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ABSTRACT
A detailed understanding of the behavior of exploits and
malicious software is necessary to obtain a comprehensive
overview of vulnerabilities in operating systems or client ap-
plications, and to develop protection techniques and tools.
To this end, a lot of research has been done in the last few
years on binary analysis techniques to efficiently and pre-
cisely analyze code. Most of the common analysis frame-
works are based on software emulators since such tools offer
a fine-grained control over the execution of a given program.
Naturally, this leads to an arms race where the attackers are
constantly searching for new methods to detect such analysis
frameworks in order to successfully evade analysis.

In this paper, we focus on two aspects. As a first con-
tribution, we introduce several novel mechanisms by which
an attacker can delude an emulator. In contrast to exist-
ing detection approaches that perform a dedicated test on
the environment and combine the test with an explicit con-
ditional branch, our detection mechanisms introduce code
sequences that have an implicitly different behavior on a
native machine when compared to an emulator. Such differ-
ences in behavior are caused by the side-effects of the partic-
ular operations and imperfections in the emulation process
that cannot be mitigated easily. Motivated by these find-
ings, we introduce a novel approach to generate execution
traces. We propose to utilize the processor itself to generate
such traces. Mores precisely, we propose to use a hardware
feature called branch tracing available on commodity x86
processors in which the log of all branches taken during code
execution is generated directly by the processor. Effectively,
the logging is thus performed at the lowest level possible.
We evaluate the practical viability of this approach.

1. INTRODUCTION
During a typical attack against a computer system, an

attacker first exploits some kind of (software) vulnerability
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to gain access to the system. Once she has control over
the compromised machine, the next step is to install some
kind of malicious software (abbr. malware) that, for exam-
ple, steals sensitive information or hides the presence of the
attacker on the system. Both software vulnerabilities and
malware are thus closely linked and we need to have a pre-
cise understanding of their semantics to combat this threat.
Most importantly, detailed analysis reports about the tools
used by an attacker are required to fix vulnerabilities in oper-
ating systems or applications, and to develop new protection
techniques and tools.

Nowadays, antivirus companies analyze tens of thousands
of malware samples on a daily basis [41] with new exploits
being released frequently. Thus, there is a clear need for
automated approaches to analyze these threats. As a re-
sult, a lot of research has been done on efficiently and pre-
cisely analyzing malicious code both in academia and in-
dustry (e.g., [2, 3, 6, 7, 10, 11, 22, 27, 40, 44]) and many tools
and techniques for automated analysis are currently avail-
able. The analysis of malicious and vulnerable code can be
implemented in several ways and on several semantic levels.
Broadly speaking, the methods can be divided into static
and dynamic approaches, each having their own (dis-) ad-
vantages. For example, static analysis is often complicated
with code obfuscation and encryption [24, 31, 39], whereas
dynamic analysis is typically only capable of efficiently ex-
amining a limited number of execution paths [27].

A very detailed behavioral view of code can be obtained by
examining every single instruction, but this approach pro-
duces a huge amount of data, which has to be mined for
valuable information. On the contrary, monitoring only the
system calls performed by the program achieves a smaller
analysis data set, but results in a high abstraction level and
can be evaded in many different ways [13], leading to in-
complete analysis results. From a performance perspective,
single stepping a program to perform an instruction-level
analysis is much slower than intercepting only system calls.

Furthermore, malware analysis can be implemented on
a native machine (also called bare metal approach) or in
an emulated/virtualized one. When using a native ma-
chine, we are faced with several problems. Most impor-
tantly, the analysis system may get infected by malicious
code and it has to be reverted back to a clean state after
the analysis process has finished. Furthermore, most ma-
chines only offer rudimentary monitoring facilities and ad-
ditional mechanisms have to be implemented first. Sophis-
ticated approaches use techniques like dynamic translation



(e.g., Cobra [44]) or hardware virtualization extensions (e.g.,
Ether [10]) to achieve such monitoring.

In contrast, emulators pose a powerful trade-off between
performance and convenience with respect to native ma-
chines, but they lack transparency and correctness. Many
malware authors have come up with a variety of detection
mechanisms that uncover the presence of such artificial envi-
ronments [13,14,30,32,35] and several systematic studies on
detecting virtual machines or CPU/system emulators have
been performed [25,26, 32]. Once the malware has detected
the presence of the analysis environment, it can behave dif-
ferently leading to incorrect analysis reports. Apart from
these explicit detection techniques employed by malware,
there are also different CPU instructions [35] and real-life
conditions (e.g., timing aspects or specific artifacts like the
username of the analysis machine) under which a binary
might behave differently when executed inside an emulated
environment as opposed to a native system.

In this paper, we continue this line of work and present
mechanisms an attacker can use to implement code that
behaves differently in the presence of an analysis environ-
ment. Our mechanisms are novel as they do not perform
any explicit test on the analysis environment. Instead, we
use instruction sequences that have different semantics on a
real machine when compared to an emulated one. More pre-
cisely, such instruction sequences have an implicitly different
behavior on a native machine with respect to an emulator
due to the side-effects of particular operations and imper-
fections in the emulation process that cannot be mitigated
easily (e.g., self-modifying code or caching effects). Effec-
tively, our techniques delude the emulator and thus we call
this approach a delusion attack.

We use delusion attacks as our motivation and propose
to utilize hardware features of commodity x86 processors to
overcome the (accidental or intended) incorrectness of dy-
namic analysis in an emulated environment. More precisely,
we introduce a promising approach to analyze the behav-
ior of binary programs by using a processor feature called
Branch Tracing (BT). With this hardware primitive (avail-
able on both Intel and AMD CPUs [17]), the processor itself
keeps track of all branches taken during code execution. The
logging is thus performed at the lowest level possible, making
our approach robust to attacks. Our performance overhead
is also significantly lower in contrast to other approaches
that use hardware features such as single stepping [10].

To demonstrate the effectiveness and applicability of our
approach, we show how our method is sufficient to analyze
malicious PDF documents. In an empirical evaluation, we
demonstrate that the branch tracing results can be used to
automatically cluster similar vulnerabilities which are ex-
ploited within the analyzed documents: a set of 4,869 PDF
documents can be clustered into eight different root causes
based on the analysis results of our tool. Most notably, our
framework can also deal with advanced exploits that use
concepts like structured exception handler (SEH) for control
flow diversion and even return-oriented programming [37].

Related Work.
As discussed previously, there is a large body of published

work on malware analysis and detection of different execu-
tion environments. Complementary to our work are recent
approaches that compare the behavior of a sample in dif-
ferent (analysis) environments [2, 20, 21]. Such techniques

could also be used to detect our delusion attacks, but they
incur huge runtime overheads as a single sample has to be
executed in at least two analysis environments. Vasudevan
et al. introduce a way to use branch tracing on AMD CPUs
to record host execution trace to an external, trusted sys-
tem [43]. In contrast, we also show how BT can be used
on Intel CPUs and perform several empirical experiments
to demonstrate the practical usefulness of this approach.

Contributions.
The main contributions of this paper are as follows:

• We introduce several delusion attacks for software em-
ulators. These instruction sequences behave differently
when executed on a native machine as opposed to an
emulator. Delusion attacks work by exploiting some
implicit imperfections in the emulation process.

• Motivated by delusion attacks, we introduce an ap-
proach to perform behavior analysis that takes advan-
tage of the branch tracing feature of commodity x86
CPUs. Our approach performs the logging of the ac-
tual behavior on the lowest level possible since we di-
rectly instrument the CPU to generate traces.

• We have implemented a fully-working prototype of our
approach and show in an empirical evaluation the use-
fulness of our approach by performing a crash analysis
of malicious PDF documents.

Technical Report.
Due to space limitations, we have published an extended

version of this paper as an accompanying technical report [47].
In that paper, we introduce more delusion attacks, describe
the processor BT facilities in detail, and explain the payload
of a practical delusion attack.

2. SOFTWARE EMULATORS
A lot of research has been focused on malware analysis

in the past. Accordingly, many different techniques have
evolved in this field, e.g., the application of debuggers and
recently also hypervisors or binary instrumentation. Nev-
ertheless, software emulation-based solutions are oftentimes
more appealing for malware analysis since they provide full
control over the emulated system: the analyzer can inter-
vene at any point in the execution of the analyzed code.
There are also no restrictions on analyzing privileged code
within the guest. Furthermore, emulators provide isolation
between the analyzer and the malware.

In this section we thus will review existing emulation tech-
niques that are used by malware analysis frameworks. This
serves as a discussion of related work and motivates our delu-
sion attacks that we introduce in Section 3. A more detailed
description of other analysis techniques can be found in the
extended version of this paper [47]. There, we shed light
on the advantages and disadvantages of each approach and
provide some examples of tools and methods that have been
proposed in the literature.

BOCHS [23] is a PC emulator that emulates an x86/x64
processor with a set of common attached devices (graphics
card, network card, etc.). It is an emulator in the classical
sense in that the emulated code is fetched, decoded, and
emulated instruction-wise — implemented in one large loop
in the BOCHS code. This enables a precise emulation of
the guest system, but has the drawback that execution is



typically slow in comparison to a real system. BOCHS is
often used for malware analysis together with the disassem-
bler IDA Pro [36], which ships with built-in support for that
purpose. This combination can efficiently be used to (par-
tially) execute malware within the emulator to analyze it.

Similar to Bochs, QEMU [4] is a generic full system em-
ulator. However, by using an intermediate language and
a technique called dynamic translation, it achieves support
for a variety of host and target platforms along with good
performance. QEMU is thus considerably faster than other
emulators. The dynamic translation engine works as follows:
whenever new code is executed in the emulator, QEMU
translates the corresponding block of instructions (i.e., the
instructions until the next branch) into an internal interme-
diate language. From this representation, the code is opti-
mized to reduce unnecessary overhead (e.g., setting certain
flags that are not further evaluated anyway) and then trans-
lated into the final, architecture dependent target code. The
resulting block of code is called translation block (TB). TBs
are cached so that the translation process is ideally only ex-
ecuted once. Guest code memory accesses are translated
into safe memory accesses in the target code such that they
cannot escape from the isolated, emulated memory space.
Self-modifying code is detected with the help of a page fault
exception handler. To this end, executable pages of the em-
ulated guest are marked as non-writable. Whenever trans-
lated code attempts to overwrite code that corresponds to a
TB, an exception within QEMU happens and the emulator
invalidates all affected TBs.

QEMU forms the basis of several malware analysis plat-
forms, such as the dynamic analyzer of BitBlaze [40] (called
TEMU ) and Anubis [3]. Amongst other things, TEMU
and Anubis extend QEMU by providing taint propagation
tracking [28], a technique that allows to backtrack which
input values influenced the value of a certain register, mem-
ory location, or similar storage units. In order to do so,
every translated write operation has to be instrumented
and dependencies between memory values have to be saved
in a dedicated internal memory region. Taint propagation
tracking thus comes with a significant performance penalty.
These frameworks also introduce OS awareness through vir-
tual machine introspection [15]. This provides access to run-
time information such as running processes or loaded drivers,
and also allows to hook specific events in the emulated sys-
tem such as certain API calls. Since both systems rely on the
emulation code of QEMU , they are both prone to design- or
implementation-related flaws of QEMU .

3. IMPLICIT METHODS TO DELUDE
SOFTWARE EMULATORS

Obviously, attackers have an incentive to evade automated
malware analysis frameworks. Thus, there is an arms race
in this area where the attackers are constantly searching for
new methods and techniques to detect such analysis frame-
works. To this end, different techniques to detect emula-
tors were introduced in the last few years [13, 14, 30, 32, 35]
and several systematic studies on detection approaches were
performed [25, 26, 32]. As a result, there is a large body of
work on detection approaches and attackers have plenty of
ways to detect the presence of a virtual environment. In
the following, we introduce another approach in which code

implicitly behaves differently on a native machine compared
to an emulated one, a technique we call delusion attack.

3.1 Motivation
To motivate the benefit of utilizing hardware features for

dynamic program analysis, we propose a new class of emu-
lator detection techniques. Current methods consist of two
different steps: first, the existence of a non-native system
environment is probed and then, depending on the outcome
of the test, different actions are performed. These detection
attempts are easy to spot and mitigate during (manual or
automated) examination of the performed operations [44].
In contrast, our methods have no explicit check and do not
contain a conditional branch that takes one control path on
a native machine and another on an emulated one. Even
powerful analysis techniques like multi-path execution [27]
cannot analyze this kind of code sequences since the em-
ulator itself does not execute the correct code. We call
this delusion attacks to emphasize the fact that such code
sequences effectively delude emulators in the way code is
interpreted.

All our examples that we present follow the same method-
ology: a sequence of instructions is executed and as an im-
plicit effect, either a malicious or a benign function is called.
In a real attack, the malicious instructions are executed di-
rectly inline instead of calling a separate function. For the
sake of simplicity we use two dedicated subfunctions in our
examples: MALICIOUSCODE (that should executed on a
native system) and BENIGNCODE (to be executed in an
emulator). The examples were implemented and validated
against real hardware as well as the targeted emulators.

There are hundreds of different processor types (including
the different steppings of CPUs) available that vary in small
implementation details. Due to this fact, we were not able to
test all of them in an empirical evaluation. Hence, we focus
our analysis on common Intel and AMD CPUs and, as a
result, we cannot claim that these techniques are universally
usable and provide a way for a guaranteed emulator delusion.
The goal of this work is to show that there are still and –
most probably – will always be methods to exploit behavior
differences of emulators in order to force different execution
for the same piece of code. As a result, we argue that it is
not safe to trust analysis results that are gathered with the
help of emulators since a program might behave differently
on a native machine.

Note that traditional detection techniques could be modi-
fied in such a way that conditional code branches are trans-
formed into branchless code as well. Therefore, the boundary
between those and our new delusion methods is blurred to
a certain extend. Nevertheless, we are confident that our
techniques are significantly harder to detect and mitigate
compared to previous approaches.

3.2 Basic Principle: Self-Modifying Code and
Atomicity

Several of our attacks are based on self-modifying code
(SMC). Correct handling of SMC is a non-trivial and com-
plicated task when not done by the CPU itself, but by an
emulator. Thus we expect that an attacker can use SMC to
detect the presence of an emulator.

On a native system, the modification of data within a
code segment has to trigger different actions. Most impor-
tantly, the old version of the modified code has to be flushed



from the instruction prefetch queue and from the instruction
caches. Depending on the underlying cache organization and
the number of processors available within the system, also
the other CPUs have to be informed and take care of this
problem accordingly.

Contemporary systems contain sophisticated measures to
detect SMC correctly and there have been many flaws in
the past that required the developer to perform specific ac-
tions in order to realize properly working code. For example
SMC typically only operated correctly if (after modifying
the memory) either a jump operation to that modified code
or a memory-serializing operation (e.g., cpuid instruction)
had been performed. Additional problems occurred with in-
structions that had already been loaded into the instruction
prefetch queue: since only the linear address of a modified
memory location was checked, it was possible to use two dif-
ferent linear addresses for code and data access, which both
are associated with the same physical memory.

Modern CPUs can handle these older problems with SMC
correctly. In an emulator, however, the CPU facilities for
SMC detection obviously cannot be utilized. Hence, they
have to be emulated and implemented in software as well.
One way is to check every memory write operation against
a list of addresses that possibly contain instructions or vice
versa when an instruction is about to be executed. Appar-
ently, this implies a huge overhead of execution performance
and space required for managing the related data struc-
tures. Thus, most emulators use page fault handling for
SMC detection. To this end, all executable memory pages
are marked as read-only. If the emulated code performs a
write attempt to such a memory area, the page fault handler
is triggered. It performs the following actions if the target
memory should be writable, i.e., if it was marked read-only
by the emulator and not by the application itself:

1. all other threads are suspended,
2. the memory protection is modified to writable,
3. the faulting write instruction is executed again,
4. the memory protection is changed to read-only, and
5. all other threads are resumed.
This approach is problematic due to the fact that emu-

lated instructions are normally not executed atomically, but
they are translated into several sub-instructions. Therefore,
the faulting write operations may already be partially exe-
cuted and then have to be re-executed after the memory is
made writable. This behavior can be exploited for delusion
purposes as shown in the following subsection.

3.3 REP MOVS Instruction
The first delusion method uses the rep movs instruction,

which copies a number of bytes, words, or double words
within an implicit loop. The source memory location is spec-
ified by the esi register, the destination location by edi, and
the amount of copy iterations by the value of ecx. This value
is decremented with each copy iteration and used as a stop
condition once it reaches zero. Accordingly, the value of ecx
equals to 0 when the complete loop is finished.

To delude an emulator, the copy destination can be set
to the memory address of the rep movs instruction itself.
As an effect, this instruction is overwritten by the first copy
iteration. On a real machine, the copy loop is performed
atomically, so this instruction overwriting has no actual ef-
fect on the loop execution. After the copy operation is com-
pleted, ecx is zero and the rep movs instruction, as well as

Figure 1: Delusion attack with a rep movs instruction.

the consecutive ones, are overwritten. In an emulator, how-
ever, the situation is different: due to the detection mecha-
nism already the first loop iteration triggers the page fault
handler when trying to write to memory that contains code.
The emulator makes the destination memory writable and
re-executes the memory write operation. Afterwards, the
instruction is re-read from memory, in order to not miss any
SMC. Since now the re-fetched instruction is no longer rep

movs, a different behavior arises when compared to a real
machine. For example, if the instruction is overwritten with
nop operations, only one single copy loop iteration is per-
formed: only the rep movs instruction is overwritten and
the following instructions remain untouched. Furthermore,
the ecx register is only decremented by one.

This different behavior can be exploited by the delusion
code shown in Figure 1. Note that the movsd instruction
copies one double word per iteration. On a real machine,
two copy iterations are performed and, therefore, two dou-
ble words are copied from NEW to OLD. After finishing,
the memory at OLD +0x4 contains the call to the MALI-
CIOUSCODE. Accordingly, the malicious code is executed.
Hence, on an emulated machine, the copy operation stops af-
ter overwriting the rep movs and the call to BENIGNCODE
is not modified and, therefore, the benign code will be ex-
ecuted. QEMU and BOCHS can be successfully deluded
with this technique.

We would like to stress that the deviating behavior can be
fixed in the emulators. However, this would require special
handling for a variety of instructions that can be used in
conjunction with rep. This not only takes considerable effort
to implement, but would reduce the performance of string
copy operations in general. As an implementation detail
note that not all CPU types behave similar when executing
the code shown above. We found that some versions of the
latest Intel i7 CPUs react on the modification of the rep

movs instruction and terminate the loop prematurely. In
contrast, most other CPUs interpreted this code sequence
in the way discussed above.

3.4 INVD Instruction
Besides SMC, there are other aspects of a system that

are hard (if not impossible) to deal with when building an



Figure 2: Delusion with the help of the invd instruction.

emulator. One example are the many different kinds of
caches available on a contemporary computer system. Some
of these caches only contain data, others only instructions,
and there are also combined caches that store both data and
instructions. Furthermore, some caches are integrated into
the CPU itself and others are placed outside (i.e., somewhere
between the processor and the main memory).

Emulators cannot use these hardware facilities explicitly,
since they need total control over the accessed data and
the executed instructions. More precisely, emulators implic-
itly share the cache with the host operating system, since
they also use the RAM for storing data and instructions.
Nevertheless, inside the emulated system there is no ex-
plicit cache support and all cache-related instructions have
no effect when being executed. Disabling all cache-related
functionalities inside the emulated machine is the only rea-
sonable way, since the simulation of caching facilities would
degrade the performance of memory accesses even more and
that would be counterproductive to the reason for using
caches at all.

This missing ability to emulate cache is exploited by our
third delusion technique. It works by utilizing write-back
cache, which has no effect on an emulated machine. First
of all, the instructions residing in a cached memory loca-
tion are modified. On a real machine, the modification only
affects the cache and the propagation to RAM is delayed
for a while. On an emulated machine – and on each ma-
chine without caching – the modification is written directly
to RAM. Now, immediately after modifying the memory,
the cache is invalidated. On a real machine, this undoes the
previous modification, while on an emulated one it (again)
has no effect. Finally, the instructions within that memory
buffer are executed and a different behavior between native
and emulated machines is achieved. The actual code for this
method is shown in Figure 2. For sake of simplicity, the in-
structions for enabling the caching for memory region A are
left out. The code starts with writing back all potentially
pending cache modifications to the RAM via the wbinvd

instruction. Then the call ebx instruction is modified to
call eax, which changes the call target from MALICIOUS-
CODE to BENIGNCODE. Afterwards, the instruction invd

undoes this modification on a real machine, but not within
an emulator. Finally, the call is executed to the resulting
call target.

Although it is easy to detect such a scenario since wbinvd

is an uncommon instruction, it takes vast effort to perfectly
emulate the effects of wbinvd. This would require to pro-
vide a write history buffer that holds the recently written
values to roll back the invalidation, which results in a signif-
icant performance degradation of the entire emulator. The
instruction also needs elevated privileges (ring-0). However,

this poses no problem since a full-system emulator can also
be used to analyze privileged code. We verified that this kind
of delusion attack works against both BOCHS and QEMU .

3.5 LEAVE Instruction
Our third method requires virtual memory and utilizes

the x86/64 machine instruction leave, which behaves like
the two instructions mov esp, ebp and pop ebp combined
into a single operation. On a real machine, the leave in-
struction is always executed atomically. However, within an
emulator it is possible to force a partial execution only. If
for instance the ebp register initially is set to an inaccessi-
ble virtual memory address, this address will be correctly
copied into esp, but the pop operation will trigger a page
fault. If the emulator does not take special care of this sit-
uation, the esp value contains the overwritten value from
ebp when entering the invoked exception handler. Obvi-
ously, on a real machine esp has not changed at all, since
the leave operation could not be executed completely. A
detailed description of this attack and appropriate example
code to apply it can be found the technical report [47].

4. BINARY ANALYSIS WITH BRANCH
TRACING

Motivated by the examples of detecting emulated envi-
ronments, we now introduce an approach to observe the ac-
tual operations performed by a CPU. We then do not need
to take into account the effects of SMC, caching effects, or
other kinds of delusion and/or detection attacks. Effectively,
this is the lowest level an analysis framework can be based
on since we directly observe the behavior of the code when
running on a CPU, i.e., we obtain a precise trace of the
runtime behavior of the code.

As discussed before, the traditional way to trace a bi-
nary program operates on the instruction level. This can be
achieved by either utilizing specific hardware features (e.g.,
single-stepping the CPU or virtualization features [10,34]) or
by emulation [3,40]. For the single-stepping case, some spe-
cific debug control registers are set such that the CPU stops
execution after each performed instruction and invokes an
exception handler. This handler then can be used to exam-
ine or modify the processor registers or the memory, e.g., the
heap or stack memory. Before returning control to the inter-
rupted piece of code, the tracing can be re-enabled, since it is
normally deactivated automatically after each handler invo-
cation. Virtualization features of modern CPUs can be used
to also generate single stepping traces, but this approach
has a severe performance penalty in practice.

A more coarse-grained tracing granularity has been em-
ployed in the last years: when tracing on the function-/sys-
tem-call level, execution is not stopped after each single op-
eration, but only when specific functions are called. Often
the set of monitored function calls is restricted to a subset
of critical system calls. On interception, several actions can
be taken. Typically, the call parameters are first examined
and optionally modified. Then, the originally called function
is executed or simulated. Finally, the result values are ex-
amined and/or modified appropriately. There exist several
techniques for function level tracing. While native systems
mostly apply API hooking [3, 40, 46], the usage of virtual
machines empowers the analyst to perform virtual machine
introspection (VMI) [3, 10,15].



The granularity of tracing on the branch level is located
between those of instructions and function calls. The inter-
ception happens on each taken branch, i.e., on each condi-
tional and unconditional jump, call, interrupt, and excep-
tion. In the preceding the term tracing was used to de-
scribe a technique in which execution of a process is ac-
tually stopped after each instruction, branch, or, function
call. However, with BT logging the execution is actually
not interrupted, but only log information is stored at each
interception point which results in a significantly smaller
overhead. In practice, the performance overhead of BT log-
ging is smaller than interrupting the actual execution (ei-
ther via single-stepping the CPU or using virtualization fea-
tures). Branch tracing provides a rather coarse overview of
the behavior exposed by a given binary; the data which is
collectable by BT logging is less comprehensive: the trace
only contains the addresses of the source and target instruc-
tions of the branches. Nevertheless, even by viewing only
addresses, it is possible to completely reconstruct the exe-
cution/decision path that was taken during execution as we
will show in Section 5.

To implement a tracing framework, we take advantage of
the branch tracing (BT) facilities available on x86/64 archi-
tectures from Intel and AMD. Though the implementation
details for both platforms differ, the general approach is the
same. Since only the Intel specifications contains detailed
information on this topic [17], we mostly refer to the names
and mechanism descriptions in that specification. In addi-
tion, we also learned how to use BT on the AMD platform
through reverse engineering and empirical experiments.

We note that Intel and AMD both publish public docu-
mentation regarding light-weight processor performance mon-
itoring mechanisms [1, 18]. While these mechanisms allow
tracing of retired branch instructions, they are severely re-
stricted in the information that can be captured. For exam-
ple, Intel CPUs only log the last 4 to 16 branches. While
AMD CPUs do not place any restrictions in terms of the
number of branch instructions that can be profiled, they can
only capture branches in user-mode (ring-3) and cannot cap-
ture far jumps, returns, sysenter/sysexit, exceptions, SMM
mode etc [1].

A detailed description of the BT facilities of Intel and
AMD platforms is given in the extended version of this pa-
per [47]. There, we describe all the involved CPU registers
and data structures and modes of operation.

5. APPLICATION OF BRANCH TRACING
In this section we describe several experiments that demon-

strate the effectiveness of BT over traditional analysis ap-
proaches and show its wide applicability. We first show that
the addresses contained in the BTMs are sufficient to recon-
struct precise code paths taken during execution in the con-
text of a practical and challenging application called binning.
Here, we are interested in automatically grouping crash re-
ports resulting from malware exploiting a vulnerability into
different representative classes. After that we present how
BTs can be enriched with additional information to obtain
a deeper insight into executing code and demonstrate how
complex return-oriented programming attacks [37] can be
detected and analyzed with this approach. Finally, we de-
scribe a practical delusion attack that underlines the neces-
sity of a robust tracing facility such as BT since traditional
analysis approaches are unable to produce correct results.

5.1 Experiment 1: Binning of Malicious PDF
Documents

One powerful application of BT is the grouping of crash
reports gained by fuzzing [16, 29]. This kind of automated
vulnerability analysis very often produces a large number of
application crashes that are ultimately caused by the same
software vulnerability. Since the post-verification of each
single crash is very time consuming, an analyst wants to
reduce the amount of reports to be examined as good as
possible. For that purpose a technique called binning is
used, in which the crash reports are automatically grouped
into different classes, each one consisting of crashes that are
a result of the same root cause. This saves a lot of time,
since an analyst only has to manually analyze one instance
of each resulting bin. One efficient way to realize binning is
to compare the execution paths that have led to the crashes.
Obviously, the specific part of a BT log that was protocolled
just before an error has occurred contains all the necessary
information for reconstructing the control path leading to
the fault. The same technique can also be used to group a
set of (possibly unknown) exploits by the root cause vulner-
ability they exploit.

Trace Generation.
For evaluating this method, we have extended a tool called

CWXDetector [45] that is capable of detecting exploitation
attempts and extracting shellcode used during the exploit.
The tool uses a detection approach that is generic in the
sense that it captures the fact that unauthorized code is be-
ing executed and is thus capable of detecting shellcode that
is embedded and invoked from arbitrary types of data or pro-
grams. For example, the tool can be used to extract shell-
code from malicious Microsoft Office documents or shellcode
that is contained in network traffic. One of its limitations is
that it does not become active before the execution of the
first shellcode instruction. As an effect, no information can
be gained about the exploited vulnerability that led to the
execution of malicious code. One way to gain more insight
about the actual root cause of the exploitation is to utilize
BT in combination with this tool. This enables to virtually
“look into the past” once the shellcode execution is detected:
the concrete execution path that led to the malicious instruc-
tion can be reconstructed and examined in detail.

For the evaluation, we have added BT support to CWXDe-
tector and examined a set of 4,869 malicious PDF docu-
ments. This malware corpus was originally collected by a
well-known AV vendor in January 2011 from different sour-
ces [45] and it is known that each file in this corpus exploits
some kind of vulnerability in Acrobat Reader 9.00. Hence,
we could be sure that opening each file within that particular
Acrobat Reader version would lead to a successful exploit.
What we got as result of this experiment is a set of 4,869 dif-
ferent exploit reports with BT logs that cover the last 10,000
branches taken before the first shellcode instruction was exe-
cuted. Note that we could also generate similar reports with
other kinds of analysis tools (e.g., Ether or single stepping),
but the performance overhead of BT is significantly smaller.

Example.
An example of a BT log excerpt is shown in Listing 1. The

trace shows the behavior observed during the analysis phase
based on the recorded branches. As discussed in Section 4,



for each branch we obtain a log message that contains the
branch source code location and the branch target. In be-
tween these branches, we do not obtain any direct insights
into what code was executed within a basic block. Neverthe-
less, this coarse overview of the branches taken by a program
already contains enough information for our purposes as we
demonstrate in the following.

[ 1 7 04 ] from 0x781804d7 (MSVCR80. s t r c a t+0x87 )
[ 1 704 ] to 0x781804de (MSVCR80. s t r c a t+0x8e )
[ 1 703 ] from 0x781804f6 (MSVCR80. s t r c a t+0xa6 )
[ 1 703 ] to 0x781804d9 (MSVCR80. s t r c a t+0x89 )

1601 x . . . . . . . . . . . . . . . . . . . . .
[ 101 ] from 0x781804f6 (MSVCR80. s t r c a t+0xa6 )
[ 101 ] to 0x781804d9 (MSVCR80. s t r c a t+0x89 )
[ 100 ] from 0x80541f57 ( ntkrnlpa . KiExceptionExit+0xab )
[ 100 ] to 0 x7c91e45c ( n t d l l . KiUserExceptionDispatcher

)
[ 99 ] from 0x7c91e465 ( n t d l l . KiUserEx . . . Dispatcher+0x9

)
[ 99 ] to 0x7c93a950 ( n t d l l . RtlDispatchException )

Listing 1: Excerpt of a Branch Trace generated for a
malicious PDF file

Binning Approach.
Based on the collected data, we then clustered the BT

reports into distinct bins, one for each exploited vulnerabil-
ity. In order to achieve reasonable results for the binning,
the logged data first has to be normalized in several ways.
First, we used the relative addresses instead of the absolute
ones, since the base address of modules could change over
time due to techniques such as Address Space Layout Ran-
domization (ASLR) [5,38]. Second, we collapsed loops, since
we did not want to assign different bins to files that only dif-
fer in the number of loop iterations (e.g., due to differences
in the size of the input data). To this end, we implemented
an altered version of the approach from Tubella and Gon-
zalez [42], which main concept is that every backward jump
forms a loop. Third, we also removed those parts from the
traces that are related to the internal exception handling
routines of the Windows system. Exceptions are frequently
used by exploits in the last stage before control is transferred
to the actual shellcode. By removing these parts from the
traces, we prevent different exploits to be mistakenly put in
the same bin because of this effect. Finally, we ignored those
BTs of the actual executed shellcode since for binning these
are not related to the vulnerability that was exploited. The
shellcode is stilled logged and can be analyzed separately.

As clustering algorithm we have used DBSCAN [12] and
as distance function a modified version of the Jaro-Winkler
distance [19,48]. This function originally is used to measure
the difference between two strings and calculates a similar-
ity score based on several conditions. Mainly it is influenced
by the amount of common characters and the amount of
transpositions between them. Additionally, it prioritizes the
prefixes of the compared strings, i.e., strings with a similar
prefix get a higher score than those with only a similar suf-
fix. This reflects our observation that branch traces (that
are always considered backwards) require a common pre-
fix if they reflect the same vulnerability. Experiments have
shown that best results could be achieved if we prioritize
the last 50 branches. For performance reasons we have fur-
ther limited the overall amount of considered branches to 80.
Preliminary tests have shown that nearly all characteristic
variations of BT logs happen within these first 80 branches.

The DBSCAN algorithm has two configuration parame-
ters that influence its behavior and quality: the minimum
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cluster size k, which discriminates noise from valid cluster
objects, and the neighborhood radius ε, that specifies the
maximum distance of two objects to belong to the same
cluster. The choice of k is merely a matter of taste (as long
as it is greater than 1) and can be used to control the size
of the resulting noise-cluster. Experiments have shown that
k = 3 produces best results. In contrast, the value of ε has
a severe effect on the number of resulting clusters, as can
be seen in Figure 3. For very low values we get 12 differ-
ent clusters and by increasing ε some of them merge into
combined ones. From a value of 0.1 on we are left with 8
clusters and further increasing the neighborhood radius has
no more effect on its number. However, for higher values the
amount of the noise objects still decreases, because some of
them fall into existing clusters. Note that the logarithmic
scaling of the figure conceals that growing element size of
these clusters.

We have manually analyzed randomly picked objects from
the merging clusters and in all cases determined that they
are based on the same root cause that is simply exploited in
a different manner. For example there was a buffer overflow
in a stack variable and one exploit diverts the control flow
when the memcpy function is called with that buffer and
another when strcat is executed. It is debatable if this is the
same vulnerability or not. Nevertheless, by tweaking the
ε radius one can determine how these cases are treated by
the clustering algorithm. For the following comparison with
other tools we have chosen ε = 0.1, resulting in 8 different
clusters and less than 10 outliers in the noise group.

Comparison With Other Approaches.
For further evaluation of our results, we compared them

against those from the PDF analysis framework Wepawet [8].
This tool combines machine learning techniques with emu-
lation and uses signatures of known CVEs to classify mali-
cious documents and labels them appropriately. Note that
many PDF documents do not only exploit one single vul-
nerability. Instead, they trigger different exploits, depend-
ing on the used PDF viewer application. For those sam-
ples Wepawet may not only generate one single label, but
instead output a list of several CVEs. Furthermore, some-
times no known exploit can be detected at all and no label
is generated. We have analyzed each sample with Wepawet,
which resulted in seven different detected vulnerability sig-
natures (CVE-2007-5659, CVE-2010-2883, SA33901, CVE-



2009-0927, CVE-2009-4324, CVE-2008-2992, CVE-2010-0188).
After removing those CVEs from the resulting list, which
only address exploits of Acrobat Reader versions other than
9.00, we are left with only five vulnerabilities (CVE-2010-
2883, SA33901, CVE-2009-0927, CVE-2010-0188, CVE-2009-
4324).

While most of our clusters have been consistent with the
Wepawet results, we found two general differences. First,
there was a small number of samples for which Wepawet did
not return any CVE number (at least after removing the
CVEs that do not affect the used Acrobat version). In con-
trast, our BT approach was able to successfully cluster those
samples into six different clusters. We have manually veri-
fied a subset of those samples and learned that other samples
from the same cluster seem to exploit the same vulnerabil-
ity. Second, there have been some outliers that Wepawet de-
tected as being malicious but labeled incorrectly. Again, we
were able to manually verify that our clustering has grouped
them correctly with other samples that exploited the same
vulnerability.

Performance Evaluation.
Obviously, there is a performance impact when using BT.

Nevertheless, all of the analyzed PDF documents actually
executed their shellcode within a reasonable time: we set an
upper limit for each analysis run of ten minutes and all runs
finished in this time. More specifically, the fastest analysis
took 11 seconds with BT (only 2s without BT), the slowest
took 406s (117s without BT), and the average time was 129s
(11s without BT). These measurements show that we have
encountered a performance degradation factor of around 12
compared to the same system without BT. Apparently, this
is magnitudes faster than performing single stepping on a
native machine or with the help of hardware-assisted virtu-
alization [10].

Discussion.
Our clustering approach and its evaluation have some lim-

itations that we need to discuss. First, we cannot preclude
that two different vulnerabilities are merged due to the fact
that some function pointer is preliminary overwritten by dif-
ferent means, but then later called from the same calling
site. If the number of executed branches between modify-
ing the pointer and calling it exceeds a certain amount, our
approach is blinded. Second, though we are using a sophisti-
cated loop detection mechanism that is also able to collapse
nested loops with varying loop iterations, it may fail to suc-
cessfully collapse in certain situations. Finally, the biggest
problem arises from the missing known truth about our sam-
ples. We are not able to manually analyze thousands of ma-
licious PDF documents and there are no sources capable of
delivering trustworthy information about the contained ex-
ploit, especially not AV products and other heuristic-based
scanners. Therefore, we can only provide accurately gener-
ated evaluation data and reason about their validity. How-
ever, by comparing our results to those from Wepawet and
further manually analyzing selected samples from our set,
we are confident that our approach works properly.

5.2 Experiment 2: Enriching BT Logs
The aforementioned approach utilizes the BT log data in

a straightforward way (i.e., by comparing the instruction
addresses of different crashes). The derivable amount of in-

formation can be highly enriched by disassembling the par-
ticular instructions that are located at the branch sources
and destinations. This enriched data can for example be
used to detect code related to return-oriented programming
(ROP) [37] and reconstruct the performed instruction se-
quences. Listing 2 shows an example of a BT log enriched
with this kind of information where all RET and CALL
branches are marked. If a RET without a corresponding
CALL is detected, it is labeled as ROP-RET and this heuris-
tic enables us to generically detect ROP code [9]. In the ex-
ample, we can easily spot how the ROP code abuses existing,
legitimate code chunks to prepare and actually perform calls
to the API function CreateFileMappingA and MapViewOf-
Section.

[ 5 4 ] from 0x20c9ba54 AcroForm . D l lUnreg i s t e rSe rve r+0
x485fa7

(ROP−)RET ####################
[ 5 4 ] to 0 x4a801f90 icucnv36 . u b i d i g e tD i r e c t i o n 3 6+0x18
[ 5 3 ] from 0x80541f57 ntkrnlpa . KiExceptionExit+0xab
[ 5 3 ] to 0 x4a801f90 icucnv36 . u b i d i g e tD i r e c t i o n 3 6+0x18
[ 5 2 ] from 0x4a801f91 icucnv36 . u b i d i g e tD i r e c t i o n 3 6+0x19

(ROP−)RET ####################
[ 5 2 ] to 0x4a807e7d icucnv36 . uhash de l e t eUVector 3 6+0xc
[ 5 0 ] from 0x4a807e7d icucnv36 . uhash de l e t eUVector 3 6+0xc

CALL −−−−−−−−−−−−−−−−−−−−
[ 5 0 ] to 0 x7c8094ee kerne l32 . CreateFileMappingA
. . . .
[ 2 6 ] from 0x7c809545 kerne l32 . CreateFileMappingA+0x70

RET −−−−−−−−−−−−−−−−−−−−
[ 2 6 ] to 0 x4a807e7f icucnv36 . uhash de l e t eUVector 3 6+0xe
[ 2 5 ] from 0x4a807e7f icucnv36 . uhash de l e t eUVector 3 6+0xe

(ROP−)RET ####################
[ 2 5 ] to 0x4a801063 icucnv36+0x1063
[ 2 4 ] from 0x4a801064 icucnv36+0x1064

RET −−−−−−−−−−−−−−−−−−−−
[ 2 4 ] to 0 x4a8013df icucnv36 . ub id i ge tReord . . . 3 6+0x2aa
[ 2 3 ] from 0x4a8013e0 icucnv36 . ub id i ge tReord . . . 3 6+0x2ab

(ROP−)RET ####################
[ 2 3 ] to 0x4a8063a5 icucnv36 . uenum count 3 6+0x1d
[ 2 2 ] from 0x4a8063a6 icucnv36 . uenum count 3 6+0x1e
. . . .
[ 2 0 ] to 0x4a807e7d icucnv36 . uhash de l e t eUVector 3 6+0xc
[ 1 9 ] from 0x4a807e7d icucnv36 . uhash de l e t eUVector 3 6+0xc

CALL −−−−−−−−−−−−−−−−−−−−
[ 1 9 ] to 0x7c80b995 kerne l32 . MapViewOfFile

Listing 2: BT log excerpt for ROP shellcode

As Listing 2 shows, the BT log is not only enriched by
the CALL and RET sites, but our tool for branch tracing
also takes advantage of the publicly available debug sym-
bols from Microsoft. Obviously, for files from other vendors,
these symbols are typically not available and, hence, it is
more complicated to understand the semantics of the called
functions and to isolate the root cause of a given vulnerabil-
ity. Nevertheless, if such a tool is assisted by the (private)
debug symbols, it is very easy to identify the actual code
locations.

Though not explicitly mentioned, we already applied this
kind of ROP detection during our first experiment described
above. Since we did not want to take the branches of the ac-
tual shellcode into account, we had thus removed all branches
that occured before the first ROP call. In total, we found
1, 721 samples in our corpus that utilized an initial ROP
stage and 3, 148 which did not.

5.3 Experiment 3: Practical Delusion Attack
with a PDF File

Finally we demonstrate a delusion attack with the help of
a malicous PDF document. For that purpose, we have gen-
erated a specially crafted file that utilizes one of the delusion
techniques introduced in Section 3. This document shows a
different behavior when executed on a native machine com-
pared to execution in a virtual environment like QEMU (and



as a result also in malware analysis frameworks such as Bit-
Blaze [40] or Anubis [3]).

We used Metasploit [33] to create the PDF document. For
exploiting the CVE 2010-0188 vulnerability of the Adobe
Acrobat Reader 9.00, we chose the exploit/windows/filefor-
mat/adobe libtiff module. We then created a modified ver-
sion of the existing payload module windows/messagebox, in
which we utilized the rep movs technique introduced in Sec-
tion 3.3. The modifications of the payload module are listed
in the extended paper version and the PDF document itself
can be downloaded from http: // bit. ly/ xtgRBE .

We have analyzed this PDF document with the help of
Anubis (which is based on QEMU) as well as with our BT
approach. As expected, the malicious functionality (in our
case just a simple message dialog) was only triggered when
the document was opened on a real machine. Within the
emulator, the PDF viewer simply closed and did not show
any suspicious behavior. More precisely, it is not possible
to achieve any insights into the malicious functionality since
no such functionality is triggered at all. Note that even
powerful analysis approaches like multi-path execution [27]
cannot spot suspicious code regions since there is no explicit
branch that is generally not taken during emulation. By
using branch tracing, we were able to successfully observe
and analyze the PDF shellcode.

6. LIMITATIONS
In this section we discuss the limitations of BT in general

and of our specific prototype. First, the data obtainable by
BT is rather coarse. Only the source and destination ad-
dresses of program branches and no information about run-
time memory or register values can be gathered. Neverthe-
less, this is sufficient to reconstruct the complete execution
path of an application. Section 5.1 demonstrates how this
kind of information can be used to generate reasonable and
useful analysis results. One way to increase the quality of
the BT logs is to enrich them with disassembly information
as we have shown in Section 5.2.

Another concern is the robustness of our approach against
detection and evasion. Our current prototype could be de-
tected by applying timing measurements to observe the in-
troduced performance penalty. If the attacker is operating
in ring-0, she is further able to deactivate or manipulate the
BT settings directly. Besides deactivating the tracing fea-
ture there is no way to circumvent it, since the logging is
done by the CPU itself. Nevertheless, these are drawbacks
of our current implementation and could be addressed by in-
corporating a hardware-assisted hypervisor. With that help
each read or write access of the related MSRs or the time
stamp counter could be detected and simulated. However,
incorporating external timing sources still allows to reveal
the existence of BT, a general limitation that we share with
all other automated analysis frameworks [3, 10,40].

7. CONCLUSION
To obtain a detailed understanding of the behavior of ex-

ploits and malicious software, many different analysis tech-
niques and frameworks have been developed in the past few
years. A huge fraction of these systems is based on the uti-
lization of software emulators since emulators enable a fine-
grained control over the sample. As a result, attackers have
constantly developed new methods and techniques to de-

tect such analysis frameworks and armored their malicious
programs appropriately. In this paper, we have presented
new ways how an attacker can delude an emulator. Unlike
other detection techniques, our methods do not combine an
explicit environment check with a conditional branch. In-
stead they constitute implicitly different behavior on a na-
tive compared to an emulated machine caused by drawbacks
of the particular operations and imperfections in the emula-
tion process that cannot be mitigated easily.

This kind of delusion attacks motivates a new approach
for dynamic code analysis: CPU-assisted branch tracing.
This technique offers a granularity between instruction- and
function-level monitoring and can be realized with reason-
able performance overhead. In our view, the greatest ad-
vantage is the fact that the logging is performed by the pro-
cessor itself and, hence, cannot be deluded since we obtain
information about the actual executions performed by the
CPU. In several practical experiments we showed that the
obtained BT traces contain enough information to assist dif-
ferent tasks in malware analysis and vulnerability research.
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