context.

META Redirects Many user agents provide the possibility to emulate HTTP
header information in-line by using <meta> tags combined with the http-equiv
and the content attributes. An attacker can abuse this feature by forcing the
user agent to perform a redirect after a given amount of time ranging from 0 to
n seconds as shown in Listing 1.3.

Listing 1.3. META refresh example bypassing analysis

<meta http -equiv =" refresh" content ="0; url=javascript:x()" />

Again, JavaScript and data URIs are being used to execute script code. It
strongly depends on the user agent in how far this kind of attack is capable of
bypassing our approach. Browsers based on the Gecko layout engine [26] do not
allow META redirects to JavaScript URIs anymore, but they still support data
URIs to be used instead. All other tested browsers such as Chrome, Opera and
Internet Explorer still support JavaScript URIs in this use case. While some of
them execute the JavaScript code in the scope our tool controls, all browsers
supporting data URIs can use those as a working bypass.

DOM Element Surveillance The solution to the problems discussed above
can be found in scanning and analyzing the website’s markup during parsing of
the DOM tree. This can be accomplished by using two user agent features: the
DOM event DOMContentLoaded and the possibility to select all existing DOM el-
ements with the query document.getElementsByTagName(’*’) [27]. Before the



Detection and Mitigation of Malicious Websites with a Frozen DOM 11

document is actually loaded and rendered, the script can loop over the existing
DOM elements and check assorted tag attribute combinations such as <iframe>
and src or <a> and href or the mentioned <meta> and content. Listing 1.4
illustrates how this pre-evaluation of JavaScript code can be implemented.

Listing 1.4. Example for markup analysis before execution

document.addEventListener (" DOMContentLoaded", function (){

var elements = document.getElementsByTagName (’*’);

for(var i in elements) {analyze(elements[i].src );}

}, false);

In case the protocol handlers javascript: or data: appear at the very
beginning of the strings to check, a pre-evaluation can take place: the code can be
executed in an environment again controlled by our tool. Most user agents allow
line-breaks, tabs and several more control characters merged into the protocol
handler so a pre-filtering is mandatory.

To avoid interferences with the website’s functionality and user experience,
this can be done in a cloned version of the existing DOM. After evaluation and
analysis, the results can be channeled back to the tool’s logging components
and be merged with the already existing scoring. Tests have shown that this
approach works very well in practice already with most passive attack vectors
requiring user interaction. Active JavaScript execution via <iframe> and src
combinations can be intercepted too, but most user agents besides Chrome add
unnecessary limitations. Note that such an approach is not affected by heavy
obfuscation either since the relevant data is being taken and analyzed directly
from the already existing DOM tree and not the raw markup itself. The script
accesses the code that has already been de-obfuscated and normalized by the
user agent itself.

Nava demonstrated with Active Content Signatures (ACS) [28] how a
<plaintext> tag can be used to render all markup following after an arbitrary
branch in the DOM tree can be rendered inactive for thorough inspection, mod-
ification, and sanitization before being inserted in the DOM tree again. This
approach can be used to effectively deal with the mentioned problems around
<iframe>, <object> and similar tags. This way, no race conditions can appear
since the plaintext tag is turning every element into a single passive text-only
DOM element providing unlimited amount of time for analysis and removal of
malicious code.

Browser Extensions Phung et al. [29] showed how similar approaches can
be used to protect specific websites and applications against JavaScript based
attacks such as XSS, CSRF and other attacks targeting the users of the at-
tacked website or application [30]. Their approach encapsulates the native Java-
Script methods and properties with an Aspect Oriented Programming (AOP)
related approach based on a specific policy tailored to the website’s features and
specifics [31]. We suggest to move further and create browser-specific extensions
such as a Firefox plug-in or an Internet Explorer Browser Helper Object (BHO)
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to provide more generic protection as well as gain better hardening against tam-
pering attempts against our solution by attacker-provided code.

Extensions for Google Chrome are easy to create, but do not provide the
amount of flexibility necessary for our tool to work. This is due to the technique of
using isolated worlds, meaning a read-only mirroring for important and security
critical DOM properties [32]. Our approach requires the ability to overwrite
DOM elements of the website to protect users against attacks. An extension for
Gecko based browsers fulfills all requirements necessary to make our approach
work from within the browser as well as BHOs for the Internet Explorer. Besides
the described JavaScript based version of IceShield, we have also implemented
a Greasemonkey user script and a browser extension for Firefox that performs
basically the same task.

3.6 Fingerprinting

IceShield is designed to be hard to detect by an attacker. We consider this to be
important since many drive-by download attacks we observed fingerprinted the
visiting user agent and deployed their payload conditionally. The same behavior
is shown by several current exploit kits [33]. As a first step to be stealth, our tool
consists exclusively of JavaScript code and does not make use of any external
resources such as style sheets or images. Thus, an attacker has no possibility to
read style sheet information via window.getComputedStyles() or utilize image
tags and error handlers to find out about the existence of our tool. IceShield
also does not pollute the global scope such as the OWASP ESAPI tool [34]
or other comparable libraries. Instead, we use an architecture wrapped in an
anonymous function. Any declared variable will reside inside this function scope,
and thus does not leak into the global scope.

Since the tool is making heavy use of overwritten native methods, an attacker
could easily find out about its existence via several child properties of those
methods if no further precautions are met. Let window.alert be overwritten by
a custom function. An attacker can call the toString() or valueOf() method
of window.alert which will result in leaking the source code of the overwriting
function, instead of the string function alert() { [native code] }.

The solution to avoid leakage via toString and its child nodes, is to over-
write the window.alert.toString.toString with its parent method window.
alert.toString. The attacker will not be able to detect the presence of our tool
by using these two methods or a combination thereof. This approach works well
in all tested browsers. Note that an adversary capable of executing arbitrary
JavaScript in the attacked DOM might always find ways to detect the pres-
ence of IceShield. Thus the tamper resistance established via the ES5 object
capabilities is of immane importance for our approach.

A major aspect of fingerprinting are timing attacks, which are in general a
very hard problem to deal with. This aspect can be considered as a limitation
of IceShield that we have so far not managed to get around: an attacker can
make use of the fact that functional string concatenation and operator based
string concatenation will have a completely different code flow as soon as the
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String.concat() method has been overwritten. An attacker can thus perform
two concatenation operations: if the timing value for the first one (i.e., done
functionally with concat()) differs significantly from the second one (e.g., per-
formed with the + operator), then a method modification must have taken place.
This could cause the attacker to not deploy the payload to avoid detection, and
thus waste precious attack code, possibly containing exploits against unreported
vulnerabilities.

4 Evaluation

In this section, we describe the settings and datasets we used to evaluate the
prototype version of IceShield. We also present an overview of the detection
and performance results obtained during several experiments.

4.1 Evaluation Environment

We compiled two datasets for the evaluation of IceShield: Our known-good
dataset consists of the top 61,554 websites chosen from the top list of the Alexa
traffic ranking [35]. To minimize the possibility that malicious sites exist in this
set, we checked all URLs against the malwaredomainlist.com (MDL) block-
list [36], which lists currently active malicious sites. The known-bad dataset is
composed of 81 URLs selected from MDL [36]. While the number of URLs may
seem to be small, all URLs in this dataset point to exploit kits like for example
Phoenix, Neosploit, or Eleonore. An exploit kit is a framework to serve a variety
of pre-built exploits to the unsuspecting user to initiate a drive-by attack [1]. We
chose to focus on exploit kits as each instance of an exploit kit represents a whole
class of exploits, and Curtsinger et al. showed that such a set is representative
for current attacks [37]. Given this result, we can use a smaller known-bad set
to test for a much larger amount of actual malicious sites.

To demonstrate the versatility of our approach, we evaluated IceShield on
three different devices:

– High-end workstation equipped with an Intel Core i7-870 processor and 8
GB RAM, running Ubuntu 10.04 Linux and Firefox 3.6.8

– As an example of a typical mid-range system, we used a netbook ASUS
EeePC 1000H with an Intel Atom N270 and 1 GB RAM, running Ubuntu 10
Linux distribution and Firefox 3.6.12.

– To evaluated the performance of our tool on a low-end device, we performed
tests on a Nokia n900 smartphone with a 600 MHz ARM7 Cortex-A8 pro-
cessor and 256 MB RAM, running a Maemo Linux distribution and Firefox
3.5 Maemo Browser 1.5.6 RX-51

We performed tests on all three devices and did not have to adjust IceShield
for any of them: as long as the browser on the device supports the features we
require, the underlying platform is not relevant.

malwaredomainlist.com
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Database

Browser

Proxy to inject
IceShield

Analysis Report

Dynamic Analysis
with IceShield

Workstation / Netbook / 
Smartphone

Website

Fig. 1. Evaluation setup for IceShield: We inject the instrumentation code via a proxy
and send the result to a database.

The evaluation environment is completed by a proxy server to inject IceShield
into the HTML context of the visited pages, and a logging infrastructure, as de-
picted in Figure 1. Once a website has been successfully loaded in the browser,
we log the following data points: the URL visited, execution time of IceShield
and onload time of the respective page as well as the features observed in this
website as discussed in the previous section. Furthermore, we log whether the
URL belongs to the malicious or the benign set.

4.2 Classification Results

For the proof-of-concept implementation, we developed heuristics for 16 features
that are computed for a given website, as described in Section 3.1. To determine
whether a website is benign or malicious, we use Linear Discriminant Analysis
(LDA) as described in Section 3.3. To instantiate the parameters for our data
mining algorithm, we used the following training data: the complete training set
consists of the top 50 sites from the Alexa traffic ranking and 30 malicious sites
we randomly chose from the known-bad dataset. The test set consists of the
61,504 sites ranked below the top 50 sites we used in our training set and the
remaining 51 exploit kit instances from the known-bad dataset.

Using the model computed from the training set, we were able to detect
50 of the 51 malicious sites in our known-bad test set, while achieving a false
positive rate of 2.17%. We manually investigated the malicious sample that went
undetected and found that this particular exploit relied on a DOM variable for
execution, which was not set by the JavaScript code, but by a Java file (.jar
file) loaded from within the site’s context. As we do not currently execute Java
in our test environment, the de-obfuscation routine lacked said variable. Hence
the execution stopped, and we were unable to observe any relevant feature,
except that the site accessed document.cookie twice. However, a successful
attack would require the execution of the Java applet, and this would enable us
to actually observe the behavior (and a feature vector) indicating a malicious
site. We re-tested this site with a browser that had Java enabled and could
indeed detect this particular exploit successfully.

The false positive rate of 2.17% might sound high. However, to protect the
user, IceShield does not need to block access to a site that triggers an alert.
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Instead, the tool can remove the elements in question from the DOM tree. Since
our solution is capable of determining in which method call the possible attack
takes place and which external resources are necessary to conduct and deploy
the attack, we can strip this data from the site, and thus mitigate the attack.
Even if we have a false positive, the user will likely not notice this since only
certain elements are lacking from the DOM tree. We manually evaluated a 10%
sample set (134 sites) randomly chosen from the false positives to confirm that
the majority of pages remain usable even with parts of the DOM removed. The
removal of the DOM elements was not noticeable by the human test user in 82.9%
of the sites and 9.6% of the websites were partially usable (e.g., banner ads were
not displayed correctly). Only 7.5% of the false positives were rendered unusable
through the removal of the DOM elements. This means that the effective false
positive rate, where the presence of the tool is noticed by the user in a negative
fashion, is roughly only 0.37%.

4.3 Detecting Unknown Exploits

Besides testing our tool against exploit kits and the known-bad dataset, we also
examined if IceShield is capable of detecting attack vectors which it had never
seen before. To perform this test, we manually searched for websites serving in-
dividual exploits like an Internet Explorer exploit (CVE 2010-3962) and sites
exploiting a memory corruption flaw in Apple Quicktime’s QTPlugin.ocx Ac-
tiveX control(CVE 2010-1818). We manually confirmed that both exploits were
not included in our known-bad dataset. We tested IceShield against these ex-
ploits and both attack vectors were labeled as malicious using our heuristics
and model, which underlines the flexibility of our approach to detect both very
recent and older, more widespread threats. Furthermore, we also verified that
both exploits are effectively mitigated, as the respective payload is not executed
since it was removed from the DOM tree.

Similarly positive results were obtained when testing against an exploit deliv-
ered via MHTML (CVE-2011-0096). This way of payload deployment is known
to bypass most existing filter mechanisms since the subset of necessary characters
to execute JavaScript is very small and does not include quotes or parenthesis.
The payload was delivered in Base64 encoding, but had to use a set of native
functions monitored by IceShield during the user agent’s decoding and execu-
tion process. These results suggest that IceShield is also capable of detecting
novel attacks that were unknown to the system in advance.

4.4 Performance Results

Under the aspects of usability on the one hand and stealthiness on the other, it
is important to keep the execution time of IceShield low. As execution time, we
log the time difference between the execution of the first line of code and the time
immediately after we have overwritten and wrapped all required methods and
objects. This is accurate since the first line that is executed is var timestamp
= Date.now();, as IceShield is injected such that it is executed first in the
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browser. We measure the onload time as the difference between the execution of
the first line of code and the moment when the process of rewriting the document
is finished, i.e., the DOM is ready. We define the overhead as the percentage of
the onload time that is needed to execute IceShield.

We recorded all times on the high-end workstation. Analyzing the Alexa data
set, we found that the execution time ranges from 2 ms to 760 ms. While the
maximum execution time seems high, the average execution time measured over
all samples is 11.6 ms, which corresponds to an average overhead of 6.27%. The
99.5th percentile is 25 ms. In summary, these results indicate that the execution
time and overhead is very low for the vast majority of websites and hardly
noticeable by the user in practice given the typical time it requires to load a web
page.

We also evaluated the performance of IceShield against several common
JavaScript benchmarks such as SunSpider, Google’s V8 Benchmark, and the
SlickSpeedbenchmark. Only the V8 benchmark showed a significant performance
loss due to its excessive use of native functions: the benchmark result on the
tested workstation changed from 376 points without using IceShield to 222
points with having the tool observing the DOM. However, we believe that this
is not very relevant in practice, since the V8 benchmark focuses on rendering
and number crunching tasks, rather than representing real life web application
test scenarios. SlickTest did not show any noticeable performance changes while
the confidence interval displayed in the SunSpider results insignificantly changed
from 2.7% to 4.4% when having IceShield active and running.

Fast execution and a low overhead is even more relevant on devices that rely
on battery power. Thus, we conducted performance tests on a netbook and a
smartphone (and again on a high-end workstation for comparison). As test cases,
we selected seven interactive, high-profile websites. We accessed each URL ten
times with each device and present the average over all runs in Table 1. Even on
limited hardware, IceShield manages to perform reasonably fast. The execution
time exceeds 100ms only on twitter.com and stays below in all other test cases.
On average, our tool executed in 8.7 ms on a high-end workstation, in 50.4 ms
on a netbook, and in 89.3 ms on a smartphone.

Table 1. Execution times on different platforms

Site (#DOM nodes) High-End PC Netbook Smartphone

Google.com (113) 8.2 ms 48.9 ms 80.9 ms
Google Maps (436) 8.0 ms 50.1 ms 93.4 ms
Twitter.com (1032) 8.1 ms 49.4 ms 102.4 ms
Facebook (195) 11.6 ms 56.3 ms 92.6 ms
Yahoo! (818) 8.4 ms 48.5 ms 92.4 ms
Youtube (745) 7.9 ms 50.7 ms 79.8
Baidu (52) 8.4 ms 48.7 ms 83.6 ms

Average 8.7 ms 50.4 ms 89.3 ms

twitter.com
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In recent months we have observed a huge improvement in the performance
of JavaScript engines in the different browsers. If this trend continues, we can
expect that the performance of IceShield even increases in the future.

5 Limitations

There are several limitations IceShield is faced with in its current proof-of-
concept state. In case an attacker deploys a malicious PDF, Java Applet, or
Flash file without using any native DOM methods to create the necessary tags
and attributes, the heuristics used by IceShield might not collect enough in-
formation to deliver an adequate score. A malicious website containing no more
than <embed src="evil.pdf"/> and avoiding utilization of native DOM meth-
ods will still be able to deploy and execute its payload.

Another limitation of the current prototype is the lack of heuristic coverage
on ActiveX based attacks. This is merely due to the fact that legacy versions of
Internet Explorer are not capable of executing the IceShield code. These prob-
lems do not apply for the Internet Explorer 9 Beta we tested on. Note that this
limitation is merely a matter of implementation and not a substantial problem
of scope such as the aforementioned issue. Another limitation of IceShield, de-
ployed in the JavaScript version by a website, is given by the Same Origin Policy
(SOP). In an attack scenario, where an exploit will be deployed after redirect-
ing the victim to another domain, a new window context will be loaded and
the protective mechanisms of our approach cannot work anymore: IceShield
cannot “stick” to the users window context since the domain borders have been
crossed. To mitigate this limitation, we can run the tool on a higher level of
execution privileges than the usual website context, for example, with a Firefox
extension or a user script running on Greasemonkey. The Firefox extension we
created successfully addresses this limitation. The Greasemonkey user script we
created is also not affected by this.

The lack of tamper resistance support for older user agents such as Firefox 3,
Internet Explorer 8 and Opera 10 is another limitation. These older browsers do
not support features such as Object.defineProperty(), and need workarounds
like obj.__noSuchMethod__. The features necessary for making our approach
work safe and successfully have been implemented in the new versions of these
user agents, which support the latest ECMA Script specification as discussed in
Section 3.

The heuristics we used to detect attacks as introduced in Section 3.1 already
cover a diverse set of possible attacks, as also illustrated by the fact that we
detected three attacks with IceShield that the tool had not seen before. The
heuristics are not complete in a sense of them covering each possible attack
vector. Depending on the actual exploit, our heuristics might be bypassed and
allow sophisticated attackers to deploy their payload. However, IceShield can
be easily extended to include more heuristics that then cover more attack vectors.
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6 Related Work

We are not the first to propose techniques to address the problem of malicious
code on the web. We briefly discuss related work in this section and compare
the different approaches to the one we presented in this paper.

In the last few years, several different kinds of low- or high-interaction hon-
eyclients were introduced such as for example HoneyMonkey [38], Capture-HPC,
SpyProxy, Monkey-Spider, or PhoneyC. All of them can only be used in an (of-
fline) analysis setting and are not capable of actually protecting end-users due
to their high runtime overhead and the complexity involved when using them.

Wepawet/JSAND [6] and Cujo [7] are closely related to our approach.
Wepawet is a framework to detect and analyze malicious JavaScript code in
an offline setting. The tool combines anomaly detection techniques and dynamic
emulation to analyze a given piece of code. Cujo uses similar heuristics to detect
drive-by download, but performs the analysis on a web proxy. This approach
introduces on average an analysis overhead of 500 ms and JavaScript-heavy sites
such as Facebook might even introduce an overhead of more than 1.5 seconds.

Compared to these two tools, we use a similar set of detection heuristics,
but IceShield can analyze the actual DOM tree within the browser and thus
perform a more fine-grained analysis. Furthermore, the overhead is an order of
magnitude lower compared to Cujo. In addition, our tool protects users from
attacks since we can modify parameters passed to native methods to mitigate
potential attacks.

An advantage of our approach compared to recent proposals such as Zozzle [37]
is the light-weight implementation and the portability. However, our current pro-
totype has a higher false-positive rate which could be lowered by using more
elaborated machine learning techniques.

7 Conclusion

In this paper, we presented IceShield, a tool to perform light-weight dynamic
analysis of JavaScript code directly in the context of a browser in order to de-
tect and prevent attacks. This is achieved by inline code analysis and hooking
to wrap native JavaScript methods into a context that enables us to dynami-
cally analyze the behavior of these methods. We use techniques from the area of
machine learning to compute a model of malicious behavior and can efficiently
apply this model during runtime. Special care is taken to implement the instru-
mentation in a robust way such that an attacker cannot overwrite or infere with
our analysis code. To this end, we introduced a novel technique to use features
of the new ECMA Script 5 standard which allows us to freeze object properties.
In an empirical evaluation, we achieved a detection accuracy of 98% and were
able to detect three previously unknown attacks. The performance overhead of
IceShield is low, even on small devices such as smartphones or netbooks.
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