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Abstract

Single Sign-On allows users to sign in once on a trusted Identity Provider and have their
identities verified by each Service Provider they access afterward. Two protocols have
gained widespread adoption in the wild: OAuth 2.0 is a delegated authorization protocol
that was introduced in 2012 and extended two years later by the delegated authentication
protocol OpenID Connect 1.0. This master’s thesis addresses three problems in Single
Sign-On: (1) Real-world implementations on Identity Providers and Service Providers
have proven to not strictly follow the standard specifications, which can result in neg-
ative effects on the implementation security and user privacy. Previous work has only
focused on implementation flaws but failed to give in-depth insights into the underly-
ing protocols. (2) Web technologies were refined over time to provide new capabilities
for improved user experiences. The postMessage API is nowadays commonly used in
cross-origin communication setups, including Single Sign-On implementations. The se-
curity implications of utilizing this API in Single Sign-On setups were not thoroughly
analyzed yet. (3) Some Identity Providers provide “zero-click” authentication flows.
Since sensitive identity information is transferred between independent parties, these
flows can enable new privacy attacks. To complement these problems, this thesis first
presents in-depth protocol descriptions of Single Sign-On solutions provided by Apple,
Google, and Facebook. The real-world impact of postMessage security in Single Sign-On
is evaluated based on widely-used Identity Providers and Service Providers. As a result,
several postMessage attacks in Single Sign-On implementations are revealed to moti-
vate security recommendations for future developments. Finally, this thesis describes
two privacy attacks in Single Sign-On that are based on Cross-Site Leaks and demon-
strates various privacy concerns of non-interactive sign-in flows on real-world Identity
Providers.

Keywords — Social Login, Single Sign-On, OAuth, OpenID Connect, Google Sign-In,
Facebook Login, Sign in with Apple, Authorization, Authentication, postMessage, Cross-Origin
Communication, Privacy, Single Page Applications, XS-Leaks, Token Leaks, Account Takeover






Official Declaration

Hereby I declare that I have not submitted this thesis in this or similar form to any other
examination at the Ruhr-Universitdt Bochum or any other institution or university.

I officially ensure that this paper has been written solely on my own. I herewith officially
ensure that I have not used any other sources but those stated by me. Any and every
parts of the text which constitute quotes in original wording or in its essence have been
explicitly referred by me by using official marking and proper quotation. This is also
valid for used drafts, pictures and similar formats.

I also officially ensure that the printed version as submitted by me fully confirms with
my digital version. I agree that the digital version will be used to subject the paper to
plagiarism examination.

Not this English translation but only the official version in German is legally binding.

Eidesstattliche Erklarung

Ich erklére, dass ich keine Arbeit in gleicher oder &hnlicher Fassung bereits fiir eine andere
Priifung an der Ruhr-Universitdt Bochum oder einer anderen Hochschule eingereicht
habe.

Ich versichere, dass ich diese Arbeit selbststdndig verfasst und keine anderen als die
angegebenen Quellen benutzt habe. Die Stellen, die anderen Quellen dem Wortlaut oder
dem Sinn nach entnommen sind, habe ich unter Angabe der Quellen kenntlich gemacht.
Dies gilt sinngeméaf auch fiir verwendete Zeichnungen, Skizzen, bildliche Darstellungen
und dergleichen.

Ich versichere auch, dass die von mir eingereichte schriftliche Version mit der digitalen
Version iibereinstimmt. Ich erklare mich damit einverstanden, dass die digitale Version
dieser Arbeit zwecks Plagiatspriifung verwendet wird.

15.10.2020

\
DATE Louls CHRISTOPHER JANNETT



Louis Jannett
15.10.2020





Erklarung

Ich erkldre mich damit einverstanden, dass meine Masterarbeit am Lehrstuhl NDS dauer-
haft in elektronischer und gedruckter Form aufbewahrt wird und dass die Ergebnisse aus
dieser Arbeit unter Einhaltung guter wissenschaftlicher Praxis in der Forschung weiter

verwendet werden diirfen.

15.10.2020

DATE Louis CHRIS}I‘)PHER JANNETT



Louis Jannett
15.10.2020





Contents

List of Figures

List of Tables

List of Listings

List of Abbreviations

1

Introduction

1.1 Motivation . . . . . . . . ...
1.2 Related Work . . . . . . . . . . e
1.3 Contribution . . . . . . . . . e
1.4 Organization of this Thesis . . . . . . . ... ... ... ... .......

Foundations

2.1 JavaScript Object Notation . . . . . . .. . ... ... .. .. ... ....
2.1.1 JSON Web Token and JSON Web Signature . ... ... .. ...

2.2 Single Sign-On . . . . . .
2.2.1 Basics Concepts in OAuth 2.0 and OpenID Connect 1.0 . . . . . .
2.2.2  The OAuth 2.0 Protocol . . . . . . . .. ... ... ... ......
2.2.3 The OpenlID Connect 1.0 Protocol . . . . . ... ... ... ....
2.2.4 Advanced Concepts in OAuth 2.0 and OpenlID Connect 1.0 . . . .

2.3 Document Object Model . . . . . ... ... ... ... ... ... .....
2.3.1 Windows . . . . . . ...
2.3.2 Browsing Context, Execution Context, and Window Group . . . .
2.3.3 Window Interface. . . . . . .. .. ... ... ... ... ...
2.3.4 Window Referencing . . . . . .. ... ... oL

2.4 Same Origin Policy . . . . . .. . ... . o

2.5 Cross-Origin Communication . . . . . . . . ... .. ... .. ... ....
2.5.1 Cross-Origin Resource Sharing . . . . . .. ... ... ... ....
2.5.2 Fetch API and XMLHttpRequests . . . . . ... ... ... ....
25.3 PostMessage API . . . . ... .. ..o
2.5.4 Channel Messaging API . . . ... ... ... ... .. ... ....
2.5.5 Remote Procedure Calls . . . . . . ... ... ... ... ......

Single Sign-On Protocols in the Wild
3.1 Overview . . ... e

VIl

10
11
11
13
17
21
25
25
26
27
28
31
32
32
33
34
37
39

41



3.2 Identity Provider: Apple . . . . . . . . . . . ... 43

3.3 Identity Provider: Google . . . . . . . .. .. ... ... 51
3.4 Identity Provider: Facebook . . . . . . . . . .. .. ... ... ... 60

4 PostMessage Security in Single Sign-On 67
4.1 Attacker Model . . . . . . ... 67
4.2  Security Considerations . . . . . . . .. . ... 69
4.2.1 Security Checks . . . . . . ... Lo 69

4.2.2 Hardening postMessage Security . . . . .. ... ... .. ... .. 74

4.2.3 Channel Messaging Security . . . . . .. .. .. .. ... ... ... 75

4.3 Analysis and Debugging Techniques . . . . . . . .. ... ... ... ... 76
4.4 Evaluation of postMessage Security in SSO SDKs . . . . . .. .. ... .. 7
4.5 Evaluation of postMessage Security in SSO SP Implementations . . . . . 79
4.5.1 Overview: SSO flows on real-world SPs . . . . .. ... ... ... 80

4.5.2 Evaluation: SSO flows on real-world SPs. . . . . . ... ... ... 83

4.5.3 Overview: Security of SSO flows on real-world SPs . . . . . . . .. 85

4.5.4 Details: Security of SSO flows on real-world SPs . . . .. ... .. 86

4.6 Responsible Disclosure . . . . . . . . . .. ... 100
4.7 Lessons Learned: Security Recommendations . . . . . .. ... ... ... 101

5 Privacy in Single Sign-On Protocols 103
5.1 XS-Leaks in SSO: Revealing End-User’s Account Ownership and Identity 103
5.2 CSRF Protection in Single Sign-On SDKs . . . . . ... .. .. ... ... 112
5.3 Automatic Sign-In and Session Management Practices in the Wild . . . . 116

6 Conclusion 123
6.1 Future Work . . . . . . . . . o 124
Glossary |
Bibliography 1
Papers . . . . . IIT
RFCs, Specifications & Drafts . . . . . . . . .. ... ... ... ... ... ... VI
Blog Posts & Online Resources . . . . . . . . . ... ... ... ... ... VIII

A Appendix Xl
A.1 SSO Protocols in the Wild: Protocol Flows and Messages . . . . . . ... XI
A.2 PostMessage Security in SSO SDKs: Evaluation Details . . . . . .. . .. XIV

A.3 CSRF Protection in SSO SDKs: Proof of Concept . . . . ... ... ... XVII



List of Figures

21
2.2
2.3
24
2.5
2.6
2.7

3.1
3.2
3.3
3.4
3.5

4.1
4.2
4.3
4.4

5.1
5.2
5.3
5.4

Basic SSO setup. . . . . . . ... 12
The OAuth 2.0 Code Flow and Implicit Flow. . . . . ... ... ... ... 14
The OpenlD Connect 1.0 Code Flow, Implicit Flow, and Hybrid Flow. . . 18
Browsing contexts, execution contexts, and window groups. . . . . . . .. 27
Window referencing within the DOM. . . .. ... ... ... ....... 30
Cross-origin communication with the postMessage API. . . . . . ... .. 36
Cross-origin communication with the Channel Messaging API. . . . . .. 38
Sign in with Apple popup flow. . . . . ... ... 0oL 47
Google Sign-In iframe flow. . . . . . . ... oo 54
Google Sign-In popup flow. . . . . . . . ... 56
Google One Tap Sign-In and Sign-Up flow. . . . . . . ... ... .. ... 58
Facebook Login SDK flow. . . . . . . . . . .. ... .. .. ... .. ..., 64
Attack setup in the postMessage security analysis. . . .. ... ... ... 68
Basic SSO popup flow. . . . . . . . ... .. 81
CBS Interactive — Vulnerable postMessage sender. . . . . . .. ... ... 88
SAP Customer Data Cloud — Vulnerable postMessage sender. . . . . . . . 92
Account leakage attack. . . . .. ... oo 105
Identity leakage attack. . . . . . .. ... oo oo 106
Automatic sign-in on Change.org with Facebook. . . . . . . .. ... ... 122

Automatic sign-in on Instagram with Facebook. . . . . . . .. .. ... .. 122






List of Tables

21

3.1
3.2
3.3

4.1
4.2
4.3
4.4
4.5

5.1
5.2
5.3

Al
A2
A3
A4
A5
A6
AT
A8
A9

OAuth 2.0 and OpenlD Connect 1.0 flows. . . . . . . ... ... ... ...

Redirection mechanisms supported by Apple. . . . . ... ... ... ...
Redirection mechanisms supported by Google. . . . . . . . .. .. ... ..
Redirection mechanisms supported by Facebook. . . . . . .. ... .. ..

Evaluation of postMessage security in SSO SDKs.. . . . . ... ... ...
Context switch in SSO popup flows. . . . . . . ... ... ...,
Overview of SSO flows used by Moz’s top 63 SPs. . . . . . . .. ... ...
Evaluation of postMessage security in SSO SP implementations. . . . . .
Overview of responsible disclosure process. . . . . . . .. ... ... ....

Overview of SSO privacy attacks. . . . . . . . ... ... .. ... .....
Evaluation of login CSRF with respect to SSO SDKs. . . .. . ... ...
Overview of automatic sign-in features in SSO SDKs. . . . ... ... ..

OAuth and OIDC flows supported by Apple, Google, and Facebook. . .
AuthnReq parameters supported by Apple, Google, and Facebook. . . . .
AuthnResp parameters supported by Apple, Google, and Facebook.
TokenReq parameters supported by Apple, Google, and Facebook. . . .
TokenResp parameters supported by Apple, Google, and Facebook. . . . .
Evaluation of postMessage security in Sign in with Apple JS. . . . . . ..
Evaluation of postMessage security in Google Sign-In. . . . . . . . .. ..
Evaluation of postMessage security in Google One Tap. . . . . . . . . . ..
Evaluation of postMessage security in Facebook Login. . . . . . . . .. ..






List

2.1
2.2
2.3
2.4
2.5

3.1

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13
4.14
4.15
4.16
4.17
4.18
4.19

5.1
5.2
5.3
5.4

Al
A2
A3
A4

of Listings

Example of JSON object. . . . . .. .. .. . o 9
Example of digitally signed JWT. . . . . . .. ... ... ... ... .. .. 10
Example of Fetch API request with CORS. . . . . . ... ... ... ... 34
Example of JSON-RPC request object. . . . . . ... ... .. ... .... 40
Example of JSON-RPC response object. . . . . .. ... ... ... .... 40
Sign in with Apple postMessage payload. . . . . . . . .. ... ... ... 50
Static postMessage destination check. . . . . . ... .. ... 70
Static postMessage origin check. . . . . ... ... ... ... ... .. .. 73
Dynamic postMessage origin check. . . . . . . . ... ... ... ... 73
NYTimes — Vulnerable postMessage receiver. . . . . . .. ... ... ... 87
NYTimes — Proof of Concept — DOM-based XSS. . . . .. ... ... ... 87
CBS Interactive — Proof of Concept — Account Takeover. . . . . . . . . .. 89
AliExpress — Vulnerable postMessage sender. . . . . . .. ... ... ... 90
AliExpress — Proof of Concept — Account Takeover. . . . . . . . ... ... 91
SAP Customer Data Cloud — Proof of Concept — Account Takeover. . . . 93
El Mundo — Vulnerable postMessage sender. . . . . . . .. ... ... ... 94
El Mundo — Proof of Concept — Account Takeover. . . . . . . . ... ... 94
Alibaba — Vulnerable postMessage sender. . . . . . . ... .. ... .. .. 95
Alibaba — Proof of Concept — Account Takeover. . . . . . ... ... ... 96
Alibaba — Vulnerable postMessage receiver. . . . . . . .. .. .. .. ... 96
Alibaba — Proof of Concept — DOM-based XSS. . . . . . ... ... .... 97
LoginRadius — PostMessage sender. . . . . . . . . . ... ... ....... 98
LoginRadius — Vulnerable postMessage receiver. . . . . . . . . .. ... .. 98
LoginRadius — Proof of Concept — Account Takeover. . . . . . . . ... .. 99
Akamai — Proof of Concept — Account Takeover. . . . .. ... ... ... 100
XS-Leak in Fetch API detects cross-origin redirects. . . . . . . .. .. .. 108
XS-Leak with timing side channel detects cross-origin redirects. . . . . . . 109
Facebook CORS request. . . . . .. .. .. . . . .. . ... 120
Facebook CORS response. . . . . . . . . . . . . i i v it v .. 120
Proof of Concept — Login CSRF on www.wix.com. . . . .. ... ... ... XVII
Proof of Concept — Login CSRF on samsung.com. . . . .. ... ...... XVII
Proof of Concept — Login CSRF on wikihow.com. . . . . . ... ... ... XVII

Proof of Concept — Login CSRF on imageshack.us. . . . . .. .. .. ... XVIII


www.wix.com
samsung.com
wikihow.com
imageshack.us




List of Abbreviations

authnEndp Authentication Endpoint
authnReq Authentication Request
authnResp Authentication Response
authzEndp Authorization Endpoint
authzReq Authorization Request
authzResp Authorization Response
loginEndp Login Initiation Endpoint
redirectionEndp Redirection Endpoint
resourceEndp Resource Endpoint
tokenEndp Token Endpoint
tokenReq Token Request

tokenResp Token Response

2FA Two-Factor Authentication

API Application Programming Interface (Glossary: API)

AS Authorization Server

Client Client Application

COOQOP Cross Origin Opener Policy

CORS Cross-Origin Resource Sharing

CSP Content Security Policy

CSRF Cross-Site Request Forgery (Glossary: CSRF)
CSS Cascading Style Sheets

DKIM DomainKeys Identified Mail (Glossary: DKIM)



DOM Document Object Model
GUI Graphical User Interface

HTML Hypertext Markup Language
HTTP Hypertext Transfer Protocol

ID Identifier
IdMS Identity Management System (Glossary: IdMS)
IdP Identity Provider

JS JavaScript

JSON JavaScript Object Notation
JWS JSON Web Signature

JWT JSON Web Token

MAC Message Authentication Code
MITM Man-in-the-Middle

OAuth OAuth 2.0
OIDC OpenlD Connect 1.0
OP OpenlD Provider

OS Operating System

PKCE Proof Key for Code Exchange
POC Proof of Concept

REST Representational State Transfer (Glossary: REST)
RP Relying Party

RPC Remote Procedure Call

RQ Research Question

RS Resource Server

SaaS Software as a Service (Glossary: SaaS)



SDK Software Development Kit (Glossary: SDK)
SOP Same Origin Policy

SP Service Provider

SPF Sender Policy Framework (Glossary: SPF)
SSO Single Sign-On

TTP Trusted Third Party

UA User Agent

Ul User Interface

URI Uniform Resource Identifier
URL Uniform Resource Locator
UUID Universally Unique Identifier

UX User Experience

XHR XMLHttpRequest

XML Extensible Markup Language
XS-Leak Cross-Site Leak

XSS Cross-Site Scripting (Glossary: XSS)






1 Introduction

With the Web 2.0, developers began to transfer static website content, which mainly
served for informational purposes, into user-centric approaches. Along with this trans-
formation, authentication methods were needed to prove the End-User’s identity to
Service Providers (SPs). Traditionally, username and password-based login processes
were used, which served as an easy-to-implement, straightforward solution and are still
widely deployed in today’s web applications (web apps).

With the introduction of Software as a Service (SaaS) and cloud computing, new types of
native-like web apps were introduced and traditional native applications (native apps)
are steadily migrated to the cloud. Examples of consumer software running in the
web browser and on backend servers include office suites, communication services and
collaboration tools. As a consequence, End-Users have to remember a growing number
of individual but strong authentication credentials for each online service they are using,
which is also known as the Password Dilemma. Hence, the username and password-based
authentication approach comes to its limit with respect to usability and User Experience
(UX). Besides other proposed solutions, such as credential management software and
WebAuthn, Single Sign-On (SSO) is attracting widespread interest due to its flexibility
and interoperability.

In particular, the two protocols OAuth 2.0 (OAuth) and OpenID Connect 1.0 (OIDC) be-
came the de-facto standard for delegated authorization and authentication in consumer-
level applications. Although the two protocols are strongly related to each other, the
areas of application are strictly separated. OAuth delegates the authorization of an
SP accessing the End-Users protected resources to an additional instance that acts as
a Trusted Third Party (TTP), also called the Identity Provider (IdP). OIDC adds an
identity layer on top of the OAuth protocol that additionally authenticates the End-User
on the SP. While OIDC complies with the high-level idea of an SSO protocol, OAuth
must be considered as an authorization protocol.

In SSO, End-Users need to maintain a single credential to sign in on the trusted IdP.
The responsibility of authenticating the End-User on related SPs is delegated to the
IdP, eliminating the need of additional credentials. Therefore, the established session
on the IdP is subsequently used such that the End-User must sign in only once, which
results in enhanced convenience and UX. Accordingly, the fundamental characteristic of
OAuth and OIDC is manifested in the benefit that End-Users do not have to share their
login credentials with a possibly malicious or only insufficiently protected SP. Instead,
the IdP issues revocable tokens to be consumed and verified by the SP in order to get
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authorized access to protected resources or reveal the End-User’s identity and profile
information.

Researchers have always seen OAuth and OIDC as security-critical protocols. Due to its
single point of failure, successful attacks pose a risk to the authenticity of all End-User’s
accounts on the affected SPs and IdPs. On top, the potential security threats in OAuth
and OIDC are not widely understood by developers due to the protocol’s complexity.
Thus, SSO is an attractive target for attackers and future research.

This master’s thesis ties up on real-world SSO implementations by focusing on the
following Research Questions (RQs) that are motivated in Section 1.1.

1.1 Motivation

RQ I: Single Sign-On & Standard Compliance

How do real-world Single Sign-On implementations differ from the standard
OAuth 2.0 and OpenlID Connect 1.0 specifications?

While on the one hand, SSO protocols can offer security and privacy advantages, on
the other hand, erroneous implementations result in an increased attack surface and
insufficient data privacy protection. Until now various research about the formal spec-
ifications has been undertaken which lead to the discovery of new attack scenarios and
multi-layered implementation flaws. As a result, several new revisions, extensions, and
security recommendations were introduced to enhance the security of real-world SSO
implementations. That is why developers must carefully follow the standard references
and adhere to security best practices.

Moreover, the protocol incorporates two parties implementing parts of the sign in flow:
the Identity Provider and Service Provider. In practice, the IdP typically provides
social login capabilities in the form of Software Development Kits (SDKs), which are
then implemented by application developers. While the IdP may not strictly follow the
OAuth and OIDC specifications, the SP may not comply with the IdP’s implementation
guides. On top, developers are left with space for customizations, as for instance the
End-User’s authentication & consent on the IdP as well as session establishment on the
SP. RQ II ties up on these custom implementations and evaluates the security with
respect to the postMessage Application Programming Interface (API).

RQ II: Single Sign-On & postMessage API

How do real-world Single Sign-On implementations use the postMessage API
for cross-origin token exchange and are they securely implemented?
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Due to an increased use of sign-in flows in popups, the postMessage API is set to become
a vital factor in SSO. Although standardized flows make use of redirects, popups provide
the advantage to not interrupt the user’s interaction on the main website. The SSO flow
is executed within a popup window and finally uses the postMessage API to return
control back to the primary window.

In principle, the postMessage API provides a controlled circumvention of the Same Origin
Policy (SOP) — the most essential security cornerstone in web browsers. Due to the
fact that developers are responsible to securely implement the API while the security
implications are still not widely understood, many web applications showed significant
deficits in the past [34, 32, 15, 45, 2]. Common attacks are ranging from information
leakage to DOM-based Cross-Site Scripting (XSS).

Single page applications (SPAs) are gaining increased attention in modern web devel-
opment. Due to their modular design patterns, the postMessage API is generating
considerable interest in terms of cross-window communication. Accordingly, it is a crit-
ical part of SSO processes within SPAs. Previous work has failed to address the specific
characteristics of SSO in SPAs that are regulated in the standard specification. There-
fore, this thesis takes a new look at SSO in SPAs and evaluates the present state in the
wild.

RQ II: Single Sign-On & Privacy

How do real-world Single Sign-On implementations and standard-compliant
protocol specifications harm user privacy?

IdPs implement several features in their SSO SDKs to improve User Experience. Once
the End-User is logged in on the IdP and agreed to the consent at least once, these
features facilitate automatic sign-in of End-Users without explicitly asking the End-
User for consent in each flow. SPs could abuse these features by secretly identifying
the user in the background. With this in mind, it is left to investigate whether these
practices are actually observable in the wild.

In similar case, the standard defines several properties allowing seamless SSO flows, such
as the prompt=none and login_hint parameters. In the literature, there seems to be no
investigations on these parameters with respect to privacy factors. Thus, future research
on privacy-related effects of these parameters is motivated.

Finally, CSRF attacks in SSO not only pose a risk to the End-User’s account security,
but also harm user privacy. To name one example, the victim’s interests on an online
shopping site may be exposed to the attacker if an undetected CSRF-login into the
attacker’s account was successfully executed. Since IdPs commonly provide their SSO
solutions as easy-to-implement SDKs to developers, this thesis reviews the developer
documentations on CSRF-protective measures and whether these are implemented in
the wild.
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1.2 Related Work

Theory and Practice of Single Sign-On

In 2016, Fett, Kiisters, and Schmitz [23] presented a comprehensive formal security
analysis of the OAuth 2.0 specification in a web model. Similarly, they carried out the
first in-depth security analysis of OpenID Connect 1.0 in a web model back in 2017 [24].

In 2016, Mainka, Mladenov, and Schwenk [54] introduced two novel attacks, ID Spoofing
and Key Confusion, which make use of a malicious IdP to compromise the security of all
accounts on an affected SP. In parallel, the authors also revealed significant deficits in the
OIDC Discovery and Dynamic Registration extensions, which initiated the development
of new revisions [57]. As a result, the idea of second-order vulnerabilities in SSO was
introduced and formally specified as the Malicious Endpoints attack. Along with a
systematic security analysis of known attacks on SSO protocols and an adaptation to
OpenID Connect 1.0, Mainka et al. [56] introduced two novel second-order attacks on
OIDC in 2017 (which they also call cross-phase attacks): Identity Provider Confusion &
Malicious Endpoints Attack. Both attacks were evaluated in the wild and implemented
in the automated testing tool PrOfESSOS.

Wang, Chen, and Wang [84] carried out the first systematic field study on commercially
deployed SSO systems back in 2012 and discovered a total of eight flaws related to token
verification. In parallel, Sun and Beznosov [81] analyzed the implementations of the three
major OAuth IdPs Facebook, Microsoft, and Google as well as several SPs supporting
Facebook SSO. The authors uncovered various issues caused by design decisions made
for implementation simplicity and thus reached the conclusion that JavaScript SDKs are
crucial for future SSO systems and require rigorous security analyses. Therefore, Wang
et al. [85] (2013) specified implicit assumptions required for secure use of SSO SDKs and
formally showed that these are violated in practice.

Li and Mitchell [48] studied the OAuth implementation security of Chinese IdPs and SPs
in 2014. They discovered several logical flaws and concluded that half are susceptible
against CSRF attacks within the account linking process. In parallel, Hu et al. [36]
concentrated on social networking platforms and their common API design principles to
develop the App impersonation attack — an intrinsic vulnerability of OAuth 2.0 caused
by the support of multiple authorization flows and token types.

Li and Mitchell [47] performed a large-scale practical study in 2016 on SPs supporting
Google SSO. Several vulnerabilities caused by a combination of Google’s custom OIDC
design as well as design decisions made by developers were discovered. In parallel, Wang
et al. [83] conducted a study on how developers customize OAuth on different web and
mobile platforms. They reconstructed the authentication mechanisms employed and
found out that applications lack sufficient verification mechanisms, resulting in multiple
End-User and Client impersonation attacks.
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Bai et al. [12] initially proposed AUTHSCAN in 2013 — an automated analysis tool
that recovers web authentication protocol specifications from their implementations. As
a result, the authors discovered a total of seven implementation flaws in SSO systems
and custom web authentication logic. In 2014, Zhou and Evans [89] developed SSOScan
— an automatic vulnerability scanner specifically designed for applications integrating
with Facebook SSO. Several sites were scanned on five known issues from which over
20% suffered from at least one. Likewise, Yang et al. [88] presented OAuthTester in
2016 — an adaptive model-based security assessment framework designed for OAuth
systems in practice. Besides its ability to identify existing implementation flaws, new
vulnerabilities can be discovered in an automated manner. In 2019, Li, Mitchell, and
Chen [50] introduced OAuthGuard — an OAuth 2.0 and OpenID Connect 1.0 scanner
specifically designed for Google SSO services. Unlike previous scanners, which were
designed for vulnerability detection only, OAuthGuard additionally protects the user
security and privacy on insufficiently secured SPs.

Finally, Bhavuk Jain [16] found a harmful bug in the Sign in with Apple implementation,
which recently gained attention in media. The vulnerability was located within the
authentication & consent process that is not formally defined but still essential. In short,
the bug allowed an attacker to issue tokens for arbitrary email addresses, resulting in a
zero-click account takeover on various SPs.

As shown, previous work has extensively focused on the security of SSO systems both in
theory and in practice. Several papers demonstrated how web services fail to correctly
implement SSO. Also, formal security analyses on the specifications were conducted,
which revealed significant lacks in implementation security and introduced entirely new
attack classes. Unfortunately, there is still no comprehensive overview on current real-
world SSO protocols and their specific implementation characteristics. Thus, this the-
sis complements prior work by specifying the underlying protocols and authentication
mechanisms in place. The results of this study will reveal “how things are actually
implemented in the wild” and thus establish a basis for future security analyses.

Security of postMessage API

Back in 2009, Barth, Jackson, and Mitchell [15] conducted a study on cross-frame com-
munication in web browsers and developed attacks breaking the confidentiality of mes-
sages sent via the postMessage API. As a result, the authors proposed a simple de-
fense that explicitly ensures confidentiality by extending the postMessage API with an
additional origin parameter, which was adopted by browsers. In contrast, Son and
Shmatikov [79] (2013) performed a comprehensive analysis on the authentication of
messages sent via postMessage. Therefore, the authors analyzed several postMessage
receivers that either performed checks incorrectly or not at all, causing a broad range of
vulnerabilities such as XSS and localStorage injections.
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In 2010, Hanna et al. [34] studied the real-world usage of postMessage in Facebook
Connect and Google Friend Connect. Although these systems are nowadays outdated or
heavily modified, their research still demonstrates the impact of insecure postMessage
usage on message authenticity and confidentiality in SSO.

In 2016, Guan et al. [32] initially introduced an information leakage threat called Dan-
gerNeighbor attack. Commonly in practice, third-party SPs provide postMessage re-
ceiver functions that are imported on the hosting page and thus share the same origin.
This leads to the observation that a malicious service is able to eavesdrop messages
from other services sent to the hosting page. Until today, no defensive mechanisms are
deployed in the wild. Guan, Li, and Sun [30] (2017) examined the implications of the
DangerNeighbor attack under the context of SSO. Since any receiver on the hosting page
can eavesdrop SSO-related tokens, account hijacking is most likely to happen. Finally,
Guan et al. [31] (2018) performed a systematic case study on the DangerNeighbor attack
in the wild and found that several websites using Facebook SSO and Google SSO may
leak End-User’s private information.

More recent findings regarding the security of postMessage in SSO have led to a rapid
rise in popularity for further research. For instance, Amol Baikar [2] combined in-
sufficient parameter validation with improper postMessage usage in Facebook’s SSO
implementation, resulting in token leaks. Similarly, Kumar [45] took advantage of insuf-
ficient postMessage checks in the Facebook Login SDK to accomplish DOM-based XSS

on www.facebook. com.

Previous work on postMessage in SSO introduced the DangerNeighbor attack under
strong adversarial assumptions. In particular, the adversary must be able to include
JavaScript (JS) code on the hosting site. In this thesis, the security of postMessage in
SSO is evaluated under weak adversarial assumptions (web attacker model), in which
the adversary is not able to include JS code on the hosting site.

Privacy in Single Sign-On

In 2015, Shernan et al. [78] evaluated the CSRF protection in several OAuth imple-
mentations. The authors also addressed several weaknesses in sample code provided in
developer documentation, resulting in inconsistent implementation of protections among
SPs. Li, Mitchell, and Chen [49] (2018) applied existing CSRF defenses to OAuth and
OIDC for an additional layer of protection.

Since previous work has only focused on CSRF attacks within standardized redirect
flows, this thesis aims to further address the CSRF protections in modern SSO SDKs
and their effect on user privacy.

In 2015, Fett, Kiiesters, and Schmitz [22] explored the privacy limitations of traditional
SSO schemes and proposed an entirely new privacy-preserving SSO system SPRESSO.
As a result, the IdP does not learn the SP on which the End-User logs in. In the recent
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work of Hammann, Sasse, and Basin [33] (2020), the authors proposed two extensions
to the existing OpenlD Connect 1.0 standard. They primarily prevent the IdP from
learning the SP on which the End-User logs in. Further, they impede SPs from tracking
users through colluding their static subject identifiers. Both proposals formally prove
their claimed security and privacy enrichments.

Although these approaches are interesting, they fail to take the SP into account. Until
now, researchers have failed to provide an overview of privacy considerations on the SP’s
side. Despite the consent page, which protects the End-User’s identity, there is still some
information about the End-User which may be leaked to a non-authorized SP.

In the light of recent events in web-related privacy, there is now much considerable con-
cern about Cross-Site Leaks (XS-Leaks). In [17] (2007), Bortz and Boneh measured
the time websites take to load and studied the effect on the End-User’s privacy. For
instance, the authors were able to successfully identify the End-User’s logged-in status
and number of objects in the shopping card on other websites. Lee, Kim, and Kim [46]
(2015) used the cross-origin resource caching in AppCache to identify whether the web-
site returned a success (200), redirection (300), or error (400/500) response status. In
[26] (2016), Goethem et al. proposed several techniques on how to reveal the size of
resources by exploiting design flaws in the storage mechanisms of browsers. Staicu and
Pradel [80] (2019) described a novel de-anonymization attack called leaky images. Ba-
sically, a malicious website embeds a privately shared image, which will load only for
the targeted user who is logged into the image sharing service and was granted access
to that image.

Since redirects are an important mechanism in SSO, they also leak specific information
about the End-User, which motivates further research. Therefore, this thesis introduces
a new perspective on XS-Leaks in SSO and presents a new privacy-related attack with
an impact similar to the leaky images attack.

1.3 Contribution

The contributions of this master’s thesis are as follows:

1. We present an up-to-date protocol analysis of Single Sign-On Identity Provider
implementations in the wild, including Sign in with Apple, Google OAuth 2.0 and
OpenlID Connect 1.0, Google Sign-In, Google One Tap Sign-In and Sign-Up, Face-
book Login, and Facebook Login SDK.

2. We evaluate the security of postMessage usage in Single Sign-On SDKs and custom
Single Sign-On Service Provider implementations.

3. We develop privacy attacks on standard-compliant Single Sign-On implementations
and inspect real-world Single Sign-On implementations on methods that harm user
privacy.
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1.4 Organization of this Thesis

This thesis is divided into five chapters. Chapter 2 gives a brief overview on the funda-
mentals of Single Sign-On and the related protocols OAuth 2.0 and OpenID Connect 1.0.
Basic principles and characteristics of cross-window communication and single page ap-
plications are discussed as well. Apple’s, Google’s, and Facebook’s diverse Single Sign-On
protocols are subsequently analyzed in Chapter 3. Chapter 4 outlines the investigation
of real-world Single Sign-On implementations with a special focus on the postMessage
API and cross-window communication. Chapter 5 reveals various privacy considerations
regarding concrete Single Sign-On SDKs and general properties defined in the standard.
Conclusions and suggestions for future work are worked out in Chapter 6.
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2 Foundations

This chapter outlines the foundations of this thesis. Section 2.1 introduces the JavaScript
Object Notation data interchange format, along with JSON Web Token and JSON Web
Signature. Section 2.2 addresses basic Single Sign-On concepts, the protocols OAuth
2.0 and OpenID Connect 1.0, and several advanced concepts essential for our real-world
protocol analyses in Chapter 3. Section 2.3 focuses on the Document Object Model and
presents various concepts related to web browser windows. Section 2.4 defines the Same
Origin Policy that motivates the methods used for cross-origin communication, which
are presented in Section 2.5.

2.1 JavaScript Object Notation

JavaScript Object Notation (JSON) is defined in RFC 8259 as “[...] a lightweight,
text-based, language-independent data interchange format” defining “[...] a small set of
formatting rules for the portable representation of structured data” [18].

In JSON, data is serialized into four primitive data types — strings, numbers, booleans,
null — and two structured types — objects and arrays (which are based on their JS
equivalents). Listing 2.1 reveals the structure of an exemplary JSON object.

Listing 2.1: Example of JSON object including strings, numbers, booleans, null, objects,
and arrays.

"myString": "foo",
"myNumber": 2020,
"myArray": ["foo", 3030, false, null, {"faa": true}, [1, 2, 3]],
"myObject": {
"myBoolean": true,
"myNull": null
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2.1.1 JSON Web Token and JSON Web Signature

RFC 7515 defines JSON Web Signature (JWS) as a representation of “[...] content
secured with digital signatures or Message Authentication Codes (MACs) using JSON-
based data structures” [41]. RFC 7519 defines JSON Web Token (JWT) as a “[..]
compact, URL-safe means of representing claims to be transferred between two par-
ties” [42].

The JWT claims are serialized as a JSON object that is digitally signed or integrity
protected using the cryptographic mechanisms defined by the JWS standard [41]. List-
ing 2.2 presents the overall (decoded) structure of a digitally signed JWT, which is the
concatenation of a JWT header, JWT body, and JWT signature:

Listing 2.2: Example of digitally signed JWT (decoded). The JWT header, JWT body,
and JWT signature are separated by period characters.

{
lltypll B n JWTII ,
llalgll . I|RS256|I s
"kid": "123XYZ"
}
{
"sub": "1234567890",
"name": "Alice",
"iat": 1577836800

}

[signature bytes]

JWT header contains the cryptographic algorithm (alg) and identifier of the key (kid)
used to digitally sign or integrity protect the JWT body. In this example, the RS256
algorithm is applied, which is defined in RFC 7518 [40] as RSASSA-PKCS1-v1_5 using
SHA-256 (asymmetric).

JWT body contains the claims as key-value pairs. This JSON object is used as the
payload of the JWS cryptographic operations.

JWT signature contains the “raw” bytes of the signature.

Finally, the JWT header, JWT body, and JWT signature are individually base64url-
encoded and concatenated — separated by period characters — such that a compact,
URL-safe representation is obtained:

eyJhbG[...] . eyJzdW[...] . SflKzwl[...]
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2.2 Single Sign-On

Traditional username and password-based authentication scenarios usually involve two
parties: the Service Provider provides services to the End-User as soon as the End-User
is authenticated on the Service Provider. Therefore, the End-User sends its credentials
to the Service Provider. Once the Service Provider verifies the credentials (i.e. by
comparing them with its database), it finally provides the services to the End-User.

In Single Sign-On scenarios, the authentication of the End-User on the Service Provider
is delegated to an additional instance that acts as a Trusted Third Party: the so-called
Identity Provider. Therefore, the End-User sends its credentials to the Identity Provider.
Once the Identity Provider verifies the credentials, it issues tokens to be consumed by
the Service Provider. The Service Provider finally verifies the tokens it received from
the Identity Provider and provides the services to the End-User.

In practice, two well-known protocols are used in consumer-level applications:

OAuth 2.0 (OAuth) provides delegated authorization, that is, the End-User authorizes
the Service Provider to access its protected resources on the Resource Server.
Therefore, the Service Provider does not have to know the identity of the End-
User using its service. One such example is a third party calendar application that
is authorized to access the End-User’s Google Calendar.

OpenlID Connect 1.0 (OIDC) provides delegated authorization and authentication, that
is, the End-User authorizes the Service Provider similar to OAuth 2.0 and addi-
tionally reveals its identity to the Service Provider. Therefore, OpenlD Connect
1.0 adds a “[...] simple identity layer on top of the OAuth 2.0 protocol” [67]. One
such example is a third party messaging application that uses the Google Identity
Provider to sign in the End-User with its Google account.

Section 2.2.1 first introduces the basics of OAuth 2.0 and OpenID Connect 1.0, before
both protocols are detailed in Sections 2.2.2 and 2.2.3. Section 2.2.4 finally presents
advanced concepts in OAuth 2.0 and OpenID Connect 1.0.

2.2.1 Basics Concepts in OAuth 2.0 and OpenID Connect 1.0

Figure 2.1 depicts a basic Single Sign-On setup involving the following parties:

e The End-User is an individual that interacts within its User Agent to either
(1) authorize the Service Provider to access its protected resources on the Resource
Server or (2) authenticate on the Service Provider for login purposes. Therefore,
the End-User has an account with valid credentials on the Identity Provider.

o The User Agent (UA) is the End-User’s web browser.
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Figure 2.1: Basic Single Sign-On setup involving an End-User, User Agent, Service
Provider, Identity Provider, and Resource Server — communication is per-
formed through the front-channel or back-channel.

o The Service Provider (SP) provides services to the End-User. Therefore, it
consumes tokens provided by the Identity Provider to either (1) get authorized
access to the End-User’s protected resources on the Resource Server or (2) au-
thenticate the End-User within its User Agent. The Service Provider and Identity
Provider communicate with each other in two different ways: (1) using a direct
server-to-server communication (back-channel) or (2) using an indirect communi-
cation via the End-User’s User Agent (front-channel). In OAuth 2.0, this instance
is referred to as the Client Application (Client). In OpenID Connect 1.0, this
instance is referred to as the Relying Party (RP).

o The Identity Provider (IdP) authenticates the End-User and provides proper
tokens to the Service Provider, which either (1) provide authorized access to the
End-User’s protected resources on the Resource Server or (2) provide digitally
signed claims about the End-User’s identity. In OAuth 2.0, this instance is referred
to as the Authorization Server (AS). In OpenlD Connect 1.0, this instance is
referred to as the OpenID Provider (OP).

o The Resource Server (RS) provides access to the End-User’s protected resources
if valid authorization (i.e., in the form of an access_token) is given.

The Identity Provider may issue the following tokens to the Service Provider:

code is an opaque, short lived, and single-use token that is redeemed by the Service
Provider on the Identity Provider through the back-channel to receive tokens for
End-User authorization and authentication (i.e., the tokens described below).

access_token is an opaque token that is valid for a limited period of time. RFC 6750
points out that “any party in possession of a bearer token (a "bearer") can use it
to get access to the associated resources |...]” [43] on the Resource Server.
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refresh_token is an opaque token that is valid for an extended period of time. It is
used by the Service Provider to obtain a new access_token as soon as the old
access_token expires. This token is exclusively returned in the back-channel.

id_token is a digitally signed or integrity protected JSON Web Token that contains
claims about the End-User’s identity. It is validated by the Service Provider to
retrieve the End-User’s identity for authentication purposes. This token is exclu-
sively returned in OpenID Connect 1.0.

The OAuth 2.0 and OpenID Connect 1.0 standard specifications [35, 68] define differ-
ent flows, which regulate (1) the tokens that are returned from the Identity Provider
and (2) the channel in which the tokens are returned (i.e. front-channel and/or back-
-channel). Table 2.1 presents an overview of the standardized OAuth 2.0 authorization
and OpenID Connect 1.0 authentication flows, based on their response_type. Note that
the response_type defines the tokens returned from the Identity Provider to the Service
Provider through the front-channel. The OAuth 2.0 Code and Implicit Flows are de-
picted in Figure 2.2, Section 2.2.2. The OpenlD Connect 1.0 Code, Implicit, and Hybrid
Flows are exposed in Figure 2.3, Section 2.2.3.

Table 2.1: Standardized authorization and authenti-
cation flows in OAuth 2.0 and OpenID Con-
nect 1.0 categorized by their response_type
parameter.

OAuth 2.0 OpenlID Connect 1.0

Code Flow e code e code
L. id_token

Implicit Flow e teken * e . *
o token—id—token
. eed&ﬂt—okeﬂ*

Hybrid Flow - e code id_token

*

o code—token—id—token

* Deprecated due to access_token in front-channel.

2.2.2 The OAuth 2.0 Protocol

The OAuth 2.0 Authorization Framework was introduced in 2012 and is specified in
RFC 6749 [35]. The framework defines the Authorization Code Grant in [35, Section
4.1], Implicit Grant in [35, Section 4.2], Resource Quwner Password Credentials Grant
in [35, Section 4.3], and Client Credentials Grant in [35, Section 4.4].
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2.2.2.1 The OAuth 2.0 Authorization Code and Implicit Grant

Based on Figure 2.2, the OAuth Code Flow and Implicit Flow are described step-by-step.
All steps and parameters marked in green are exclusively applied in the Code Flow, steps
and parameters marked in blue are exclusively applied in the Implicit Flow.

— [ O
s = (s |
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User Agent CIAient_ Authorization Resource
Application Server Server
client.com Redirection Authz Token Resource
/resource Endp Endp Endp Endp

(1) Start Authorization

(2) HTTP/302: authzReq

client_id, response_type=code token,
[redirect_uri], [scope], [state]

\

;.‘ (3) End-User Authentication & Consent

End-User (4) HTTP/302: authzResp

?{code, [state]}
#{access_tokenl, token_type,
[expires_in], [scope], [state]l}

(5) tokenReq

»
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[redirect_uri], grant_type=authorization_code

(6) tokenResp
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(7) GET protected.txt with access_token2
(8.1) protected.txt -
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from fragment
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»
|

Figure 2.2: The OAuth 2.0 Code Flow and Implicit Flow. The Code Flow is marked in
black and green. The Implicit Flow is marked in black and blue.

Step 1 — Start: The End-User starts the authorization flow by navigating its User Agent
(UA) to the appropriate endpoint on the Client Application (Client).

Step 2 — authzReq: The Client returns the Authorization Request (authzReq) via a
redirect through the UA (front-channel) to the Authorization Endpoint (authzEndp)
on the Authorization Server (AS). The following authzReq parameters are included:

client_id uniquely identifies the Client on the AS. This value is issued by the AS
during Client registration. [35, Section 2.2]
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Step

Step

response_type defines the flow and the tokens that are returned in the Authoriza-
tion Response (authzResp):
response_type = requests the OAuth .
response_type = token requests the OAuth Implicit Flow.

redirect_uri specifies an absolute Uniform Resource Identifier (URI) on the Client
— the Redirection Endpoint (redirectionEndp) — to which the AS redirects the
authzResp. This URI must be pre-registered by the Client on the AS during
Client registration [35, Section 3.1.2.2]. Also, this URI must be validated
properly on the AS to match the exact pre-registered value. Otherwise, a
malicious party is able to receive the authzResp.

scope specifies the set of protected resources that an access_token is permitted to
access. Individual protected resources may have individual scope values, such
as profile, email, and calendar. Incremental authorization enables a Client
to initially request access to a limited set of scopes and if required, request
access to additional scopes later.

state specifies an opaque, non-guessable value bound to the UA’s authenticated
state (i.e., a hash of the session cookie) to maintain state between the authzReq
and authzResp. This parameter is replayed by the AS in the authzResp to
prevent Cross-Site Request Forgery (CSRF) attacks on the redirectionEndp.

3 — Authé&Consent: The AS returns the End-User Authentication & Consent page
to the UA. The End-User submits its credentials to authenticate on the AS and
grants access to the resources that the Client requested within the scope parameter
of the authzReq.

4 — authzResp: The AS returns the authzResp via a redirect through the UA
(front-channel) to the redirectionEndp that was specified with the redirect_uri
parameter in the authzReq. In the OAuth , the parameters are appended
as query string and thus sent to the Client. In the OAuth Implicit Flow, the
parameters are appended as hash fragment and thus not sent to the Client. Instead,
they remain within the UA, because fragments are omitted during redirects. The
following authzResp parameters are included:

, access_token1 as described in Section 2.2.1.
state is mirrored by the AS and matches the state parameter of the authzReq.
Thus, the authzResp is bound to the authzReq and session such that an at-
tacker is not able to cross-site request its own authzResp within the victim’s
UA. This protects the victim from being logged into the attacker’s account.
token_type specifies the type of access_token’. In this thesis, we will only use the
bearer token type (cf. Section 2.2.1).
expires_in specifies the lifetime of access_token™ in seconds.
scope specifies the actual scope that was granted to access_token!.

1

The Client sends the Token Request (tokenReq) to the Token End-
point (tokenEndp) on the AS (back-channel). The following tokenReq parameters
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are included:

specifies that the Client redeems the received
on the redirectionEndp in exchange for an and .
Alternatively, the Client may use grant_type=refresh_token with client_id,
client_secret, refresh_token, and scope parameters to request a “fresh”
access_token.
as in authzResp.
, as in authzReq.
authenticates the Client on the AS. This value is issued by the AS
during Client registration. The Client authentication enforces the binding of
codes and refresh_tokens to the Client they were issued to. [35, Section 2.3]

The AS returns the Token Response (tokenResp) to the Client.
The following tokenResp parameters are included:

, , , as in authzResp.
as described in Section 2.2.1.

The Client uses to request the protected resource
on the Resource Endpoint (resourceEndp) of the Resource Server (RS). All subse-
quent steps are implementation-specific.

In the OAuth , the Client returns the protected
resource to the UA.

Step 8.2 — Script: In the OAuth Implicit Flow, the Client returns a combination of
Hypertext Markup Language (HTML), Cascading Style Sheets (CSS), and JS to
the UA.

Step 9 — Extraction: In the OAuth Implicit Flow, the JS script returned in step 8.2 ex-
tracts access_token' from the fragment component of the URI. The Client should
not include any third-party scripts in the HTML, CSS, and JS returned in step
8.2. Otherwise, the third-parties are able to retrieve access_token'.

Step 10 — resourceReq: The UA can request direct access to the protected resource on
the resourceEndp using access_token'.

2.2.2.2 The OAuth 2.0 Resource Owner Password Credentials Grant

In the OAuth Resource Owner Password Credentials Flow, the End-User provides its cre-
dentials to the Client. The Client obtains an access_token and an optional refresh_token
from the AS by including the End-User’s credentials and its own Client credentials in the
tokenReq. The grant_type in the tokenReq is set to password and includes the client_id,
client_secret, username, password, and scope parameters.



2.2 Single Sign-On 17

“This grant type carries a higher risk than other grant types because it maintains the
password anti-pattern this protocol seeks to avoid” [35, Section 10.7]. “The Resource
Owner Password Credentials Grant MUST NOT be used. This grant type insecurely
exposes the credentials of the resource owner to the client” [52, Section 2.4].

2.2.2.3 The OAuth 2.0 Client Credentials Grant

In the OAuth Client Credentials Flow, the Client obtains an access_token from the AS
by including only its Client credentials in the fokenReq. The access_token is scoped
to resources under the control of the Client. The grant_type in the tokenReq is set to
client_credentials and includes the client_id, client_secret, and scope parameters.

2.2.3 The OpenID Connect 1.0 Protocol

OpenlD Connect 1.0 was introduced in 2014 by the OpenlD Foundation and is specified
in [67]. The framework defines the Authorization Code Flow in [67, Section 3.1], Implicit
Flow in [67, Section 3.2], and Hybrid Flow in [67, Section 3.3].

2.2.3.1 The OpenID Connect 1.0 Authorization Code, Implicit, and Hybrid Flow

Based on Figure 2.3, the OIDC , Implicit Flow, and Hybrid Flow are described
step-by-step. All steps and parameters marked in are exclusively applied in the

, steps and parameters marked in blue are exclusively applied in the Implicit
Flow. The Hybrid Flow is a combination of the and Implicit Flow and thus
includes all steps and parameters.

Step 1 — Start: The End-User starts the authentication flow by navigating its UA to
the Login Initiation Endpoint (loginEndp) on the Relying Party (RP).

Step 2 — authnReq: The RP returns the Authentication Request (authnReq) via a redi-
rect through the UA (front-channel) to the Authentication Endpoint (authnEndp)
on the OpenID Provider (OP). The following authnReq parameters are included:

client_id, redirect_uri, scope, state asin OAuth. In OIDC, scope must contain
the value openid. If a refresh_token is requested, scope contains the value
offline_access.

response_type as in OAuth. In OIDC, the id_token is added. Table 2.1 shows an
overview of all response_types available in OIDC.

The specification defines several additional parameters unique to OIDC:
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Figure 2.3: The OpenlD Connect 1.0 Code Flow, Implicit Flow, and Hybrid Flow. The
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Step

Step

nonce is an opaque, non-guessable value bound to the UA’s authenticated state
(i.e., a hash of the session cookie) to associate the session with an id_token.
This parameter is included by the OP in the id_token to prevent replay and
CSRF attacks.

response_mode specifies the mechanism to be used for returning the Authentication
Response (authnResp). The modes are described in Section 2.2.4.3.

prompt specifies the End-User Authentication & Consent page in step 3. It can
contain the following values: (1) none requests the OP to not display any
End-User Authentication & Consent page (which only succeeds if the End-User
is authenticated and has pre-configured consent), (2) login requests the OP
to reauthenticate the End-User, (3) consent requests the OP to prompt the
End-User for consent, and (4) select_account requests the OP to prompt the
End-User to select one of its accounts.

login_hint is an End-User identifier that gives the OP a hint on the End-User’s
identity.

3 — Auth&Consent: The OP returns the End-User Authentication & Consent
page to the UA, as described in OAuth. Note that this step is affected by the prompt
parameter in the authnReq. The OP must always obtain consent if a refresh_token
is returned (i.e., prompt=consent) [67, Section 11].

4 — authnResp: The OP returns the authnResp via a redirect through the UA
(front-channel) to the redirectionEndp, as in OAuth. In the OIDC Hybrid Flow,
the parameters are appended as query string and as hash fragment. The following
authnResp parameters are included:

state, , access_tokeni, token_type, expires_in, scope as in OAuth.

id_token1 as described in Section 2.2.1. This id_token1 is also referred to as the
front-channel id_token, as it authenticates the End-User in the front-channel.

The RP sends the tokenReq to the tokenEndp on the OP (back-
channel). The following tokenReq parameters are included:

in OAuth.

The OP returns the tokenResp to the RP. The following tokenResp
parameters are included:

, , , , as in OAuth.
as described in Section 2.2.1. This is also referred to as the
back-channel id_token, as it authenticates the End-User in the back-channel.

The RP uses to request the protected resource
on the resourceEndp of the RS, as described in OAuth.
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The RP validates and uses its claims to retrieve the
End-User’s identity. Note that the back-channel id_token does not enforce signa-
ture validation, as the token is transferred over TLS from the OP to the RP.

Step 9 — Website&Script: In the , the RP authenticates the End-User based
on , for instance by returning a session cookie and the protected website
to the UA. In the Implicit Flow and Hybrid Flow, the RP must (additionally)
return a JS script.

Step 10 — Extraction: The UA extracts access_token' and id tokenl from the frag-
ment.

Step 11 — Auth: The id_token! authenticates the End-User in the front-channel.

Step 12 — resourceReq: The access_token' provides direct access to the protected re-
source.

2.2.3.2 The OpenID Connect 1.0 ID Token

The id_token is the central data structure that OIDC provides for End-User authenti-
cation [67, Section 2]. It is represented as digitally signed or integrity protected JWT
that contains basic profile information about the End-User in claims:

iss — Issuer — Issuer identifier of the id_token (i.e., the authnEndp or tokenEndp).

sub — Subject — Unique identifier of the End-User on the OP. Two subject identifier
types are specified: (1) public means that the End-User has the same sub value
(issued by the same OP) on all RPs and (2) pairwise means that the End-User
has individual sub values (issued by the same OP) on each RP.

aud — Audience — The client_id of the RP.

exp, iat — Expiration, Issued At — The id_token must not be consumed by the RP
after its ezpiration time or before its issued at time (encoded as UNIX timestamps).

auth_time — Authentication Time — The time at which the End-User authenticated
on the OP (encoded as UNIX timestamp).

nonce — Nonce — The parameter from the authnReq.

azp — Authorized Party — The client_id of the RP.

c_hash — Code Hash — Binds the code to the id_token. Only present in id_token? if a
code is returned in the authnResp.

at_hash — Access Token Hash — Only present in id_token1 / if an access_token
is returned in the authnResp / tokenResp.
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2.2.4 Advanced Concepts in OAuth 2.0 and OpenlID Connect 1.0
2.2.4.1 Client Types

“OAuth defines two Client types, based on their ability to authenticate securely with
the Authorization Server (i.e., ability to maintain the confidentiality of their Client
credentials)” [35, Section 2.1]:

Confidential Clients are able to keep their credentials secret. An example of a confi-
dential Client is a web application using a backend server, since it can store its
Client credentials securely on the backend.

Public Clients are not able to keep their credentials secret. Examples of public Clients
are single page applications and native applications. Since their source code is
publicly available, they are not capable of securely storing their Client credentials.

Web applications, single page applications, and native applications are defined as fol-
lows:

Web application is “[...] a confidential client running on a web server. Resource owners
access the client via an HTML user interface rendered in a user-agent [...]. The
client credentials as well as any access token issued to the client are stored on the
web server and are not exposed to or accessible by the resource owner” [35, Section

2.1].
Single page application is “[...] a public client in which the client code is downloaded
from a web server and executed within a user-agent [...]. Protocol data and cre-

dentials are easily accessible (and often visible) to the resource owner” [35, Section
2.1]. In literature, they are also referred to as browser-based applications or user-
agent-based applications. The architectural pattern presumes that only a single
document is loaded from the server while the content is dynamically updated with
JS and background requests, resulting in performance improvements. Therefore,
they make use of new JavaScript APIs (i.e., Session History API [61]), which pro-
vide mechanisms to change Uniform Resource Locator (URL) components with-
out triggering a page reload. In general, there are three architectural patterns of
SPAs [73, Section 6]:

SPAs in common-domain deployments presume that the SPA, AS, and RS share
the same domain. In this case, redirect mechanisms are rendered superfluous
and OAuth should be replaced by different authentication solutions.

SPA with backend initiates the Code Flow (similar to web apps) and keeps the to-
kens stored on the backend. It creates a separate session between the backend
and the SPA using traditional session cookies.
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SPA without backend initiates the Code Flow and keeps the tokens stored within
the web browser. The SPA can communicate with the tokenEndp using Cross-
Origin Resource Sharing (CORS) (cf. Section 2.5.1).

Native application is “[...] a public client installed and executed on the device [...].
Protocol data and credentials are accessible to the resource owner” [35, Section
2.1]. “Apps implemented using web-based technology but distributed as a native
app, so-called "hybrid apps', are considered equivalent to native apps [...]” [19,
Section 3]. Native apps can use two approaches to interact with the authzEndp [35,
Section 9]: (1) using an embedded User Agent that is hosted by the native app and
shares the same security domain (i.e., the page content is accessible) or (2) using
an external User Agent that is hosted by the Operating System (OS) and has a
separate security domain (i.e., the page content is isolated)

The current best implementation practices are suggested as follows:

Web application: “Clients SHOULD NOT use the Implicit Grant (response type "to-
ken") or other response types issuing access tokens in the authorization response,
unless access token injection in the authorization response is prevented and [...]
token leakage vectors are mitigated” [52, Section 2.1.2].

Single page application: “The current best practice for browser-based applications is
to use the OAuth 2.0 authorization code flow with PKCE” [73, Section 4].

Native application: RFC 8252 “[...] requires that only external User Agents [...] are
used for OAuth by native apps” [19, Section 1]. “Public native app Clients MUST
implement the Proof Key for Code Exchange (PKCE) extension to OAuth, and

authorization servers MUST support PKCE for such clients [...]” [19, Section 6].
“The use of the Implicit Flow with native app is NOT RECOMMENDED?” [19,
Section 8.2].

2.2.4.2 Proof Key for Code Exchange

RFC 7636 defines the Proof Key for Code Exchange (PKCE) extension for public Clients
utilizing the Code Flow [75]. The extension is motivated by the observation that pub-
lic clients are not capable of maintaining a secret, that is, the code is not protected
with a client_secret. This can lead to the code interception attack, in which the at-
tacker intercepts the code returned from the authzEndp and redeems it to receive an
access_token.

Proof Key for Code Exchange (PKCE) introduces additional authzReq and tokenReq
parameters:

code_verifier is a random key, individually generated for each authzReq.
code_challenge is a transformed value of the code_verifier.
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code_challenge_method defines the code_verifier transformation algorithm. The plain
algorithm is a one-to-one mapping of code_verifier and code_challenge. The 5256
algorithm calculates a SHA-256 hash of the code_verifier.

The code_challenge and code_challenge_method is sent with the authzReq to the au-
thzEndp. The AS binds the code_challenge to the issued code and returns the code to
the Client. The code and code_verifier are sent with the tokenReq to the tokenEndp.
The AS transforms the code_challenge (obtained in the authzReq) and validates if it
matches the received code_verifier (obtained in the tokenReq). If they match, the AS
returns the tokens in the tokenResp.

Therefore, the Client proves within the fokenReq that it is the initiator of the corre-
sponding authzReq (i.e., knows the code_verifier value).

2.2.4.3 Multiple Response Type Encoding Practices

The response_mode authzReq parameter specifies the mechanism to be used for returning
the authnResp from the authnEndp on the OP to the redirectionEndp on the RP:

query is the default response_mode in the Code Flow and encodes the authnResp param-
eters in the query string of the redirect_uri [11, Section 2.1].

fragment is the default response_mode in the Implicit and Hybrid Flow and encodes the
authnResp parameters in the fragment of the redirect_uri [11, Section 2.1].

form_post encodes the authnResp parameters as HI'ML form values that are auto-
submitted in the UA to the redirect_uri. Thus, the authnResp parameters are
sent via the Hypertext Transfer Protocol (HTTP) POST method to the RP [53,
Section 2].

web_message sends the authnResp parameters via the postMessage API (cf. Section 2.5.3)
to the RP. As of yet, the OAuth and OIDC flows were executed in a single web
browser window using the so-called redirect flow. That is, the transitions be-
tween the RP and OP endpoints were executed using redirects within the same
window. In practice, the so-called popup flow is used to execute the OAuth
and OIDC flows in two windows. For instance, the authnReq is opened in a new
popup, displaying the Authentication & Consent page within the popup. Finally,
the postMessage API is used to return the authnResp from the popup back to the
web browser window. As of now, this response_mode was not formally specified,
but covered in an expired draft from 2015 [87]. However, this response_mode is
widely used in practice, wherefore it is investigated in Chapters 3 and 4 in more
detail.
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2.2.4.4 Client Authentication Methods

Client authentication methods are used by confidential Clients on the tokenEndp to
authenticate on the OP [67, Section 9]. The following Client authentication methods
may be registered during Client registration:

client_secret_basic usesa symmetric secret with the HTTP Basic authentication scheme.

client_secret_post uses a symmetric secret within the request body (i.e., as client_secret
parameter).

client_secret_jwt uses a symmetric secret to create an integrity protected JW'T that
is sent as client_assertion parameter to the tokenFEndp.

private_key_jwt uses an asymmetric private key to create a digitally signed JWT that
is sent as client_assertion parameter to the tokenFEndp.

2.2.4.5 Redirection Mechanisms

To work with the different Client types introduced in Section 2.2.4.1, there are multiple
redirection mechanisms:

Regular Web-Based URI Redirection uses a regular URI with the http or https schemes.
This mechanism is used in web apps and SPAs. [35, Section 3.1.2]

Example: https://sp.com/redirect?key=value

Private-Use URI Scheme Redirection uses a private-use URI scheme — also referred to
as custom URI scheme — such that the OS launches the native app and passes the
authzResp as launch parameter. The native app receives the authzResp and can
proceed as usual. This mechanism is used in native apps with external UAs. [19,
Section 7.1]

Example: com.sp:/redirect

Claimed https URI Scheme Redirection works similar to the private-use URI scheme
redirection. However, the claimed https URI is indistinguishable from a regular
web-based URI, but is still recognized by the OS as being registered with a native
app. This mechanism is used in native apps with external UAs. [19, Section 7.2]

Example: https://sp.com/redirect

Loopback Interface Redirection opens an ephemeral port — randomly assigned by the
OS — on the loopback network interface to receive the authzResp. This mechanism
is used in native apps with external UAs. [19, Section 7.3]
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Example Localhost: http://localhost:8080/redirect
Example IPv4: http://127.0.0.1:8080/redirect
Example IPv6: http://[::1]:8080/redirect

Manual Copy-and-Paste requires the End-User to manually copy the code from the
authzResp into the native app. This mechanism is not formally specified, but used
in native apps with external or embedded UAs.

Automatic Extraction monitors state changes within an embedded UA and automati-
cally extracts the code from the authzResp. This mechanism is not formally spec-
ified, but used in native apps with embedded UAs.

2.3 Document Object Model

The Document Object Model (DOM) is defined as “[...] the standardized Application
Programming Interface (API) for scripts running in a browser to interact with the HTML
document” [76].

If the web browser receives an HTML file from a server, it parses the document and
constructs a Document Object Model (DOM) tree where individual HTML elements
are represented as nodes. For instance, the root node within an HTML document is
represented by the <html> element, which usually contains two child nodes: the <head>
and <body> tags. That said, the DOM implements an interface to access and dynamically
modify these nodes using JS.

Beyond the pure document, the web browser’s DOM provides access to various other
properties and methods. In this thesis, we will work mainly with windows, in which the
actual document resides. Section 2.3.1 first introduces the different types of windows
within web browsers. Section 2.3.2 defines the concept of window groups combining
different windows into a single, hierarchical composition. Section 2.3.3 covers the Window
interface that defines the properties and methods related to windows. Section 2.3.4
finally presents the methods and properties used by windows to reference other windows
in order to communicate with them.

2.3.1 Windows

If a web browser loads an HTML document containing HTML markup, CSS, and JS, it is
loaded into a window. Windows are not related to the user’s conception of a Graphical
User Interface (GUI) window, but it is rather a theoretic concept introduced by web
browsers. That is, a single web browser window with multiple web browser tabs
actually contains multiple windows, although users perceive only a single GUI window.
Further, windows can contain nested windows by embedding them.
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In this thesis, we will use the following terminology to refer to the different types of
windows within a web browser:

e The primary window is defined as a superordinate window within a web browser.
It can contain several underlying frames and popup windows, but no other primary
window. If the web browser or a new web browser tab is opened by the user, a new
primary window is created. If the user loads a resource, for example by submitting
an URL, further frames and popup windows may be loaded by the primary window.

e The popup window is defined as a subordinate window within a web browser. It
is opened by either a primary window, superior popup window, or frame. It can
be opened as a stand-alone web browser window or as a new web browser tab.

e The frame is defined as an embedded window within a web browser. It is em-
bedded on either a primary window, popup window, or within a parent frame.
In HTML, frames are usually embedded with the <iframe> tag. The <object>,
<embed>, and <frame> tags provide alternative ways to embed external resources
into a document. In this thesis, the terms frames and iframes are used interchange-
ably.

Web browser tabs are either primary windows or popup windows.

2.3.2 Browsing Context, Execution Context, and Window Group

The browsing context is defined as “[...] the environment a browser displays a docu-
ment” [58]. Each primary window, popup window, and frame is an individual browsing
context. “Each browsing context has a specific origin [...] and a history that memorize
all the displayed documents, in order” [58]. Different browsing contexts can communi-
cate with each other using the methods described in Sections 2.5.3 and 2.5.4. However,
communication is restricted by the SOP, described in Section 2.4.

The execution context defines the environment in which a script operates [76]. Each
primary window, popup window, and frame has an individual execution context. In
addition, each execution context has an individual instantiation of the Window interface,
which is described in Section 2.3.3. If JS code is executed with the javascript protocol
in the URL, it inherits the execution context of the window containing that URL.

The window group consists of at least one primary window and may contain several
other popup windows and frames. All popup windows and frames within a window
group must be opened or embedded from any other window within the same window
group. Windows within the same window group can (1) reference each other using
the methods described in Section 2.3.4 and (2) communicate with each other using the
methods described in Sections 2.5.3 and 2.5.4. Windows within a different window group
are isolated and not able to communicate with each other.

Figure 2.4 exemplifies the concept of window groups:
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Primary Window Primary Window
€ > C A[eon € > C o]

Figure 2.4: Browsing contexts, execution contexts, and window groups. Each window
has an individual browsing and execution context. The first window group
consists of four windows. The and third window group
consist of one window each.

1. The user opens a new web browser window and navigates the primary window to
alice.comn.

2. alice.com contains an embedded frame (dave.com) and opens two popup windows:
eve.com is opened in a stand-alone web browser window and bob.com is opened in
a new web browser tab. Since all windows are related to the same primary window
on alice.com, they form the first window group.

3. The user opens a new web browser tab and navigates the primary window to
carol.com. This creates a new,

4. The user opens a new web browser window and navigates the primary window to
frank.com. This creates a new, third window group.

2.3.3 Window Interface

The Window interface programmatically represents a primary window, popup window,
or frame that contains an instantiated DOM tree including a document. Within each
window, the global variable window, which is of type object and implements the Window
interface, is exposed to the JS code. The window variable represents the root node of the
current window’s DOM tree and thus always refers to the window in which the JS script
is executed. Each window has its own Window object, always accessible via the global
window variable in JS [64].

The Window interface implements a variety of properties, methods, event handlers, events,
and more. Besides that, global variables created by JS scripts are scoped and attached
to the Window object of the window in which the scripts are executed. In this thesis, the
following basic properties and methods of the Window interface [64] are used:

Window.location returns an object containing information about the referenced win-
dow’s location. The object contains the following properties: href, protocol, host,


alice.com
alice.com
dave.com
eve.com
bob.com
alice.com
carol.com
frank.com
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port, pathname, search, hash and origin. With Window.location.href = "<URL>",
the referenced window can be instructed to navigate to the new URL using JS.
The Window.location.reload() method initiates a page reload.

Window.name returns the optional name of the referenced window. With Window.name =
"<WINDOW_NAME>", the name of the referenced window is set. Note that this is not
the document title — it is rather used to identify and receive a reference to the
named window (see Window Referencing in Section 2.3.4).

Window.localStorage returns a reference to the localStorage container in which key-value
pairs are stored permanently. JS code can write to localStorage with Window
.localStorage.setItem("key", "value") and read from localStorage with Window
.localStorage.getItem("key").

Window.sessionStorage returns a reference to the sessionStorage container in which key-
value pairs are stored temporarily until the window is closed. Other than that,
this property works similar to Window.localStorage.

Window.closed returns a boolean that indicates whether the referenced window is closed
or not.

Window.close() closes the referenced popup window. It throws an error if it is invoked
on a primary window or frame.

The next Section 2.3.4 introduces further properties and methods exposed by the Window
interface, which enable Window objects to reference each other.

2.3.4 Window Referencing

The DOM allows windows to reference each other as long as they are within the same
window group. Thus, one browsing context can reference another browsing context and
access the properties and methods scoped to its Window object. If both browsing contexts
share the same protocol, host, and port, they gain full access to the referenced window’s
Window object. Otherwise, they are provided with severely restricted access to certain
properties and methods of the referenced Window object. This access is controlled by the
SOP, which is explained in Section 2.4.

Window referencing is a fundamental prerequisite for web messaging. If a window wants
to send a message to another window within the same window group, it always has
to select the receiving window first. As soon as the receiving window is selected, the
message is finally sent to it by the sending window. Thus, we will first introduce the
basics of window referencing before the postMessage API — providing web messaging
functionality — is explained in more detail in Section 2.5.3.

The Window interface [64] exposes the following properties for window referencing:
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Window.self returns the window itself on which this property was accessed. This is equal
to the Window.window property itself: Window.self === Window.window.

Window.parent returns the parent window of this frame. Since primary windows and
popup windows do not have any parents (i.e. are not embedded), their parent
property refers to the window itself: Window.parent === Window.self.

Window.top returns the topmost window of this frame. Since primary windows and
popups windows are topmost windows (i.e. do not have any parents), their top
property refers to the window itself: Window.top === Window.self.

Window.opener returns the window that opened this popup window using Window.open().
If this window is a primary window or frame, it returns null.

Window.frames returns an array of frames embedded in this window. Each item within
the array is a Window object implementing the Window interface and represents the
given frame.

Window.frames.length Returns the number of elements within the Window.frames array.
That is, this property indicates the number of frames embedded on this window.

The Window.open() method The counterpart of the Window.opener property is the
Window.open() method defined as follows [65]:

var myPopup = Window.open(url, windowName, [windowFeatures])

This method loads the URL specified in the first parameter (string) into a new or
existing browsing context. If the second parameter (string) matches an existing Window |
.name property of a window within the same window group, the URL is loaded into that
window’s existing browsing context. Otherwise, a new popup window is created and the
Window.name property is set accordingly. Other than that, there are keywords reserved
for specific browsing contexts:

e _self refers to the current browsing context and is selected by default.
e _blank refers to a new, unnamed popup window.

e _parent refers to the parent browsing context.

e _top refers to the topmost browsing context.

Thus, if a new popup window is opened, the second parameter must be either set to
_blank or to an unused window name. If the third parameter (string) is omitted and
a new popup window is opened, it is added as a new web browser tab. Otherwise, if
the third parameter is specified, the popup window is opened as a new, stand-alone web
browser window. This parameter specifies, among other features, the default size of the
web browser window, such as width=300,height=500 (in pixels).

The Window.open() method returns a Window object representing the new popup window
that was created. This variable must be saved for future references, for example by
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adding it to the window’s global Window object with window.myPopup = window.open().
If the reference to the popup window was not saved or got lost, a new reference can be
obtained using the popup window’s name and an empty URL: var myPopup = window

.open("", windowName).

Example In order to understand the relations between primary windows, popup win-
dows, and frames, we will introduce an exemplary setup in Figure 2.5. Based on this
example, we will reconsider the properties and methods provided by the Window interface
for window referencing.

Primary Window Popup Window

alice.com bob.com
/I window.frames.length = 2

iframe on carol.com

iframe on eve.com

var%pup = Window.(%en() <
window.frames 8]

iframe on dave.com

%indow.frames[o].frames[a <
window.framgs[o]
:window.frames[fg] window.parent
window.parent or window.top window.parent iframe on frank.com
window.parent.parent or window.top window.opener window.frames[1]
window.top
Figure 2.5: Window referencing within the DOM. indicate directional win-

dow references moving upwards, whereas red arrows are moving downwards
in the window hierarchy.

The setup in Figure 2.5 is defined as follows:

e The user opens the primary window on alice.com,
— which opens a popup window on bob. com,
* which embeds an iframe on eve.com
*x which embeds an iframe on frank.com
— which embeds an iframe on carol.com,
*x which embeds an iframe on dave.com

The basic relations introduced in Figure 2.5 can be combined for multi-staged refer-
ences:

o If the iframe on eve.com wants to select its neighbor iframe on frank.com, it
(1) selects its parent window with window.parent, and (2) selects the subsequent
iframe with .frames[1]. The combined expression is: window.parent.frames[1].

o If the iframe on frank.com wants to select the iframe on dave.com, it (1) selects
the popup window with window.top, (2) selects the primary window with .opener,
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(3) selects the iframe on carol.com with .frames[0], and (4) selects the iframe
on dave.com with .frames[0]. The combined expression is: window.top.opener
.frames[0] . frames[0].

o If the iframe on eve.com wants to select the iframe on carol.com, it (1) selects its
parent window with window.parent, (2) selects the primary window with .opener,
and (3) selects the iframe on carol.com with .frames[0]. The combined expression
is: window.parent.opener.frames[0].

e In turn: If the iframe on carol.com wants to select the iframe on eve.com, it fails to
do so. Here, the SOP prohibits the iframe on carol.com from selecting the popup
variable scoped to the Window object of the primary window on alice.com. The
reasons for this restriction are outlined in the following Section 2.4.

2.4 Same Origin Policy

The Same Origin Policy (SOP) is a critical security mechanism within web browsers for
protecting web applications. It denotes “[...] a complex set of rules which governs the
interaction of different Web Origins within a web application” [76].

Web Origin The web origin of a URL is defined in [13, Section 4] as the triple: protocol
(e.g. http or https), host (e.g. example.com), and port (e.g. 80 or 443). If two URLs
have the same web origin, they are referred to as same-origin. If two URLs have a
different web origin, they are referred to as cross-origin. In this thesis, we will use the
terms web origin and origin interchangeably.

Set of Rules Although there is no formal definition of the SOP, Schwenk, Niemietz,
and Mainka [76] classified the diverse SOP rules into different subsets. For instance, one
subset protects the browsing context on one origin from being accessed by a browsing
context on a different origin. Another subset restricts the access to HT'TP cookies and
defines to which URLSs they are send. In terms of the Fetch API and XMLHttpRequests
(XHRs) (see Section 2.5.2), a different subset of SOP rules regulates the cross-origin
network communication and restricts websites from receiving cross-origin documents.

Same Origin Policy protects Browsing Contexts In this thesis, the SOP rules re-
stricting how a browsing context on one origin can interact with a browsing context on
a different origin are of major importance. In short, the SOP isolates browsing contexts
and execution contexts in cross-origin scenarios. For instance, the SOP restricts the ac-
cess to the Window object on one browsing context from being accessed by a cross-origin
browsing context. The term “restrict” implies that the access is not entirely prohib-
ited. For instance, the properties of the Window interface related to window referencing
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are still accessible in cross-origin contexts. However, the Window.document property is
strictly prohibited from being accessed by cross-origin browsing contexts.

As an example, a malicious website attacker.com must not be able to embed a website
bank.com as iframe and subsequently access the document within its Window object.
Also, the malicious website must not be able to execute JS code in the other website’s
execution context, for example by adding a <script> tag to the Window.document.body
property of the other website’s Window object.

Same Origin Policy in Single Sign-On In SSO, the IdP is usually located on a different
origin than the SP. Thus, the SOP policy restricts their communication. In order to
circumvent the SOP rules, the standard specifications [35, 67] define the use of HTTP
redirects. Cross-origin writes, such as links, redirects, and form submissions, are allowed

by the SOP [71].

In some scenarios, websites still need to access or communicate with cross-origin content,
such as advertisements and analytics. Additionally, SSO in the wild may use alternative
communication techniques (see Section 2.2.4.3), which eventuates in the demand of other
mechanisms (see Section 2.5.3) to securely circumvent the SOP restrictions. Therefore,
the following Section 2.5 describes controlled mechanisms to securely circumvent the
SOP restrictions.

2.5 Cross-Origin Communication

Web browsers provide several mechanisms relaxing the SOP for cross-origin communi-
cation. In this thesis, we will make use of three of them:

e Cross-Origin Resource Sharing (cf. Section 2.5.1) in conjunction with the Fetch
APT and XMLHttpRequests (cf. Section 2.5.2)

o postMessage API (cf. Section 2.5.3)

o Channel Messaging API (cf. Section 2.5.4)

2.5.1 Cross-Origin Resource Sharing

Cross-Origin Resource Sharing (CORS) “[...] is a part of HT'TP that lets servers specify
what hosts are permitted to load content from that server” [71]. Therefore, it “uses
additional HTTP headers to tell browsers to give a web application running at one origin,
access to selected resources from a different origin” [59]. Web apps using the Fetch API
or XHRs “[...] can only request resources from the same origin the application was loaded
from unless the response from other origins includes the right CORS headers” [59].

If the Fetch API or XHR sends an authenticated GET request (i.e. with HTTP cookies)
to a cross-origin server, CORS works as follows:
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1. The HTTP GET request is send to the cross-origin server. The Origin header
identifies the website from which the request is initiated.

GET /resources/protected.txt HTTP/1.1
Host: rs.com

Origin: https://alice.com

Cookie: [...]

2. In response, the server responds with an Access-Control-Allow-Origin header that
whitelists the origins allowed to access its resource. Also, the web browser rejects
any response that does not contain the Access-Control-Allow-Credentials: true
header if the “include credentials” option was set by the Fetch API or XHR. Fi-
nally, the Access-Control-Expose-Headers header whitelists response headers that
the web browser is allowed to provide to the requesting website.

HTTP/1.1 200 OK

Content-Type: text/plain
Access-Control-Allow-Origin: https://alice.com
Access-Control-Allow-Credentials: true
Access-Control-Expose-Headers: X-Custom-Header
X-Custom-Header: [...]

2.5.2 Fetch APl and XMLHttpRequests

“XMLHttpRequest (XHR) objects are used to interact with servers. You can retrieve
data from a URL without having to do a full page refresh. This enables a Web page to
update just part of a page without disrupting what the user is doing.”! [66]

As the successor of XHRs, the Fetch API pursues the same purpose. It “[...] provides
an interface for fetching resources (including across the network)” [60] as well, but “[...]
provides a more powerful and flexible feature set” [60] than its predecessor.

Since the Fetch API plays an important role in Section 5.1 (XS-Leaks in SSO: Revealing
End-User’s Account Ownership and Identity), we will provide an exemplary GET request
to a cross-origin resource using CORS in Listing 2.3. XMLHttpRequests are not covered
in detail in this thesis, thus they are not further introduced.

As shown in Listing 2.3, the fetch() method expects two arguments. At first, the
URL of the requested resource is specified. The second argument contains configuration
parameters [86, Section 2.2.5], from which the following are required in this thesis:

method specifies the HT'TP method.
mode specifies the associated mode of the request:

same-origin ensures that the request is send to a same-origin URL. The response
provides full access to the headers and the body.

IThis is a basic property of single page applications, which are introduced in Section 2.2.4.1.
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Listing 2.3: Example of Fetch API request with CORS.

fetch("https://rs.com/resources/protected.txt", {
method: "GET",

mode: "cors", // same-origin, cors, mo-cors
credentials: "include", // include, omit
redirect: "follow" // follow, manual

}) .then((response) => {
return response.text()
}) .then((text) => {
// Receive the text.
}) .catch((error) => {
// Some error occurred.

b

cors ensures that a CORS request is send to the URL. If the server does not
support CORS, an error is thrown.

no-cors neither sends a CORS request nor a same-origin request. The request
is restricted to only allow GET, HEAD, and POST HTTP methods and certain
request headers. The response is an opaque filtered response (opaque type),
which does not contain any response headers or a body (otherwise it would
violate the SOP).

credentials specifies if cookies should always be included in (include) or excluded from
(omit) the request. This applies to cross-origin requests as well.

redirect specifies if redirects should always be followed (follow) or not (manual). This
applies to cross-origin requests as well. If the manual value is set, the response is
an opaque-redirect filtered response (opaqueredirect type), which does not contain
any response headers or a body. The opaque filtered response and opaque-redirect
filtered response only differ in their type attributes (opaque vs. opaqueredirect).

In contrast to XHR, which calls an event handler on success or failure, the Fetch API
is entirely based on Promises. In particular, the fetch() method returns a Promise that
resolves on success or rejects on failure as soon as the response is available.

2.5.3 PostMessage API

Although the Same Origin Policy isolates cross-origin browsing contexts, the postMes-
sage API — introduced in HTML5 — “[...] provides a controlled mechanism to securely cir-
cumvent this restriction (if used properly)” [72]. Therefore, the Window interface exposes
the Window.postMessage () method which “[...] safely enables cross-origin communication
between Window objects” [72].

“Broadly, one window may obtain a reference to another [...] and then dispatch a
MessageEvent on it [...]. The receiving window is then free to handle this event as needed.
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The arguments passed to Window.postMessage () (i.e., the "message") are exposed to the
receiving window through the event object” [72].

In general, the postMessage setup involves two parties: the source window that will
send the message and the target window that will receive the message. Therefore,
the source window implements the postMessage sender and the target window im-
plements the postMessage receiver.

postMessage Sender The Window.postMessage() method is defined as follows [72]:

Window.postMessage (message, targetOrigin, [transfer])

Within the source window, the Window.postMessage() method is invoked on the target
window’s Window object. Section 2.3.4 demonstrates how the target window is refer-
enced.

The first parameter specifies the actual data that is send to the target window. This
data is either a primitive data type or any object that supports serialization with the
structured clone algorithm [63].

The second parameter (string) specifies the origin of the target window as a URL. If the
origin provided within this parameter does not match the target window’s origin, the
event is not dispatched within the target window — only if both origins match, the target
window is able to receive the message. The target origin "*" is used as a wildcard that
matches any origin — in this case, every target window is able to receive the message
(regardless of its origin).

The third parameter is optional and specifies an array of Transferable objects that are
sent to the target window. The scope of the transferred objects is moved to the target
window’s browsing context. Thus, the source window’s execution context can no longer
access these objects.

The source window finally creates a new MessageEvent object implementing the
MessageEvent interface based on the sender’s parameters and finally dispatches that event
on the target window.

postMessage Receiver The target window must register an event listener before the
message is sent by the source window [72]:

window.addEventListener("message", (event) => {
// event implements the MessageEvent interface

b
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The first parameter specifies that this event listener only listens for dispatched events
implementing the MessageEvent interface.

The second parameter specifies the callback that is invoked as soon as an event im-
plementing the MessageEvent interface is received at the target window. The received
MessageEvent object is passed as parameter to the callback.

The MessageEvent interface exposes the following properties:

MessageEvent.data is the actual data that is send by the source window. The data type
is preserved.

MessageEvent.origin is the origin of the source window at the time the
Window.postMessage() method was invoked. The origin is returned as string:
<protocol>://<host>[:<port>].

MessageEvent.source is a reference to the Window object of the source window. This
reference may be used by the target window to send a message back to the source
window.

postMessage Example Figure 2.6 illustrates a common use case of the postMessage
API:

Primary Window
6 é e £ [2lice.com
Popup Window | "Dllxl
function receiver(event) carol.com —
console.log("@Alice: " + event.data);

3} . .
window.addEventListener("message", receiver); funcgolr?snofgcfolgvﬁr@gggfgf.) "+ event.data);

. : . ;

L— event.source.postMessage(

var popup = window.open("https://carol.com", "C"); |yessageEvent "Hello from Carol!",

kN

popup.postMessage(
"Hello Carol!",
"https://carol.com"

)i
3. . .
window.addEventListener("message", receiver);

)i

window.frames[0].postMessage(
"Hello Bob!",
"https://bob.com"

); — Console " Sources " Network
iframe on bob.com | ey < @Carol: Hello Carol! A
function receiver(event) { < @Alice: Hello from Carol!
console.log("@Bob: " + event.data); —
event.source.postMessage( < @Bob: Hello Bob! =
"Hello from Bob!",
e < @Alice: Hello from Bob!

)i

3}
window.addEventListener("message", receiver);

Kl

Figure 2.6: Cross-origin communication with the postMessage API. The primary window
sends messages to the iframe and popup window and receives a response
from both of them. For the sake of simplicity, we assume a sequential,
deterministic execution order (which is different in practice).
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1. The primary window on alice.com embeds a cross-origin iframe on bob.com.

2. The primary window on alice.com opens a cross-origin popup window on carol.
com.

3. The primary window sends a message to the cross-origin iframe and popup window.
In both cases, the target origin is specified, such that only bob.com and carol.com
can receive the respective messages.

4. As soon as the iframe or popup window receive a message, they respond with a
message to the source window. This time, the target origin is the wildcard, such
that every window can send a message to bob.com or carol.com and receive a
response.

The security considerations of the postMessage API are worked out in Section 4.2.

2.5.4 Channel Messaging API

“The Channel Messaging API allows two separate scripts running in different browsing
contexts [...] to communicate directly, passing messages between one another through
two-way channels (or pipes) with a port at each end.” [69]

The Channel Messaging API is examined based on Figure 2.7:

1. The MessageChannel object is initialized with the MessageChannel() constructor
within the primary window on alice.com. It implements the MessageChannel
interface [62], which exposes the following properties:

MessageChannel.portl returns porti of the channel, which is used by the execution
context that initializes the channel.

MessageChannel.port2 returns port2 of the channel, which is used by the execution
context on the contrary side of the channel.

Both ports implement the MessagePort interface [70], which exposes the following
methods:

MessagePort.postMessage (message, [transfer]) sends the message from the ref-
erenced port through the channel to the contrary p