Scriptless Attacks —
Stealing the Pie Without Touching the Sill

Mario Heiderich, Marcus Niemietz, Felix Schuster, Thorsten Holz, J6rg Schwenk
Horst Gortz Institute for IT-Security
Ruhr-University Bochum, Germany
{firstname.lastname}@rub.de

ABSTRACT

Due to their high practical impact, Cross-Site Scripting (XSS)
attacks have attracted a lot of attention from the security

community members. In the same way, a plethora of more

or less effective defense techniques have been proposed, ad-

dressing the causes and effects of XSS vulnerabilities.

As aresult, an adversary often can no longer inject or even
execute arbitrary scripting code in several real-life scenarios.

In this paper, we examine the attack surface that remains
after XSS and similar scripting attacks are supposedly mit-
igated by preventing an attacker from executing JavaScript
code. We address the question of whether an attacker really
needs JavaScript or similar functionality to perform attacks
aiming for information theft. The surprising result is that
an attacker can also abuse Cascading Style Sheets (CSS) in
combination with other Web techniques like plain HTML,
inactive SVG images or font files. Through several case
studies, we introduce the so called scriptless attacks and
demonstrate that an adversary might not need to execute
code to preserve his ability to extract sensitive information
from well protected websites. More precisely, we show that
an attacker can use seemingly benign features to build side
channel attacks that measure and exfiltrate almost arbitrary
data displayed on a given website.

We conclude this paper with a discussion of potential mit-
igation techniques against this class of attacks. In addition,
we have implemented a browser patch that enables a website
to make a vital determination as to being loaded in a de-
tached view or pop-up window. This approach proves useful
for prevention of certain types of attacks we here discuss.

Categories and Subject Descriptors

K.6.5 [Security and Protection|: Unauthorized access

General Terms
Security

Permission to make digital or hard copies of all or part o twork for
personal or classroom use is granted without fee providatdbpies are
not made or distributed for profit or commercial advantage that copies
bear this notice and the full citation on the first page. Toyoofherwise, to
republish, to post on servers or to redistribute to listguies prior specific
permission and/or a fee.

CCS’12,0ctober 16-18, 2012, Raleigh, North Carolina, USA.
Copyright 2012 ACM 978-1-4503-1651-4/12/10 ...$15.00.

Keywords
Scriptless Attacks, XSS, CSS, SVG, HTML5, Attack Fonts

1. INTRODUCTION

In the era of Web 2.0 technologies and cloud computing,
a rich set of powerful online applications is available at our
disposal. These Web applications allow activities such as on-
line banking, initiating commercial transactions at the on-
line stores, composing e-mails which may contain sensitive
information, or even managing personal medical records on-
line. It is therefore only natural to wonder what kind of
measures are necessary to protect such data, especially in
connection with security and privacy concerns.

A prominent real-life attack vector is Cross-Site Scripting
(XSS), a type of injection attack in which an adversary in-
jects malicious scripts into an otherwise benign (and trusted)
website [11,27]. Specifically, XSS supplies an attacker with
an option of manipulating a Web page across different sites
with the help of scripts. For this kind of attacks, JavaScript
is typically employed as the language of choice; once the
malicious script executes, it has full access to all resources
that belong to the trusted website (e.g., cookies, authentica-
tion tokens, CSRF tokens). Because of their high practical
impact, XSS attacks and related browser-security research
have attracted a lot of attention from the security commu-
nity during the recent years [20, 22,29, 31,32,41, 46,48, 51].

Preventing XSS by Preventing Executability of Code.

Following the developments and published work mentioned
above, a plethora of more or less feasible defense techniques
has been proposed. All these attempts have a clear goal:
stopping XSS attacks [6,26,31,41,44]. In general, one can
say that if an attacker manages to execute JavaScript on
the target domain, then she can control the whole Web page
navigated at by the victim. Therefore, a recommended miti-
gation strategy would be to deactivate/limit JavaScript code
execution for security reasons, employing tools such as No-
Script [33], Content Security Policy (CSP) [43], or, alter-
natively, making use of HTML5-sandboxed Iframes. This
approach is reasonable if an application can function with-
out external JavaScript, which is not always the case for
modern Web 2.0 applications. Furthermore, a website in-
creases its robustness and upgrades protection level against
attacks — one example of such action being frame-busting
code in order to mitigate classical clickjacking attacks [40].
As a result, limiting or disabling JavaScript synchronously
disables the aforementioned protection mechanism.

Going back one step, we note that XSS attacks need to
meet three preconditions guaranteeing their success:

1. Injectability: the attacker must be able to inject data
into the Document Object Model (DOM) rendered by
the Web browser.

2. Ezxecutability: if JavaScript (or any other code) is in-
jected, it must be executed.

3. Ezfiltration Capability: attacker-harvested data must
be delivered to another domain or resource for further
analysis and exploitation.

The fact that XSS recently replaced SQL injection and re-
lated server-side injection attacks as the number one threat
in the OWASP ranking [36] indicates that these three pre-
conditions are fulfilled by many Web applications. As ob-
served above, several current mitigation approaches against
XSS concentrate on the second precondition, mainly since
injectability is often a desired feature in many Web 2.0 ap-
plications. Internet users are encouraged to contribute con-
tent and data exchange between different Web applications
through the DOM is increasingly used. Thus, server- and
client-side XSS filters try to remove scripts from the injected
content, or, they try to modify/replace these scripts in a way
that they are not executed in the browser’s DOM. The typ-
ical advise reads: in case we successfully prevent injected
JavaScript from being reflected or executed, a Web applica-
tion can be considered secure against XSS attacks.

Note that a browser’s rendering engine is often used in
other tools, such as e-mail clients or instant messengers, to
display HTML content. By default, scripting is disabled in
these kinds of software to prevent attacks like XSS in the
context of e-mail processing or instant messaging. Again,
the defense approach is to temper the attacks by preventing
the second precondition from occurring.

Beyond Script-based Attacks.

In this paper, we evaluate whether restricting scripting
content is sufficient for attack mitigation by examining it
in practice. We raise the question of an attacker actually
needing JavaScript (or another language) to perform XSS
attacks. The attack model that we use throughout the pa-
per is as follows. First, we assume that precondition 1 re-
mains fulfilled, which is reasonable in modern web applica-
tions as explained above. Secondly, we nonetheless assume
that scripting is completely disabled, so that we can be sure
that XSS attacks would not work because the precondition
of executability is not met (i.e., JavaScript content will not
be executed). Precondition 3 is granted by a vast major-
ity of web applications, since extensive efforts are required
to make sure that HT'TP requests to arbitrary external do-
mains are being blocked by the application itself.

It is important to note that this attack model enables
an adversary to inject arbitrary markup such as Cascading
Style Sheet (CSS) markup into a website. We show that
CSS markup, which is traditionally considered to be only
used for decoration/display purposes, actually enables an
attacker to perform malicious activities. More precisely, we
demonstrate that an adversary can use CSS in combination
with other Web techniques such as inactive SVG images,
font files, HT'TP requests, and plain inactive HTML, all to
achieve a partial JavaScript-like behavior. As a result, an
adversary can steal sensitive data, including passwords, from

a given site. For this work, our running example is a Web
application that contains a form for entering credit card in-
formation. We introduce several novel attacks that we call
scriptless attacks, as an attacker can obtain the credit card
number by injecting markup to this page without relying on
any kind of (JavaScript) code execution. We present several
proof-of-concept scriptless attacks with increasing sophisti-
cation, illustrating the practical feasibility of our techniques.
Neither of the discussed attacks depends on user interaction
on the victim’s part, but uses a mix of benign HTML, CSS
and Web Open Font Format (WOFF [23]) features combined
with a HTTP-request-based side channel to measure and ex-
filtrate almost arbitrary data displayed on the website.

It must be highlighted that traditional server- and client-
side defense mechanism designed to prevent XSS, such as
HTMLPurifier, NoScript or several other tested XSS filter-
ing solutions, are not yet fully prepared to address our script-
less attacks. This is mainly due to the fact that we do not
rely on injecting scripts or executing code.

As a further contribution, we propose new protection mech-
anisms against this new class of attacks. Since filtering of the
attack vectors may affect the regular content of the website,
we focus on eliminating conditions under which the proposed
attacks can be executed, essentially preventing requests to
the attacker’s server. We have implemented a browser patch
that gives a website a capacity to determine whether it is
being loaded in a detached view or pop-up window. This ap-
proach proves useful for preventing certain types of scriptless
attacks and other attack vectors.

Contributions.
In summary, we make the following three contributions in
this paper:

e We describe an attack surface that is resulting from a
delimitation of scripting capabilities for untrusted con-
tent in modern web applications. We show how an at-
tacker can deploy malicious code in a heavily restricted
execution context. We label this class scriptless attacks
because they do not need to execute (JavaScript) code.

e We discuss several novel attack vectors that are sophis-
ticated enough to extract sensitive data (our running
example pertains to obtaining credit card numbers)
from a given website, doing so without executing script
code. The attacks utilize a sequence of benign features
which combined together bring about an attack vector
causing data leakage. We demonstrate that propri-
etary features, as well as W3C-standardized browser
functionality, can be used to concatenate harmless fea-
tures to function as a capable and powerful side chan-
nel attack. The described attacks relate to Cross-Site
Request Forgery (CSRF) and protection CSP and they
are suitable for leaking almost arbitrary data displayed
on a given website. Furthermore, we identify web- and
SVG-fonts as powerful tools for assisting attackers in
obtaining and exfiltrating sensitive data from injected
websites. We have implemented proof-of-concept ex-
amples for all attacks.

e We elaborate on the existing defense mechanisms di-
rected at scriptless attacks, specifically referring to
protection techniques such as the Content Security Pol-
icy (CSP) [43]. Regrettably, we also identify gaps in

the CSP-based protection and cover the limitations
of X-Frame-Options header in regards to scriptless
attacks. Furthermore, we introduce a new browser
feature which we have implemented for the Firefox
browser in a form of a patch helpful for mitigating
scriptless attacks. As an additional upshot, this fea-
ture can also assist the mitigation of several other at-
tack techniques, such as double-click-jacking and drag
& drop attacks [21].

2. ATTACK SURFACE AND SCENARIOS

In the past few years, the bar for a successful attack
has been significantly raised upon the introduction of many
anew and sophisticated techniques preventing attacks against
web applications. We speculate that this is mainly caused by
a large number of published exploits, the rise of technologies
connected to HTML5, and the ever-growing popularity of
HTML usage in non-browser environments, i.e., a browser’s
rending engine is used in a wide variety of contexts such as
instant messaging tools like Pidgin and Skype, e-mail clients
such as Outlook, Thunderbird and Opera Mail, entertain-
ment hard- and software, and ultimately operating systems
such as Windows 8. As a result, all these environments re-
quire protection from HTML-based attacks. This has led
to the steady development of numerous defense approaches
(e.g., [6,26,31,41,44]). It is additionally worth noting that
the number of users that install security extensions like No-
Script is growing: NoScript blocks a large range of attacks
against website users by simply prohibiting JavaScript exe-
cution [33]. Consequently, attacks against web applications
have become more difficult and a website that deploys lat-
est defense techniques can already resist a large number of
attack vectors.

Given all these defense strategies, we expect that attack-
ers will thrive towards developing techniques that function
in rendering contexts that either do not allow script execu-
tion or heavily limit the capabilities of an executed script.
For instance, HTML5 suggests using sandboxed Iframes for
untrusted content; these essentially limit script execution
up to fully blocking it and they will become crucial trust
tokens for future web applications. A very basic question
hence comes to mind: can an adversary still perform mali-
cious computations in such a restricted context?

A continuously viable attack scenario is to develop tech-
niques to retrieve and leak data across domains by (ab)using
seemingly benign features and concatenating them into ac-
tual attack vectors. We presume that these scenarios will
gain significance in the future, as a number of defense tech-
niques discussed above carries on growing. The attacks
here-introduced are based on this exact approach and target
systems that are “injectable”; yet they cannot execute any
JavaScript (or another language) code. Thus, we term our
approach scriptless attacks. During the creation of these at-
tacks, our goal was to achieve data leaks similar to the ones
possible for classical XSS attacks.

The following list briefly describes some scenarios where
HTML is used in browsers or browser-like software, but
JavaScript is either restricted or completely disabled for se-
curity and/or privacy reasons. Our attack techniques target
these scenarios because scriptless attacks enable data leak-
age even in such heavily restricted environments:

1. HTMLS5 Iframe sandbox: The HTML specification

describes a feature that allows a website to frame ar-
bitrary data without enabling it to execute scripts and
similar active content. The so called Iframe sandbox
can be invoked by simply applying an Iframe element
with a sandbox attribute. By default, the sandbox
is strict and blocks execution of any active content,
form functionality, links targeting different views and
plugin containers. The restrictions can be relaxed by
adding space-separated values to that attribute con-
tent. Thus, with these settings, a developer can for
instance allow scripting but disallow access to parent
frames, allow form functionality, or allow pop-ups and
modal dialogs. Although sandboxed Iframes are cur-
rently only available in Google Chrome and Microsoft
Internet Explorer, we predict their wider adoption as
the described feature appears in the HTML5 specifica-
tion. A reduced version of sandboxed Iframes, labeled
security restricted Iframes, has been available in the
very early versions of Internet Explorer, for example
in MSIE 6.0.

. Content Security Policy (CSP): The Content Se-

curity Policy is a proposed and actively developed pri-
vacy and security tool. Specifically, it is available in
Mozilla Firefox and Google Chrome browsers [43]. The
CSP’s purpose is the HT'TP header and meta element
based restriction of content usage by the website in
question; a developer can for instance direct the user
agent to ignore in-line scripts, resources from across
domains, event handlers, plugin data, and comparable
resources such as web fonts. In Section 4 we will dis-
cuss how CSP in its current state can help mitigating
the attacks introduced in Section 3.

. NoScript and similar script-blockers: NoScript

is a rather popular Firefox extension composed and
maintained by Maone, G. [33]. Aside from several fea-
tures irrelevant for this work, NoScript’s purpose is
to block untrusted script content on visited websites.
Normally, all script and content sources except for few
trusted default origins are blocked. A particular user
can decide whether to trust the content source and en-
able it, either temporarily or in a permanent manner.
NoScript was in scope of our research: we attempted
to bypass its protection and gain a capacity to execute
malicious code despite its presence. Let us underline
that scriptless attacks have proven to be rather effec-
tive for this purpose.

. Client-side XSS filters: Several user agents provide

integrated XSS filters. This applies to Microsoft In-
ternet Explorer and Google Chrome as well as Firefox
with the installed NoScript extension. Our scriptless
attacks aim to bypass those filters and execute mali-
cious code despite their presence. In several examples,
we were able to fulfill our objective, despite the filter
detecting the attack and blocking scripture execution
in reaction.

. E-mail clients and instant messaging: As noted

above, a browser’s layout engine is usually not ex-
clusively used by the browser itself, as several tools
such as e-mail clients and instant messengers equally
employ the available HTML render engines for their
purposes. Mozilla Thunderbird can be discussed as a

specific example. By default, scripting is disabled in
this type of software: an e-mail client allowing usage of
JavaScript or even plugin content inside the mail body
could induce severe privacy implications. Scriptless at-
tacks therefore supply a potential way for attackers to
execute malicious code regardless.

In summary, there are a lot of attack scenarios in which an
adversary is either unable to execute scripts or she is heavily
limited by the capabilities of an executed script.

3. BEYOND SCRIPT-BASED ATTACKS

In this section, we discuss the technical details of the at-
tacks we developed during our investigation of the attack
surface related to scriptless attacks. As we will see, scriptless
attacks can grant a feasible solution to nevertheless exfiltrate
and steal sensitive information in the contexts described in
the previous section, bypassing many of the available de-
fense solutions such as sandboxed Iframes, script-blockers
(i.e. NoScript), or client-side XSS filters. For the rest of the
paper, we assume an attacker has the following capabilities:

1. The attacker can inject arbitrary data into the DOM
rendered by the browser — such as for instance an
HTML mail body in a webmail application. This is
a viable assumption for modern Web 2.0 applications
that encourage users to contribute content. Further-
more, the fact that XSS attacks are ranked as number
one threat according to the OWASP ranking [36] indi-
cates that injection vulnerabilities are present in many
web applications.

2. We assume that scripting is completely disabled (e.g.,
our user has NoScript installed or similar defense so-
lutions are in place, preventing an attacker from code
injection and subsequent execution). Note that tradi-
tional XSS attacks would not be feasible in this set-up
because there is no way for executing JavaScript (or
any other language) content.

We illustrate our attacks with the help of a simple web ap-
plication that processes credit card numbers — it can be com-
pared to the Amazon web store or similar websites applied
with a back-end suitable for processing or delegating credit
card transactions. This web application allows us to demon-
strate our attack vectors in a proof-of-concept scenario. We
specifically chose credit card numbers’ processing for they
consist of only sixteen digits such as for example 4000 1234
5678 9010. This enables us to exfiltrate information in a
short amount of time. Note that our operations are ap-
plicable to other attack scenarios as well and we will for
example explain how one can steal CSRF tokens and other
kinds of sensitive information with our method. Further-
more, we implemented a scriptless keylogger [18] that allows
remote attackers to capture keystrokes entered on a web
page, even when JavaScript is disabled (this vulnerability is
being tracked as CVE-2011-anonymized).

3.1 Attack Components

The attacks described in the following sections take advan-
tage of several standard browser features available in modern
user agents and defined in the HTML and CSS3 specifica-
tion drafts. We list and briefly explain these features before
moving on to demonstrating how they can be combined to

comprise the working attack vectors. More specifically, we
show how legitimate browser features can be abused to ex-
filtrate content or establish side channels functional to ob-
tain specific information from a web browser. We found the
following browser features to be useful building blocks in
constructing attacks:

1. Web-fonts based on SVG and WOFF: The HTML
and CSS specifications recommend browser vendors
to provide support for different web-font formats [23].
Among those are Scalable Vector Graphics (SVG) fonts
and Web Open Font Format (WOFF). Our attacks em-
ploy these fonts and utilize their features to vary the
properties of displayed website content. SVG fonts al-
low an attacker to easily modify character and glyph
representations, change appearance of single charac-
ters, and diversify their dimensions. It is possible to
simply use attributes such as width to assure that cer-
tain characters have no dimensions by assigning “zero
width”, whereas other attributes may have distinct and
attacker-controlled dimensions. WOFF in combina-
tion with CSS3 allows using a feature called discre-
tionary ligatures or contextual alternatives. By specify-
ing those for a WOFF font, arbitrary strings of almost
any length can be represented by a single character
(again given distinct dimensions for eventual measure-
ment purposes).

2. CSS-based Animations: With CSS based anima-
tions, it is possible to over time change a wide range
of CSS and DOM properties without using any script
code [14]. The properties allowing change via CSS an-
imations are flagged by specification as animatable.
An attacker can use CSS animations to change the
width or height of a container surrounding DOM nodes
that hold sensitive information, to name one example.
By being able to scale the container, the contained
content can be forced to react in specific ways to the
dimension changes. One reaction would be to break
lines or overflow the container. In case those behav-
iors are measurable, animation can cause information
leaks based on the timing parameters of that specific
behavior.

3. The CSS Content Property: CSS allows to use a
property called content to extract arbitrary attribute
values and display the value either before, after, or in-
stead of the selected element [8]. The attribute value
extraction can be triggered by the property value func-
tion’s use attr. For a benign use-case of this feature,
consider the following situation: A developer wishes
to display the link URL of all or selected links on her
website by simply rendering the content of the href at-
tribute after displaying the link, but only for absolute
link URLs. This is feasible by utilizing the following
CSS code:

alhref~=http://]:after{content:attr(href)’}

This powerful feature can also be used to extract sen-
sitive attribute values such as CSRF tokens, password-
field-values and similar data. Subsequently, they could
be made visible outside the attribute context. Com-
bining the extracted information with a font injection
provides a powerful measurement lever and side chan-
nel. In fact, this combination constitutes a substantial

aspect of the attacks discussed in Section 3.2 and Sec-
tion 3.3.

4. CSS Media Queries: CSS Media Queries provide
website developers with a convenient way to deploy
device-dependent style-sheets [49]. A user agent can
use a media query to for instance determine whether
the device visiting the website has a display with a
view-port width greater than 300 pixels. If this is
the case, a style-sheet optimized for wider screens will
be deployed. Otherwise, a style-sheet optimized for
smartphones and generally smaller screens and view-
ports will be chosen. The example code shown in List-
ing 1 illustrates the general technique; If the device
visiting the website deploying this CSS snippet has a
view-port width larger than 400 pixels, the background
turns green; if the screen only allows a smaller view-
port width, the background will be red.

Note that these different components are all legitimate
and benign features within a browser. Only in combination
they can be abused to establish side channels and measure
specific aspects of a given website.

<style type="text/css">
@media screen and (min-width: 401px){
x{background:green;}
body:after{content:’larger view-port’}

}

@media screen and (max-width: 400px) {
*{background :red;}
body:after{content:’smaller view-port’

}
</style>

Listing 1: CSS Media Queries determining screen
width and deploying style-sheets accordingly

3.2 Measurement-based Content Exfiltration
using Smart Scrollbars

Initially, we have decided to focus our analysis on Webkit-
based browsers, since this browser layout engine is widely
deployed. This includes, among others, Google Chrome and
Safari, which in turn means that we cover desktop comput-
ers, laptops, iPhones and iPads, as well as the whole range of
Android browsers, Blackberry, and Tablet OS devices. The
Webkit project operates as open source and is known for
very short development cycles and fast implementation of
novel W3C and WHATWG feature suggestions. Alongside
those specified and recommended features, Webkit also ships
a wide range of non-standard features that are exclusively
available in browsers using this particular layout engine.

One of the proprietary features enables attackers to de-
liver a tricky exploit, working against websites permitting
submission of user-generated styles. It is possible to extract
almost arbitrary information that is displayed by the web-
site, including text content like credit card number, element
dimensions, and even HTML/XHTML attribute values such
as CSRF tokens used to protect non-idempotent HTTP re-
quests [3]. The latter becomes possible once one uses the
CSS content feature described in Section 3.1.

We have developed a demonstration exploit [17] capable
of extracting detailed information about CSRF tokens; to
name one example, a test showed that reading a 32 character
CSRF token requires less than 100 HTTP requests.

As noted above, CSRF tokens are used by websites that
wish to protect possibly harmful GET requests from be-
ing guessable. In case an attacker can discover the link to
initiate modification of stored items, harm can be done by
simply issuing a HTTP request to that link from a different
browser navigation tab. An unguessable link — applied with
a long and cryptographically safe token — prevents this kind
of attack. The token has to be known in order to perform
the request successfully. In an attack scenario that allows
the adversary to execute arbitrary JavaScript, it is easy to
extract the token by simple DOM traversal to one of the
protected links and subsequent utilization of a side channel
for sending the token to an off-domain location for later re-
usage. But in our attack scenario, the adversary cannot ex-
ecute JavaScript, and thus token extraction and exfiltration
(aside from using open textarea elements and form sub-
missions) is complicated. Vela et al. accomplished creating a
demonstrative heavy-load CSS-only attribute reader by us-
ing attribute-selectors back in 2009 [45]. Unfortunately, this
approach is unsuitable to read high-entropy 32+ character
CSRF tokens.

To enable a purely CSS-based data exfiltration attack, we
utilize all of the available features listed in Section 3.1, addi-
tionally combining them with one of the proprietary Webkit
features. The following outline presents the steps we under-
take to move from initial CSS injection to full stack data
exfiltration of sensitive CSRF tokens:

1. An attacker injects a style element containing a set
of CSS selectors and a font-face declaration. These
CSS selectors choose the CSRF-token-protected links
(CTPL) and their container elements. The font-face
declaration imports a set of SVG fonts that has been
carefully prepared: for each character that can appear
in the CSRF tokens, one font file is imported. Any
other character, except for the one the font has been
imported for, has zero width. A single specific charac-
ter per font that does have a width is applied with a
distinctive width value.

2. A CSS animation block is injected alongside the afore-
mentioned CSS. This animation targets the container
of the CTPL and shrinks it from an initial large size to
a specific final size. Determining this final size is cru-
cial; the attacker needs to find out what is the right
pixel size for the animation to stop to leak information
about the content enclosed by the shrinking container.

3. The injected CSS contains a content property embed-
ded by a : :before pseudo-selector for the CTPL. This
content property is applied with the value attr (href).
Thereby, the attacker can map the value of the href
attribute to the DOM and make it visible. By doing
so, the injected SVG fonts can be applied. For ev-
ery occurrence of a CTPL, a different SVG font can
be chosen. In the first selected link, the font that only
gives dimension to the character a will be selected. For
the second CTPL occurrence, the font crafted to give
dimension only to the character b will be chosen and
so on. Successively, all CTPL can be applied with an
individual font, while all CTPL void of the character
connected to the assigned font will have no dimension
at all. Finally, all CTPL containing the characters di-
mensioned by the chosen font will have dimension of
character-width X occurrences in pixels.

4. By decreasing the box size of the container element of
the CTPL from 100% to one pixel, the attacker can
evoke an interesting behavior: The box will be too
small for the CTPL, so the characters applied with di-
mension will break to the next line. In case the box
is then given a distinct height and no horizontal over-
flow properties, a scrollbar will appear. The moment
when scrollbar appears constitutes an opening for the
attacker to determine locally what character is being
used: specific SVG font, zero width characters and
scrollbars forced via pixel-precise animation decreas-
ing the box size are sufficient for that.

Eventually an attacker can locally determine whether a
character is uniquely dimensioned and therefore present in
the CTPL. The only obstacle for not being able to remotely
determine this character is the lack of a back-channel ap-
plicable for scrollbars. There is no standardized way to ap-
ply background images or similar properties to scrollbars.
Webkit — an exception among all other tested browser lay-
out engines — provides this feature. A developer can select
any component of a window’s or HTML element’s scrollbar
and apply almost arbitrary styles. This includes box shad-
ows, rounded borders, and background images. However,
our investigation showed that typical scrollbar background
images are requested directly after page-load. Therefore,
this property is seemingly uninteresting for timing purpose
and development of a side channel obtaining information
about the time of appearance or sheer existence. Neverthe-
less, further investigation of the Webkit-available pseudo-
classes and state selectors unveiled a working way to misuse
scrollbar states combined with background images for actual
timing and measuring attacks. Several of the state selectors
allow assignment of background images and based on that
fact the specific state (such as an incrementing scroll affect-
ing the background of the scrollbar track) have to actually
occur. Here and then, the background will be loaded on
entering this CSS-selected state and not on page-load. This
allows an adversary to indeed use the measuring of scrollbar
appearance for timing and side channel data exfiltration.

The CSS code sample shown in Listing 2 demonstrates one
of the state selectors capable of working as a side channel.
During our tests based on the Webkit scrollbar feature, de-
termination of sensitive content took only few seconds. The
victim would not necessarily notice the malicious nature if
the performed CSS animation.

<div id="s">secret</div>
<style type="text/css">
div#s::-webkit-scrollbar -track-piece
:vertical:increment {
background:red url(//evil.com?s);

</style>

Listing 2: A working side channel: Scrollbar CSS
for track-piece incrementing vertically.

We created a public test-case available at http://htmlbsec.
org/webkit/test to demonstrate this side channeling at-
tack after the issue was disclosed responsibly to the Google
Chrome development team. To mitigate this attack, we
recommended to treat scrollbar backgrounds and scrollbar
state backgrounds equally; all background images and simi-
lar external resources should be loaded during page-load and
not on appearance or state occurrence. These two aspects

create an attack window allowing side channel attacks and
appearance-probing usable for leaking sensitive data and
page parameters as demonstrated in the attack explained
above.

Connecting the general attack technique with the running
example of having a credit card number displayed on an at-
tacked website, the injected font will provide one ligature per
digit-group of the credit card number. To create a WOFF
font containing all possible groups of numbers necessary to
brute-force a credit card number, an amount of no more than
9,999 or 999,999 distinct ligatures is necessary, depending on
the credit card manufacturer. Every digit-group will then
have a distinct width and can thus be exfiltrated through a
determination as to when the scrollbar appears during the
size-decreasing animation process. We successfully tested
this approach in our example scenario and found that we
could reliably determine and exfiltrate this information.

3.3 Content Exfiltration using Scrollbar De-
tection and Media Queries

During our research of the Webkit specific scrollbar data
leakage capabilities, we attempted to develop a technique
that can accomplish similar results in any other browser
through standardized features. Additionally, extraction of
single characters can turn out to be a long lasting task not
optimal for effective targeted attacks. Our goal was there-
fore to continue research on attack techniques that have
larger impact, on the whole being more efficient and more
generic in comparison to the rather specific “Smart Scroll-
bar” approach presented above. Beware that without deep
understanding of the attack surface and possible impact, as
well as the involved features and adversaries, effective de-
fense as discussed in Section 4 is complicated if not impos-
sible.

We utilized the aforementioned technique [16] of deploy-
ing CSS Media Queries to elevate the scrollbar-based data-
leakage and made it applicable to all modern browsers. It
also helped separating the core problem, moving from a
small implementation quirk into representing an actual design-
based security issue. Media Queries, as described in Sec-
tion 3.1, allow determination of a device’s view-port size.
Based on this judgment process, they deploy various and
most likely optimized CSS files and rules. To have a scroll-
bar be a source for data-leakage problems as described in the
aforementioned attack in Section 3.2, the attacker needs to
find out when and why the scrollbars appear. More specifi-
cally, the adversary can resize elements up to a certain point
and use the scrollbar to determine if the element contains
a certain other element or text node of distinct value. The
distinct size is the actual part where CSS Media Queries will
help unveiling if a scrollbar is there or not. The following
steps demonstrates how detecting scrollbar existence with
CSS Media Queries works in detail:

1. A website deploys an Iframe embedding another web-
site. A maliciously prepared CSS injection is part of
this embedded website. The Iframe is set to a width of
100%, therefore fills the whole embedding window in
regards to width-feature. The height of the Iframe can
be set to an arbitrary value depending on what data
should be leaked.

2. The embedding website is set to a specific width. This
will make sure that, given the 100% width of the Iframe,

o[-]
Q !'— http://htmiSsec... 2~ B G | = htmlSsec.org
| Click me first || Then click me! | O
We have scrollbars!
Click me first
O

Figure 1: Decreasing vertical view-size leads to a
scrollbar appear — which decreases the horizontal
view-size and causes a different media query to ex-
ecute

the embedded site will obey to that width and set
its view-port dimensions accordingly. The framed/em-
bedded website uses injected CSS Media Queries that
deploy two states. The first state uses almost the same
width as the embedding page. Consider the framing
view-port having a width of 430px, then the framed
website’s first media query will listen for a device view-
port width of 400px. A second CSS Media Query will
now listen for a device view-port width of 390px. Note
that once the Iframe decreases width by only ten pixel,
the media query for 400px will not match anymore. At
the same time, the second media query shall be acti-
vated and deploy its assigned styles, including back-
ground image requests and alike.

3. As a next step, the height of the Iframe embedding
the injected site will be changed. This can be per-
formed by a CSS animation and the Webkit-specific
information leak, a script running on the website host-
ing the Iframe, or a manual size change in case the
attacker generated a pop-up or an Iframe displayed in
the edit-mode; if the hosting site displays the Iframe
in edit-mode, a click-and-drag action will accomplish
the resize (consider a browser-game scenario for social
engineering).

The CSS animation persists to be the most likely case
not requiring any user interaction. Once the height
of the Iframe is reduced, the size change will force its
contents to line-break. By itself, this breaking line
will generate a vertical scrollbar forced by the injected
overflow-behavior or simply the window default.

The scrollbar will occupy about 10-15 pixels and thereby
reduce the view-port size from 400 to 390 or less pixels
in width. This will trigger the second media query and
a background image can be displayed, in parallel leak-
ing the exact position and time of the line-break, the
scrollbar appearance and thereby the width and nature
of the information contained by the box. This finalizes
the attack and classifies the combination of aforemen-
tioned features with CSS Media Queries as yet another
potential information leak. The screenshot in Figure 1
illustrates this case.

Zeichen-Info Fiir registered

Unicode
ent Werkzeuge Hints A Kommentar 'cal('con(exmalAltematesinLatinlonkup1subtah|esupers§<ret g
T ——r ® =
L] g
< g
Lig. Carets 5
Counters E
.|| TeX&Math g
" T Vet variants E
Horiz. Variants E
=
M ‘4'\\HH\\\\H\\HH\H\\\\HHH\\H\\\\\HH\\\\H\\\HIHHHHHIIHHHHE
[o]
Q <;unkk| Next > |
™ [=] [c=xs]
A T

=

Figure 2: Assigning the contextual alternative string
“supersecret” to a specific character with the help of
the FontForge tool

Again, we created a public test-case available at http:
//htmlbsec.org/scrollbar/test to demonstrate scriptless
determination of scrollbar existence. To initiate the test,
the window has to be initially resized, and then manually
reduced in height in a manner of dragging its lower boundary
towards the upper boundary. Note that this can of course
be accomplished automatically across domains.

To combine this attack technique with our running ex-
ample, we simply use the size-decreasing pop-up window or
Iframe to determine when the visible content-size is being
undercut and causes the scrollbar to appear. At this mo-
ment, the overall view-size will decrease as well and cause ap-
pearance of a side channel by having the CSS Media Query
initiate a HTTP request via (for example) background im-
ages. Note that this time we do not need to utilize timing
attacks: The media query CSS provides detailed information
on the pixel width that the scrollbars appeared at. Combin-
ing that information with the known distinct width of the
contextual ligature replacing the credit card number creates
a verbose and precise side channel attack.

3.4 Building Dictionary Fonts using Contex-
tual Alternatives

To accelerate the process of identifying and determining
particular strings and sub-strings on an injected website, an
attacker might need a large number of different fonts and
requests. The aforementioned attack samples are described
as capable of exfiltrating single characters from an injected
website. To be more efficient, the adversary can employ the
Discretionary Ligatures or Contextual Alternatives provided
by SVG and WOFTF fonts [14]. By injecting a cross-domain
font containing a dictionary of several hundreds of thou-
sands of string combinations, one can greatly accelerate the
detection process.

Note that the character information for each string rep-
resentation can be small in size: Fonts use vector graph-
ics and all that is necessary to deliver the detection feature
of a distinct width can be contained by a path compris-
ing of two single points. Within a single font file of one
megabyte in size, an attacker can store vast amounts of
contextual alternatives that depend on the nature of the
represented string. As for data leakage of numerical val-

ues (for instance for being able to leak credit card num-
bers or similar information), the attack font can be even
smaller in size and still easily discover and represent the
single blocks a credit card number consists of. The tools
necessary to create attack fonts are freely available for le-
gitimate use; for creating SVG fonts containing dictionaries
a simple text editor suffices. Compressing the font to the
SVGZ (compressed SVG) format to be optimized in size re-
quires a simple gzip implementation. For editing and abus-
ing WOFF fonts, the free and open textttFontForge tool
available at http://fontforge.sourceforge.net/ can be
easily well-used.

The results of our research signify that font-injections
might actively contribute to the future attack landscape.
While CSP and NoScript protect against cross-domain font
injections by default, we need to monitor public font APIs
use. That is because they can be abused and deliver attack
fonts, bypass white-list-based filters and protection tools.
By doing so, they will be breaking the trust users put into
providers such as Google Web Fonts and TypeKit, both of
which are free web-font deployment services.

4. MITIGATION TECHNIQUES

In this section, we analyze existing attack mitigation tech-
niques to determine to what extent website owners and de-
velopers can protect against scriptless attacks. Acknowledg-
ing the wide range of possibilities for scriptless attacks (this
publication only discusses two of potentially many more at-
tacks’ variations), we conclude that several layers of pro-
tection are necessary to effectively and holistically defend
against CSS-, SVG- and HTML-based data leakage.

4.1 Content Security Policy (CSP)

CSP was originally developed by Mozilla and it is now
specified as a draft by the W3C Web Application Security
working group. The primary goal of CSP is to mitigate
content injection vulnerabilities like cross-site scripting by
determining at least one domain as a valid source for script-
ing code. To achieve this goal, one can use a directive like
frame-src or sandbox. To provide an example, in the case of
frame-src it is possible to let a supporting user agent check
which frames can be embedded in a website. It is therefore
possible to gain a fine granularity about the allowed content
on a controllable website. Thus, CSP is capable of reduc-
ing the potential harmful effects of malicious code injection
attacks. Note that CSP considers both arbitrary styles, in-
line CSS, and web fonts as possibly harmful and therefore
provides matching rules.

In the context of our scriptless attacks, it would be desir-
able to restrict fundamental prerequisites to prevent a Web
page (or rather the user) from being attacked. Therefore,
we analyzed the given CSP directives with respect to the at-
tacks we introduced in this paper. First, we have found that
nearly all directives of the W3C draft, except for the direc-
tive report-uri for reporting policy violations, are helpful in
preventing a website and its users from being affected by ad-
versaries. The directive default-src enforces the user agent
to execute — with one exception — the remaining directives
of the draft with the given default source of the directive
value. Before going into detail regarding the default-src
influenced directives, it is important to know that pure in-
jections with script or style sheet code into a vulnerable Web
page cannot be detected by CSP. Thus, it is only possible

to block the content of a file that is loaded from an external
resource.

This leads to the ability of blocking malicious content that
is included within an external file. A look at our attacks
shows that it makes sense to use at least style-src and
img-src of CSP to further reduce the attack surface. By
specifying the style of the protected Web page with style-
src, it is possible to restrict the access to undesirable CSS
files. Therefore, CSS-based animations for reading DOM
nodes or a usage of the CSS content property will no longer
work in this case as an attacking tool. The same applies to
img-src; as mentioned before, SVG files can be used to carry
out scriptless attacks and intercept events, keystrokes and
similar user interaction without using scripting technologies.
In consequence, blocking SVG files from another site and
especially another domain is recommended for achieving a
better level of security. Based on our example attacks, we
also propose to use frame-src to restrict the resources of
embedded frames as well as font-src for limiting external
font sources.

Once the possibility of increasing the security by restrict-
ing external file resources has been made clear, we are left
with a following consideration: can one restrict possible at-
tack vectors inside the protected site? This is exactly the
case when we use sandbox as a directive which is not con-
trolled or set by default-src. It restricts the available con-
tent based on the HTML5 sandbox attribute values. This
directive can therefore be used to for example deactivate the
execution of scripts; hence, JavaScript-based attacks will not
function. What was not considered to be dangerous is script-
less code. In our case, sandbox is just helpful if one is facing
a typical scripting attack.

In summary, we conclude that CSP is a small and helpful
step in the right direction. It specifically assists elimina-
tion of the available side channels along with some of the
attack vectors. In our attack model described in Section 1,
CSP therefore contributes to mitigating precondition 1 and
eliminating precondition 3. Nevertheless, it is insufficient
to fully cover a wide array of scriptless attacks. What we
recommend is to increase the range of CSP settings, so that
one at least has an option to forbid the execution of style
sheets or — even better — selected style sheet properties. One
thing will still remain out of CSP’s coverage: a behavior re-
lated to double-clickjacking [21]. The scrollbar detection we
have discussed in Section 3.3 relies on a pop-up window in
case the attacked website uses a frame-buster. Contrary to
available frame detection and busting features, no reliable
way to achieve the same security for pop-up windows and
detached views is present in modern browsers. In Section
4.2 we therefore propose additional protection mechanisms
against scriptless attacks and similar threats.

4.2 Detecting Detached Views

Several of the attacks we described in Section 3 can be
leveraged by using Iframes and similar content framing tech-
niques. Nevertheless, a website can easily deploy defen-
sive measurements by simply using proper X-Frame-Options
headers. Attackers, aware of that defense technique, have
since started utilizing a different way and leverage pop-up
windows and detached views to accomplish data leakage ex-
ploits and even clickjacking attacks without being affected
by frame-busting code [40] and X-Frame-Options headers.
Some of these attacks have been documented under the la-

bel double-clickjacking, while other techniques involve drag
& drop operations of active content such as applets, or copy
& paste operations into editable content areas across do-
mains. Due to the extended attack surface, we want to stress
that as far as modern browsers are concerned, there is no
feasible way for a website to determine if it is being loaded
in a detached view respective pop-up window or not.

In order to fix this problem, we created a patch for a recent
version of the Web browser Firefox (Nightly 14.0a1, available
as of April 2012), providing a possible solution to prevent the
described attacks. The patch extends the well-known DOM
window object by two additional properties: isPopup and
loadedCrossDomain. Both properties are represented by a
boolean value and can be accessed in a read-only manner by
any website at any time. As the naming already suggests,
window.isPopup is true only if the actual GUI window rep-
resented by the current DOM window object is a detached
view. Likewise, window.loadedCrossDomain is true only if
the current DOM window object was loaded cross-domain.
These features enable websites to check their own status
with the use of simple JavaScript code.

Subsequently, in case of unsafe circumstances, appropriate
countermeasures can be taken. For instance, a website could
protect itself against the attacks described in Section 3 by
restricting itself from being loaded inside a detached view
in a cross-domain manner or inside an Iframe. While the
latter can already be accomplished in modern browsers out
of the box (by setting the X-Frame-Options header to ei-
ther SAMEORIGIN or DENY), the former cannot. Luckily, it
becomes easily possible with our custom extension of the
Firefox browser, as we have demonstrated in Listing 3 be-
low.

if (window.isPopup &&
window.loadedCrossDomain) {
// stop loading
window.close () ;

// continue loading

Listing 3: JavaScript usage example for the two
additional properties exposed by the modified
Firefox version

The patch consists of changes in the C++ classes nsGlobal-
Window and nsWindowWatcher as well as in the interfaces
nsIDOM Window and nsI WebBrowserChrome of the Firefox
code base. While the isPopup property could directly be
implemented by examining a certain already existing inter-
nal window-flag, the introduction of the loadedCrossDomain
property required additional code. Whenever a website tries
to open a new window, this code compares the host name
of the URI of the invoking website to the host name of the
website-to-be-loaded (including ports). If the host-names
differ, a newly introduced internal flag is set to indicate this
condition, and vice versa, this flag is unset in the opposite
situation. Thus the loadedCrossDomain property is also up-
dated correctly in case that an already existing popup win-
dow is reused by the Firefox browser to display a new website
in a popup-mode.

Allowing a website to determine whether it is being loaded
in a detached view, one can mitigate several attack tech-
niques at once. This includes several of the aforementioned
scriptless attacks, double-clickjacking, drag & drop as well
as several copy & paste attacks. We plan to discuss this

patch with different browser development teams and evalu-
ate how this technique can be adopted by several browsers
to protect users against attacks.

4.3 Miscellanneous Defense Techniques

Scriptless attacks can occur in a plethora of variations and
are often based on a malicious concatenation of otherwise
benign features. We so far elaborated on ways to harden
the browser and provide new levers for website owners to
strengthen their applications with minimal effort. Further-
more, we shed light on how CSP helps preventing scriptless
attacks by defining strict origin policies for images, fonts,
CSS and other resources potentially causing information leak-
age by requesting data from across origins.

Zalewski et al. discussed yet another aspect of scriptless
attacks in 2011, pointing at dangling open tags and, more
specifically, elements such as button, textarea and half-open
image src attributes to be used for data leakage [52]. These
attacks are simple yet effective and require a web application
and eventual HTML filtering techniques to apply grammar
validation and enforce syntactical validity of user generated
(X)HTML content. An open textarea can easily turn the
rest of a website into its very own content and thereby leak
sensitive data and CSRF tokens. Note that even image maps
and similar deprecated technologies can be used for script-
less data leakage by sending click-coordinates to arbitrary
sinks across domains. Aside from the aforementioned pro-
tection techniques and mechanisms, classic HTML content
and grammar validation is of equal importance for, as Za-
lewski coined it, protection from attacks in the “post-XSS
world” [52]. Note that this is an attacker model similar to
the one we have examined in this paper. Eliminating the
side channel rather than the attack vector is again of greater
importance for solving this specific problem.

5. RELATED WORK

Members of the security community have granted a lot of
attention to the attacks against web applications. We will
now review related work in this area and discuss the novel
aspects and contributions of scriptless attacks.

History Sniffing.

From a conceptual point of view, CSS-based browser his-
tory sniffing is closely related to our work. This technique
enables an adversary to determine which websites have been
visited by the user in the past. History sniffing is docu-
mented in several browser bug reports for many years now [2,
9,39]. This method has been used in different attack sce-
narios [22,24,32,47,50]. In an empirical study, Jang et al.
found that several popular sites actually use this technique
to exfiltrate information about their visitors’ browsing be-
havior [25]. Given the prevalence of this attack vector, the
latest versions of common web browsers have implemented
certain defenses protecting users from CSS-based history
sniffing.

We also use CSS as part of our attacks, yet we refrain
from using the actual concept behind history sniffing. More
specifically, we demonstrate how CSS-based animations, the
CSS content property, and CSS Media Queries can be abused
by an adversary to access and gather specific information.
As a result, our attacks also work against the latest versions
of popular web browsers. One must be aware that while
many documented history sniffing attacks are significantly

faster when using JavaScript to exfiltrate data, these attacks
can also be implemented solely based on CSS and no active
scripting code, which in turn distinguishes them as scriptless
attacks according to our definition.

Timing Attacks.

A more general form of history sniffing attacks in the con-
text of web security was presented by Felten and Schneider
who analyzed timing difference related to whether or not
a resource is cached [15]. In a similar attack, Bortz and
Boneh [7] showed how timing attacks can be implemented
to recover private information from web applications. Re-
cently, Chen et al. demonstrated different side channel leaks
related to popular web sites and also based on timing infor-
mation [12]. In other domains, timing attacks are a well-
established technique and were used to exfiltrate information
from many different kinds of systems (e.g., OpenSSL [10],
SSH [42], or virtual machine environment [38]).

While timing measurements are used as part of the attacks
we covered in this paper, we take advantage of other kinds
of timing attacks and use this general concept to determine
specific information in the context of a web browser.

Client- and Server-Side XSS Detection or Prevention.

Due to their high practical prevalence, XSS attacks have
been covered by a dedicated large body of research. We
will now briefly discuss different client- and server-side ap-
proaches to discovering and preventing such attacks. Note
that their effectiveness is limited in the context of scriptless
attacks due to their differing ground principles.

Bates et al. [4] investigate client-side filtering approaches
capable of preventing XSS. They have found flaws in noXSS,
NoScript and the ITE8 XSS filter, and showed that some
attack vectors were only activated after XSS filtering. In
contrast to other approaches, they are inclined to put XS-
SAUDITOR between the HTML parser and the JavaScript
engine. This design will however not prevent scriptless at-
tacks as they do not target the JavaScript engine.

Curtsinger et al. [13] put forward a browser extension
called ZOZZLE to categorize malicious JavaScript code with
Bayesian classification. It remains an open question if such
learning-based defense mechanisms will work against script-
less attacks.

Pietraszek et al., introduced context-sensitive string eval-
uation (CSSE), a library to examine strings of incoming
user-generated data by relying on a set of meta-data [37].
Depending on the context derived from the attached meta-
data, different filtering and escaping methods were being
applied for the protection of the existing applications. This
low-level approach is described as operational for existing
applications, requiring few to no application developer im-
plementation effort.

Kirda et al. proposed a client-side XSS prevention tool
called Nozes [30]. By keeping the browser from contacting
URLs that do not belong to the domain of the web applica-
tion, this tool prevents an adversary from leaking sensitive
data to his server. From a conceptual point of view, such an
approach can also be used to limit what an adversary can
achieve with scriptless attacks, since it prevents side chan-
nels from exfiltrating stolen information. Furthermore, the
authors elaborate on the difficulties of server-side XSS de-
tection and prevention based on the manifold of encoding
and obfuscation techniques an attacker can choose from. In

a similar way, we argue that scriptless attacks cannot be
prevented at the server-side.

Jim et al. introduced Browser-Enforced Embedded Poli-
cies (BEEP) [26], a policy-driven browser extension capable
of controlling whether a certain script may execute or not.
More specifically, BEEP enables a user to whitelist legiti-
mate scripts and disable scripts for certain regions of the
web page. The whole concept represents another foundation
for CSP [43]. Nadji et al. proposed a similar approach: doc-
ument structure integrity (DSI) [35] ensures that dynamic
content is separated from static content on the server-side,
while both are combined at the client-side in an integrity-
preserving way. Blueprint by Louw and Venkatakrishnan
follows a similar approach [31]: a server-side application en-
codes the content into a model representation that can be
processed by the client-side part of the tool. Saxena et al.
presented ScriptGuard, a context-sensitive XSS sanitation
tool capable of automatic context detection and accordant
sanitation routine selection [41]. Note that all these ap-
proaches focus on preventing code scripting, which implies
that scriptless attacks can potentially bypass such protection
mechanisms, for we do not use dynamic content.

Heiderich et al. published on XSS vulnerabilities caused
by SVG graphics bypassing modern HTML sanitizers [20]
as well as DOM-based attacks detection in the context of
browser malware and complex cross-context scripting at-
tacks [19].

Martin and Lam [34] as well as Kieyzun et al. [29] intro-
duced tools capable of automatically generating XSS and
SQL injection attacks against web applications. XSSDS [28]
is a system that determines if an attack is actually success-
ful by comparing HTTP requests and responses. In recent
papers, different approaches to discovering parameter injec-
tion [1] and parameter tampering vulnerabilities [5] were
offered. These types of tools are not yet available for auto-
mated discovery and creation of scriptless attacks, although
we expect that similar notions can be identified and ap-
plied to appropriately consistent tools’ development in the
future.

6. CONCLUSION AND OUTLOOK

In this paper, we introduced a class of attacks against web
applications we call scriptless attacks. The key property of
these attacks is that they do not rely on the execution of
JavaScript (or any other language) code. Instead, they are
solely based on standard browser features available in mod-
ern user agents and defined in the current HTML and CSS3
specification drafts. In a way, this kind of attacks can be seen
as a generalization of CSS-based history stealing [22,32] and
similar attack vectors [52]. We discussed several browser fea-
tures useful for scriptless attacks, covering a variety of ways
in which an adversary can access information or establish a
side channel. Furthermore, we presented several scriptless
attacks against an exemplary web application and demon-
strated how an adversary can successfully obtain sensitive
information such as CSRF token or user-input by abusing
legitimate browser concepts. In addition, we showed that an
adversary can also exfiltrate specific information and estab-
lish side channels that make this attack feasible.

While the attacks discussed in this paper presumably do
not represent the entirety of ways to illegitimately retrieve
sensitive user-data, we believe that the attack components
discussed by us are of great importance to other attack vec-

tors. Therefore, a detailed analysis and further elaborated
investigation pertaining to possible defense mechanisms will
likely yield more attack vectors. We hope that this paper
spurs research on attacks against web applications that are
not based on the execution of JavaScript code.

As another contribution, we introduced a browser patch
that enables a website to determine if it is being loaded in
a detached view or pop-up window, showcasing mitigation
technique for several kinds of attacks. Within our future
work, we will examine more ways for dealing with and pre-
venting scriptless attacks.

Acknowledgments

This work has been supported by the German Federal Min-
istry of Education and Research (BMBF grant 01BY1205A
JSAgents).

7. REFERENCES
[1] M. Balduzzi, C. Gimenez, D. Balzarotti, and E. Kirda.

Automated Discovery of Parameter Pollution
Vulnerabilities in Web Applications. In Network and
Distributed System Security Symposium (NDSS), 2011.

[2] D. Baron. :visited support allows queries into global
history. https://bugzilla.mozilla.org/147777,
2002.

[3] A. Barth, C. Jackson, and J. C. Mitchell. Robust
Defenses for Cross-Site Request Forgery. In ACM
Conference on Computer and Communications
Security (CCS), 2008.

[4] D. Bates, A. Barth, and C. Jackson. Regular
expressions considered harmful in client-side xss filters.
In Proceedings of the 19th international conference on
World wide web, pages 91-100. ACM, 2010.

[5] P. Bisht, T. Hinrichs, N. Skrupsky, R. Bobrowicz, and
V. Venkatakrishnan. NoTamper: Automatic Blackbox
De- tection of Parameter Tampering Opportunities in
Web Applications. In ACM Conference on Computer
and Communications Security (CCS), 2010.

[6] P. Bisht and V. Venkatakrishnan. XSS-GUARD:
Precise Dynamic Prevention of Cross-Site Scripting
Attacks. In Detection of Intrusions and Malware, and
Vulnerability Assessment (DIMVA). Springer, 2008.

[7] A. Bortz and D. Boneh. Exposing Private Information
by Timing Web Applications. In 16th International
Conference on World Wide Web (WWW), 2007.

[8] B. Bos, T. Celik, I. Hickson, and H. Wium Lie.
Generated content, automatic numbering, and lists.
http://www.w3.org/TR/CSS21/generate.html, June
2011.

[9] Z. Braniecki. CSS allows to check history via :visited.
https://bugzilla.mozilla.org/224954, 2003.

[10] D. Brumley and D. Boneh. Remote Timing Attacks
are Practical. In USENIX Security Symposium, 2003.

[11] CERT Coordination Center. Advisory CA-2000-02
Malicious HTML Tags Embedded in Client Web
Requests.
http://www.cert.org/advisories/CA-2000-02.html,
2000.

[12] S. Chen, R. Wang, X. Wang, and K. Zhang.
Side-Channel Leaks in Web Applications: A Reality
Today, a Challenge Tomorrow. In IEEE Symposium
on Security and Privacy, 2010.

[13] C. Curtsinger, B. Livshits, B. Zorn, and C. Seifert.
Zozzle: Fast and precise in-browser javascript malware
detection. In USENIX Security Symposium, 2011.

[14] J. Daggett. CSS fonts module level 3.
http://www.w3.org/TR/css3-fonts/, Oct. 2011.

[15] E. W. Felten and M. A. Schneider. Timing Attacks on
Web Privacy. In ACM Conference on Computer and
Communications Security (CCS), 2000.

[16] M. Heiderich. Content exfiltration using scrollbar
detection and media queries.
http://htmlbsec.org/scrollbar/test, June 2012.

[17] M. Heiderich. Measurement-based content exfiltration
using smart scrollbars.
http://htmlbsec.org/webkit/test, June 2012.

[18] M. Heiderich. Scriptless SVG Keylogger.
http://htmlbsec.org/keylogger, June 2012.

[19] M. Heiderich, T. Frosch, and T. Holz. IceShield:
Detection and Mitigation of Malicious Websites with a
Frozen DOM. In Recent Advances in Intrusion
Detection (RAID), 2011.

[20] M. Heiderich, T. Frosch, M. Jensen, and T. Holz.
Crouching Tiger — Hidden Payload: Security Risks of
Scalable Vectors Graphics. In ACM Conference on
Computer and Communications Security (CCS), 2011.

[21] D. Huang and C. Jackson. Clickjacking Attacks
Unresolved.
https://docs.google.com/document/\\pub?id=
1hVcxPeCidZrM5acFH9ZoTYzg1DOVjkG3BDW_oUdnbqc,
June 2011.

[22] C. Jackson, A. Bortz, D. Boneh, and J. C. Mitchell.
Protecting Browser State From Web Privacy Attacks.
In 15th International Conference on World Wide Web
(WWW), 2006.

[23] D. Jackson, D. Hyatt, C. Marrin, S. Galineau, and
L. D. Baron. CSS animations.
http://dev.w3.org/csswg/css3-animations/, Mar.
2012.

[24] A. Janc and L. Olejnik. Web Browser History
Detection as a Real-World Privacy Threat. In
FEuropean Symposium on Research in Computer
Security (ESORICS), 2010.

[25] D. Jang, R. Jhala, S. Lerner, and H. Shacham. An
Empirical Study of Privacy-violating Information
Flows in JavaScript Web Applications. In ACM
Conference on Computer and Communications
Security (CCS), 2010.

[26] T. Jim, N. Swamy, and M. Hicks. Defeating Script
Injection Attacks with Browser-enforced Embedded
Policies. In 16th International Conference on World
Wide Web (WWW). ACM, 2007.

[27] M. Johns. Code Injection Vulnerabilities in Web
Applications — Exemplified at Cross-Site Scripting.
PhD thesis, University of Passau, Passau, July 2009.

[28] M. Johns, B. Engelmann, and J. Posegga. XSSDS:
Server-side Detection of Cross-site Scripting Attacks.
In Annual Computer Security Applications Conference
(ACSAC), 2008.

[29] A. Kieyzun, P. Guo, K. Jayaraman, and M. Ernst.
Automatic Creation of SQL Injection and Cross-site
Scripting Attacks. In 81st International Conference on
Software Engineering. IEEE Computer Society, 2009.

(30]

(31]

(32]

33]

34]

(35]

(39]

(40]

(45]

E. Kirda, C. Kruegel, G. Vigna, and N. Jovanovic.
Noxes: A Client-side Solution for Mitigating Cross-site
Scripting Attacks. In ACM Symposium on Applied
Computing (SAC), 2006.

M. Louw and V. Venkatakrishnan. Blueprint: Robust
prevention of cross-site scripting attacks for existing
browsers. In IEEE Symposium on Security and
Privacy, 2009.

M. Jakobsson and S. Stamm. Invasive Browser Sniffing
and Countermeasures. In 15th International
Conference on World Wide Web (WWW), 2006.

G. Maone. NoScript :: Firefox add-ons. https:
//addons.mozilla.org/de/firefox/addon/722/, July
2010.

M. Martin and M. Lam. Automatic Generation of XSS
and SQL Injection Attacks With Goal-directed Model
Checking. In USENIX Security Symposium, 2008.

Y. Nadji, P. Saxena, and D. Song. Document
Structure Integrity: A Robust Basis for Cross-site
Scripting Defense. In Network and Distributed System
Security Symposium (NDSS), 2009.

OWASP. Top Ten Project.
https://www.owasp.org/index.php/Category:
OWASP_Top_Ten_Project, Jan. 2012.

T. Pietraszek and C. Berghe. Defending Against
Injection Attacks Through Context-sensitive String
Evaluation. In Recent Advances in Intrusion Detection
(RAID), 2006.

T. Ristenpart, E. Tromer, H. Shacham, and S. Savage.
Hey, you, get off of my cloud: exploring information
leakage in third-party compute clouds. In ACM
Conference on Computer and Communications
Security (CCS), 2009.

J. Ruderman. CSS on a:visited can load an image
and/or reveal if visitor been to a site.
https://bugzilla.mozilla.org/57351, 2000.

G. Rydstedt, E. Bursztein, D. Boneh, and C. Jackson.
Busting Frame Busting: a Study of Clickjacking
Vulnerabilities on Popular Sites. In Web 2.0 Security
and Privacy (W2SP) Workshop, July 2010.

P. Saxena, D. Molnar, and B. Livshits. Scriptgard:
Preventing script injection attacks in legacy web
applications with automatic sanitization. Technical
report, Technical Report MSR-TR-2010-128,
Microsoft Research, 2010.

D. X. Song, D. Wagner, and X. Tian. Timing Analysis
of Keystrokes and Timing Attacks on SSH. In
USENIX Security Symposium, 2001.

S. Stamm, B. Sterne, and G. Markham. Reining in the
Web with Content Security Policy. In 19th
International Conference on World Wide Web
(WWW), 2010.

M. Van Gundy and H. Chen. Noncespaces: Using
Randomization to Enforce Information Flow Tracking
and Thwart Cross-site Scripting Attacks. In Network
and Distributed System Security Symposium (NDSS),
2009.

E. Vela. CSS Attribute Reader Proof Of Concept.
http://eaea.sirdarckcat.net/cssar/v2/, Nov.

2009.

(46]

P. Vogt, F. Nentwich, N. Jovanovic, E. Kirda,

C. Kruegel, and G. Vigna. Cross site scripting
prevention with dynamic data tainting and static
analysis. In Network and Distributed System Security
Symposium (NDSS), 2007.

Z. Weinberg, E. Y. Chen, P. R. Jayaraman, and

C. Jackson. I Still Know What You Visited Last
Summer: Leaking Browsing History via User
Interaction and Side Channel Attacks. In IEEE
Symposium on Security and Privacy, 2011.

J. Weinberger, P. Saxena, D. Akhawe, M. Finifter,
R. Shin, and D. Song. A Systematic Analysis of XSS
Sanitization in Web Application Frameworks. In
European Symposium on Research in Computer
Security (ESORICS), 2011.

H. Wium Lie, T. Celik, D. Glazman, and A. van
Kesteren. Media queries.
http://wuw.w3.org/TR/css3-mediaqueries/, July
2010.

G. Wondracek, T. Holz, E. Kirda, and C. Kruegel. A
Practical Attack to De-anonymize Social Network
Users. In IEEE Symposium on Security and Privacy,
2010.

P. Wurzinger, C. Platzer, C. Ludl, E. Kirda, and

C. Kruegel. SWAP: Mitigating XSS Attacks Using a
Reverse Proxy. In ICSE Workshop on Software
Engineering for Secure Systems. IEEE Computer
Society, 2009.

M. Zalewski. Postcards from the post-XSS world.
http://lcamtuf.coredump.cx/postxss/, 2011.

