
The Power of Recognition – Secure Single Sign-On using
TLS Channel Bindings

Jörg Schwenk
Ruhr-University Bochum

Bochum, Germany
joerg.schwenk@rub.de

Florian Kohlar
Ruhr-University Bochum

Bochum, Germany
florian.kohlar@rub.de

Marcus Amon
Ruhr-University Bochum

Bochum, Germany
marcus.amon@rub.de

ABSTRACT
Today, entity authentication in the TLS protocol involves
at least three complex and partly insecure systems: the
Domain Name System (DNS), Public Key Infrastructures
(PKI), and human users, bound together by the Same Origin
Policy (SOP). To solve the security threats resulting from
this construction, a new concept was introduced at CCS
’07: the strong locked same origin policy (SLSOP). The ba-
sic idea behind the SLSOP is to strengthen the identifica-
tion of web servers through domain names, certificates and
browser security warnings by a recognition of public keys to
authenticate servers. Many weaknesses of current protocols
emerging from an insecure PKI or DNS can thus be handled,
even without involving the user. This concept has also been
adapted by the IETF in RFC 5929.

The contribution of this paper is as follows: First we
present a new SLSOP-based login protocol and use it to de-
sign a secure Single Sign-On (SSO) protocol. Second we pro-
vide a first full proof-of-concept of such a protocol and also
the first implementation of the channel binding described in
RFC 5929, implementing a cross-domain SLSOP both for a
new type of authentication cookies, as well as for the HTML-
based POST and Redirect bindings. Finally we evaluate
the security of this protocol and describe, how our protocol
copes with modern attack vectors.

Primary Classification:
H. Information Systems - H.m MISCELLANEOUS

Additional Classification:
E. Data - E.m MISCELLANEOUS

General Terms:
Security

Keywords:
DNS, PKI, TLS, Identity Management
Single Sign-On, SOP, SLSOP

1. INTRODUCTION
Today, complex and error-prone identification is used on

the Internet, where much simpler recognition techniques may

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DIM’11, October 21, 2011, Chicago, Illinois, USA.
Copyright 2011 ACM 978-1-4503-1006-2/11/10 ...$10.00.

be sufficient. This can best be illustrated by HTTP session
cookies, in combination with TLS with server authentica-
tion:

• HTTP session cookies are stored under the Same Ori-
gin Policy (SOP), i.e. a human-readable domain name
is the access key. Thus attacks on the Domain Name
System (DNS, e.g. [18]) directly influence the security
of these cookies.

• Typically it is argued that domain names are protected
by TLS server certificates. However, it has been shown
that weaknesses in the hash function MD5 can be used
to fake valid certificates for any domain [34]. Moreover,
most Internet users tend to ignore browser warnings on
invalid certificates [8].

• Now if the browser is presented with a fake, but valid
certificate, or if the user accepts a fake certificate, the
HTTP session cookie is sent to the wrong server, and
the security of the session is compromised.

Thus the security of an HTTPS session not only depends
on the (local) security of the TLS protocol, but also on the
(global) security of the DNS and the Public Key Infrastruc-
ture (PKI) for TLS server certificates, and last but not least
on user behavior. The problems resulting from the complex-
ity of this identification process became obvious with the
advent of Phishing and Pharming attacks starting in 2004
(although they have been described at least seven years ear-
lier), and meanwhile DNS [18] and MD5 based PKIs [34]
have been completely broken.

A much simpler method has been proposed by Karlof et al.
at CCS 07 [20], and independently by Masone et al. at FC
2007 [28]: The Strong Locked Same Origin Policy (SLSOP)
needs neither DNS nor PKI: SLSOP cookies are stored using
the public key of the TLS server certificate (or the hash of
this certificate, etc. [2]) as the access key, and it even works
with self-signed certificates. In 2010 Channel Bindings for
TLS have been proposed by the IETF for standardisation in
RFC 5929 [2]. One of these adapts the idea of making a hash
of the server public key available for higher layer protocols,
e.g. Javascript, HTML, HTTP or others.

Thus, the contributions of this paper are as follows: First
we show, how to form a secure browser-based Single Sign-On
(SSO) protocol based on the ideas of TLS Channel Bindings
and Strong Locked Origins and then we show the applica-
bility of these concepts by presenting a proof of concept

(realized as a browser extension for Firefox 3.6). Our solu-
tion yields the first known implementation of RFC 5929 [2]
and implements this secure SSO protocol both for a novel
type of cookies (which we call SLSOP-cookies) as well as for
the standard HTTP POST and Redirect bindings which are
used in most internet services as of today. We will also pro-
vide evidence that our protocol is easy to deploy (especially
if relying on the HTTP bindings), as only small changes have
to be applied to the processing of HTTP requests over an
SSL transport.

2. RELATED WORK

SLSOP and WSKE-Cookies. At the CCS 2007 Karlof et al.
presented a strong attack on the domain name system called
Dynamic Pharming. They discovered several flaws in the do-
main name system that could lead to scenarios in which a
domain is able to impersonate any other domain. As access
decision based on the ordinary same-origin policy only rely
on used domain, protocol and port they proposed to add
several cryptographic means in order to prohibit such ex-
ploitation of DNS bugs to gain unauthorized access. They
proposed to improve the common same-origin policy by pre-
senting two new policies called (weak and strong) locked
same-origin policies [20]. The strong locked SOP associates
secured web content to the originating server’s public key
and certificate. The weak locked same-origin policy, being
easier to implement but less secure, relied on the validity
of certificate chains, so server’s with mismatching or self-
signed certificates were unable to access content secured by
this policy.

A similar approach for cookies was presented at FC ‘07
by Masone et al. [28]. They proposed that cookies set by a
web server after an initial TLS handshake were only to be
returned to that same server when the identical keypair is
used in following TLS sessions.

Channel Bindings for TLS. In 2010, RFC 5929 [2] was
published as proposed standard. The authors of this doc-
ument describe three types of channel bindings for TLS,
namely “tls-unique”, “tls-server-end-point”, and “tls-unique-
for-telnet”. In the“tls-server-end-point“-description, the bind-
ing to the TLS channel is achieved using a hash of the
server’s public key, which is essentially identical to the ideas
presented in this paper.

Attacks on DNS and on MD5 based PKIs. In 2008, Dan
Kaminski gave a talk at Blackhat [19] where he presented
a DNS cache poisoning attack based on the birthday para-
dox, with an attack complexity of 28. This vulnerability
could not be patched within the DNS protocol itself, the
UDP protocol was used to fix it. But even with UDP source
port randomization employed, the attack only has complex-
ity 216, so DNS is not (and never was) a secure system.

The fact that the hash function MD5 has random collision
is known for a while now [7]. In 2009, this fact was used
by Stevens, Lenstra and de Weger in a first realistic attack
on MD5 based PKIs for TLS server certificates [34]. The
team was able to compute a fake certificate with the same
MD5 hash as a valid TLS certificate, with the difference
that it could be used as a CA certificate. Thus arbitrary
new certificates, for any domain name, could be issued.

SSO (OpenID, Cardspace, SAML). A Single Sign-On pro-
tocol is enabling a user/client to authorize and authenticate
to some service provider. The client uses a token (in most
cases a cookie), which he obtains from a trusted third party
(TTP) after authenticating to this party (usually by means
of username/password or hardware tokens), in order to gain
access to all services to which this user is entitled to. Over
the past years, SSO evolved from the original MIT Kerberos
protocol to a browser-based variant and now exists in vari-
ous types. The benefit of using such a three-party protocol is
that it suffices to remember only one loginID and one pass-
word for all services (namely the one used to authenticate
to the TTP).

The original Kerberos protocol and related three party
schemes have been intensely studied without finding severe
security deficiencies [5, 3]. However, especially the browser-
based federated identity management protocols that later
evolved turned out to have some vulnerabilities: In addi-
tion to the Microsoft Passport analyses of Kormann, Rubin
and Slemko [22, 33], Groß analyzes SAML, an alternative
framework for the exchange of authentication and autho-
rization information used for Single Sign-On protocols [12,
26]. He shows that SAML is vulnerable to adaptive attacks
where the adversary intercepts the authentication token con-
tained in the URL. The flaws in the SAML protocol have
led to a revised version of SAML [6]. Groß and Pfitzmann
analyzed this version, again finding the need for improve-
ments [13]. Similar flaws have also been found in the analy-
sis of the Liberty Single Sign-On protocol [30] due to Pfitz-
mann and Waidner. The authors point out some weaknesses
against man-in-the-middle attacks. Another variant of SSO
protocols are distributed (or decentralized) Single Sign-On
protocols, e.g. OpenID [31]. To access a server through
OpenID, a user must have created an OpenID-Identity, pro-
vided by an OpenID-Provider. Due to the distributed na-
ture of the architecture of this protocol there exist many
OpenID-Providers.

Secure SSO with Client certificates. There has also been
some work on adding client certificates to Single Sign-On
protocols. At ESORICS 2008 Gajek et al. proposed a vari-
ant of a browser-based Kerberos scheme which uses TLS
with client authentication[11]. At SWS ‘08 Gajek et al. pre-
sented stronger SAML bindings for TLS [32] and at ARES
2010 Kohlar et al. presented a Single Sign-On protocol [21]
that uses SAML-tokens for the login, gaining the advantage
of being able to sign and/or encrypt these tokens for the
receiving party.

Recognition for TLS. For TLS, there are three possible
recognition scenarios, with different roles for client and server:

Recognition of the Browser: Client Certificates.
In this scenario, the server recognizes the client based on a
TLS client certificate. This is similar to the SLSOP, with
the duties of client and server exchanged. Again, no com-
plex PKI validation strategies are needed, the server may
simply use the public key from the (probably self-signed)
client certificate (or an hash of the certificate, etc.) as the
access key for an authorization database.

The security of this solution is well-studied, since client
authentication is part of the TLS handshake here. For login,
this solution is available on all browsers and web servers,

but was seldom used due to the belief that a complex PKI
structure for clients would be needed.

For SSO, this solution has been discussed within the SAML
security group of OASIS [6], and its security has been proven
in [11]. The main disadvantage of this approach is that the
browser becomes uniquely recognizable, which is in conflict
with privacy considerations.

Recognition of the Server: TLS-server-end-point
binding. As described in [2], the end-point binding enables
to make security decisions on the basis of the public key of
the TLS server certificate: The client recognizes the server.
Therefore, the browser may remain anonymous in most situ-
ations, and only discloses its identity to a well-known server.

The security of this solution is hard to investigate, because
two protocols on different levels of the protocol hierarchy are
combined: TLS and HTTP.

Recognition of the TLS Session: tls-unique bind-
ing. Here client and server both recognize a certain TLS
session. A cryptographic value (the first Finished message
sent during the TLS handshake protocol) which captures the
essence of this section is used in subsequent, higher layer
message exchanges. Client and server can thus verify if they
are using the same session or different sessions (in case of a
man-in-the-middle attack on the HTTP connection).

To give an illustration of the concept: We can use the first
of the two Finished messages from the TLS handshake as an
intermediate value and then we can combine this value with
password based authentication in the following way: The
password is not transmitted in the clear over TLS, but is in-
stead hashed together with this first Finished message. The
server will compare this value with the hash of the stored
password together with the first Finished message of the
server’s TLS handshake protocol. If there is a man-in-the-
middle attack on the HTTP connection, the two values will
not match and therefore access will be denied.

Jager et al. showed at ASIACRYPT ‘10 [17], how such
a binding can be used in a generic way. To stick to our
earlier example, TLS could be used only as a key exchange
protocol and the Finished message(s) (or the whole message
transcript) could be adopted in a subsequent authentication
protocol. Kohlar et al. have shown at ARES ‘10 [21], how
such a binding can be achieved for SAML-Authentication.

Origin-Problems. At W2SP 2008 Jackson and Barth pub-
lished some weaknesses regarding the scripting-policy used
in browsers and the locked same-origin policies [16], which
we take as basis to construct our new Single Sign-On scheme.
The underlying problem is, that the SLSOP only protects
web objects from being accessed by other web objects orig-
inating from different (possibly malicious) domains. Spe-
cially prepared sub-resources in the same domain (e.g. script-
objects) can still be used to compromise the origin of pro-
tected objects in sub-origins, i.e. restricted cookies can be
accessed by injecting a script into a document with the ap-
propriate path.

However, this attack is not applicable in full to our work as
we introduce a novel type of cookies which is not accessible
by standard means, explicitely to cope with such attacks.
Regarding the HTTP Redirect and HTTP POST bindings
and without any additional security measures, our solution
is still be vulnerable to the mentioned attack. The authors

suggest some extensions to browser policies, one of which
is very close to the ideas in our work, namely the usage of
“YURLs” [1]. A YURL is basically a URL which includes
public key information in front of the hostname. In our
case, the URL could be extended with the public key (or
the fingerprint of the corresponding certificate) of the service
provider.

Remark: Another way to easily deny access to cookies
from scripts executed at the client would be to use the
HTTP-Only flag[14]. This flag tells the browser that this
particular cookie should only be accessed by the correspond-
ing server. This does not however protect the cookie from
being sent to a malicious website impersonating the honest
server.

(Login) CSRF-attacks. At CCS ‘08 Barth et al. [4] pre-
sented a new type of Cross-Site Request Forgery (CSRF)
attacks, called login CSRF in which the attacker forges a
cross-site request to the honest site’s login form, resulting
in logging the victim into this web site as the attacker. As
proposed in the paper, security can either be preserved by
evaluating the referrer (in those cases, where such a refer-
rer is transmitted) or by adding an additional field to the
ticket (cookie), containing the issuing server and/or its pub-
lic key. Though the existence of such solutions, the authors
also described shortcomings for all three.

3. SECURE SSO WITH SLSOP
In this chapter, we describe a secure SSO protocol based

on the tls-server-end-point binding. In the following we will
substitute the term “tls-server-end-point binding” with the
term SLSOP. Though the terms are not identical in mean-
ing, the basic idea of “pinning” information (in our case the
identity of the service provider) to a certain certificate/pub-
lic key is the same for both. We propose three cross-domain
data transport mechanisms for our solution, which we have
implemented in our Firefox-based prototype: HTML forms
(POST binding), HTTP redirect (Redirect binding) and a
new type of cross-domain cookies that we call SLSOP cook-
ies and that we describe in detail in section 3.3.

3.1 SSO with SLSOP-Cookies
Figure 1 gives a fairly detailed overview of the actions that

should take place in a ideal browser implementation. (We
will see later that there are some limitations with current
browsers.)

We assume that an initial authentication of the user has
taken place using the current browser, such that an SLSOP
authentication cookie for the Identity Provider (IP) is al-
ready stored within the browser. There is no SLSOP au-
thentication cookie for the relying party (RP), thus SSO
must be performed. All connections to IP and RP are es-
tablished over TLS, thus a TLS server certificate is always
available. For sake of simplicity we assume that there is only
a single server with a single certificate for IP and RP, resp.
However, our solution works even if IP and RP are imple-
mented as server farms, with different certificates for each
server.

During the first connection to the RP, the browser B dis-
covers that no SLSOP authentication cookie is stored for the
public key presented by RP, thus resulting in an authenti-
cation request by the RP.

After the TLS handshake with IP, the browser B retrieves

Figure 1: Full Single Sign-On Procedure based on the Strong Locked Same Origin Policy

the authentication cookie for keyIP from the local database,
and adds a X-SLSOPCookie: header, which contains the
value of the authentication cookie, to the HTTP request.
The URL (not the public key) of RP is also sent to IP, in
another HTTP header line.

After verifying the authentication cookie, IP retrieves the
authorization parameters rights of the user from its database,
and constructs an authenticator token tk that contains the
URL of RP, rights, and a signature on both values. Then IP
looks up the (list of) public key(s) pk′

RP of the transmitted
URL, and adds an Set-SLSOP-Cookie: header to the HTTP
response, which contains two parameters: First the public
key(s) (corresponding to the URL of RP) under which the
token shall be stored, and second the token itself.

After receiving the answer, the browser first stores the to-
ken tk under the key pk′

RP , and then performs the HTTP
Redirect to RP. (Remark: Here, an attack on DNS and/or
PKI may result in a TLS connection with the adversary,
rather than with RP.) After completion of the TLS hand-
shake with server key pkRP , the browser searches his local
database for an entry with key pkRP . If there is an entry,
the value will be sent to RP in an X-SLSOPCookie: header.

Remark: Please note that the authentication token tk des-
tined for RP will only be sent if pk′

RP = pkRP . It is also
important to notice, that the choice of where this token will
be stored has a severe security impact. For our SLSOP cook-
ies we explicitely chose to use an external database, that is
not accessible via the browser’s DOM. Considering the vast
number of known attacks, that enable an adversary to gain
access (read/write/alter) to information stored in the DOM
without requiring him to impersonate a target website, we
think it would be unwise to store our security token in this
insecure memory area. However, maintaining the current
status quo and allowing for such cookies to be stored in the

DOM would still provide a higher level of security than be-
fore and lower the difficulty of implementations.

3.2 HTTP Cross-Domain Communication
In this section we shortly describe the two HTTP Cross-

Domain Bindings we chose to implement. One may notice,
that these two bindings provide weaker security guarantees
than our SLSOP-Cookie solution. The reason why we de-
cided to implement these two bindings is that these two
bindings are used in many web sites for the transport of in-
formation and we can therefore provide a sort of “backwards
compatibility”. We stress however, that maximum security
can only be achieved by adapting the mechanism presented
in Section 3.3.

3.2.1 HTTP Redirect Binding
To secure the data exchanged via HTTP-Redirect, the ori-

gin server can append the public key(s) of the target server
to the URL enclosed with ** next to the Location: Header
field:

Location: https:://URL/**PK1,...,PKN**

The redirect will only be followed, if the target server is
able to present one of the supplied public keys during the
successful execution of the SSL Handshake. After successful
verification, the User Agent (UA) extracts the appended
public key(s) and follows the redirect to the intended URL.
To prevent any harm, the user should not be able to enforce
the execution of the redirect. An exemplary code snippet of
how this binding can be realized is shown in Listing 8.

3.2.2 HTTP-POST Binding
To ensure the security of POST-data exchanged between

two hosts the issuing host can request the UA to retrieve the

public key of the target host by invoking a certain JavaScript
function incorporated in the UA. The function takes the
URL of the target host as its argument and returns the
public key in string representation:

String getPublicKey (

[String: URL of target host]

);

Once the function gets called, the UA initiates a SSL trans-
port to the given URL. If the SSL transport could success-
fully be established, the public key of the target host is re-
turned, otherwise the empty string is returned. The host
serving the form then checks, if the returned value matches
one of the intended public keys from its list. While this has
the advantage to enable the server to assist the user if any
error occurs, it has (at least in our prototype implementa-
tion) the drawback of being prone to a dynamic pharming
attack. This could be mitigated by reusing the same socket
for retrieving the cert and sending the POST data.

Listings 6 and 5 show how the public key can be extracted
from inside the DOM if the token was transmitted via a
POST Request.

3.3 Structure of the SLSOP Cookie
To be able to set persistent, identity bound authentica-

tion tokens, we introduce a new cookie-like mechanism. In
contrast to ordinary cookies our SLSOP Cookie is capable
of being securely shared across domain-boundaries. As well
as for the HTTP-POST and HTTP-Redirect bindings the
data included in a SLSOP-Cookie is also bound to public
keys.

The syntax for the SLSOP-Set-Cookie response header
(according to [23]) is the following:

Listing 1: SLSOP-Cookie Response Header
s l sop−s e t c o ok i e = ”SLSOP−Set−Cookie : ” s l s o p c o ok i e s
s l s o p c o ok i e s = 1#s l s op cook i e
s l s op c ook i e = NAME ”=” VALUE

∗ (”; ” s l s opcook i e−av)
NAME = at t r
VALUE = value
s l s opcook i e−av = ”Rece ive r s ” ”=” value

| ”Domain” ”=” value
| ”Max−Age” ”=” value
| ”Path ” ”=” value

• Receivers: A comma separated list of Public Keys,
which are entitled to receive the SLSOP-Cookie.

• Domain: The domain, to which the SLSOP-Cookie
should be returned (optional).

• Max-Age: The time period, until which the cookie will
be stored (optional).

• Path: The path of a URI to which the SLSOP-Cookie
should be sent (optional).

The header syntax for returning a SLSOP-Cookie within an
HTTP Request is:

Listing 2: SLSOP-Cookie Request Header
s l s op c ook i e = ”SLSOPCookie : ”

1 ∗ ((”; ” | ” , ”) cookie−value)
s l s o p c o ok i e s = 1#s l s op c ook i e

s l s op c ook i e = NAME ”=” VALUE [”; ” path]
[”; ” domain]

NAME = at t r
VALUE = value
path = ”$Path ” ”=” value
domain = ”$Domain” ”=” value

The following rules apply to choosing applicable cookie-
values from among all the SLSOP-Cookies the UA possesses:

• Public Key Selection: The public key presented
during the SSL handshake between the UA and the
target server must match one of the public keys sup-
plied over the receiver field.

• Domain Selection: The target server’s fully-qualified
host name must domain-match the Domain attribute
of the XSLSOP-Cookie. This is primarily meant to
limit the scope of the SLSOP-cookie and especially to
cope with wildcard certificates (see [27]).

• Path Selection: The Path attribute of the cookie
must match a prefix of the request-URI.

• Expire Selection: XSLSOP-Cookies that have ex-
pired should have been rejected and thus are not send
to the server.

4. DEMONSTRATOR

Description
To show the applicability of the above concepts, we im-

plemented a browser extension for the Mozilla Firefox 3.6
that realizes SSO protocol for SLSOP-cookies as well as for
the HTTP Redirect and POST binding. In this section we
will give a brief description of the functionality and inner
structure of our extension.

To be able to interact with HTTP-requests and responses
the plugin first registers itself as a so-called observer for the
following events:

• http-on-modify-request

• http-on-examine-response

These two events are fairly standard and provide in com-
bination with an nsIHttpChannel means to manipulate in-
and outgoing http-messages. We additionally created a third
event called getPublicKeyEvent that triggers our exten-
sion when a public key is requested. We realized it as a cus-
tom DOM event, to enable safe message exchange between
unprivileged (DOM) and privileged (Chrome) javascript. It
can be raised by the javascript residing in the DOM to re-
trieve the public key of the desired URL.

Once an http request is started, we first check the scheme
of the URL. If we detect an oncoming SSL/TLS handshake
in the target URL (by looking for “https”), we interrupt
and pause the request. At this point we expected to be
able to retrieve the status information of the underlying
SSL transport and manipulate the request according to our
SLSOP. But the internal SSL-processing of firefox (see also
[28]) proved us wrong:

1. The HTTP request is about to be queued for sending
(This is where our http-on-modify-request event gets
raised).

2. The socket for sending the HTTP-request is initiated
(SSL information becomes available).

3. The HTTP requests has been sent.

Thus, when our http-on-modify-event gets raised and this
is the first request which initiates the socket, we do not have
the required SSL-status information at hand yet, which we
need to evaluate the request appropriately. We work around
this issue by establishing a SSL socket to the URL the actual
request is intended to reach:

Listing 3: Dummy Socket
f e t chCer t : function (aHost) {

var t r an spo r tS e rv i c e = Cc [”@mozil la . org /network/
socket−t ransport−s e r v i c e ; 1 ”] . g e tS e rv i c e (Ci .
ns ISocketTranspor tServ i ce) ;

var socket = t r an spo r tS e rv i c e . c reateTransport ([”
s s l ”] , 1 , aHost , 443 , nu l l) ;

// at tach input and outputstreams , needed to
i n i t i a l i z e the socket

var inputStream = socket . openInputStream (Ci .
nsITransport .OPEN BLOCKING,0 , 0) ;

var outputStream = socket . openOutputStream (Ci .
nsITransport .OPEN BLOCKING,0 , 0) ;

// g ive i t some time to f i n i s h socket connect
and s s l handshake

// w i l l break a f t e r timeout or succe s s f u l
r e t r i e v a l of s s l−cer t

var date = new Date () ;
var curDate = nu l l ;
do {

curDate = new Date () ;
i f (socket . s e c u r i t y I n f o instanceof Ci .

nsISSLStatusProvider) {
var s e c I n f o = socket . s e c u r i t y I n f o . QI(Ci .

nsISSLStatusProvider) . SSLStatus ;
i f (s e c I n f o) {

var c e r t = socket . s e c u r i t y I n f o . QI(Ci .
nsISSLStatusProvider) . SSLStatus . QI(Ci .
nsISSLStatus) . s e rve rCer t ;

break ;
}

}
}
while (curDate−date < timeout) ;

}

Once this socket is established and the handshake was com-
pleted successfully, we return the certificate and extract the
included Public Key:

Listing 4: Public Key Extraction
extractPubKey : function (aCert) {

// Get the pub l i c Key out of the ASN.1 s t ruc ture
var asn1Tree = Cc [”@mozil la . org / s e c u r i t y /

nsASN1Tree ; 1 ”] . c r e a t e I n t e r f a c e (SLSOP Ci .
nsIASN1Tree) ;

asn1Tree . loadASN1Structure (aCert . ASN1Structure) ;
//Get Publ ic Key f i e l d and normalize output
var pubkey = asn1Tree . getDisplayData (12) ;
pubkey = pubkey . s l i c e ((pubkey . indexOf (’ : ’)+2) ,

pubkey . la s t IndexOf (”\n\n”)) ;
pubkey=pubkey . r ep l a c e (/\ s /g , ””) ;
return pubkey ;

} ,

[Remark: We are aware that this workaround enables an
attacker to perform active MITM attacks during the second
connection stage (after fetching the certificate). But this
is only a limitiation of our extension at the time being, an
actual correct implementation would not be prone to such
an attack.]

Having obtained this certificate and extracted the public
key, we now possess the public key we requested.

Because of the in many ways different format of our SLSOP
cookies in comparison to common browser cookies, we man-
age a separate SQLite database for our plugin in which we
store the SLSOP cookies.

Upon encountering an SSL-secured request and retrieving
the corresponding public key of the server we want to access,
we search in this SQLite database for an applicable cookie.

In a normal case we gained such a cookie in some previous
connection to a trusted Identity Provider and so we should
be able to find the desired cookie. If we do not find a cookie
for the server, which could be the result of a MITM attack
(wrong public key) or a missing registration and/or cookie
request at the IP, we abort the connection or simply do not
attach any cookie. If we found the cookie, we again do the
preliminary checks as described in section

If all checks passed up to this point we append the cookie
using the additional header field X-SLSOPCookie: ... to
the original http request:

Listing 5: Public key retrieval by the browser ex-
tension
onModifyRequest : function (aHttpChannel) {

//We only care about SSL−secured responses
i f (aHttpChannel .URI . schemeIs (”https ”)) {

var c e r t = this . f e t chCer t (aHttpChannel .URI .
host) ;

i f (c e r t == nu l l) {return ;} // s i l e n t f a i l . . .
var pubKey = this . extractPubKey (c e r t) ;
//Get database en t r i e s for supp l i ed pub l i c key

and URI.
var value = cookieDB . getCookie (pubKey ,

aHttpChannel .URI) ;
i f (va lue == nu l l) {return ;} //no cookies found

, so do nothing
//Cookie found , append i t
aHttpChannel . setRequestHeader (”X−SLSOPCookie ” ,

pubKey , f a l s e) ;
}

} ,

If the IP wants to transmit the token via a POST-request,
it can raise the getPublicKeyEvent from inside the DOM
to obtain the Public Key. In short, the following happens
once this event gets triggered: a dummy socket as described
earlier is established and the received public key will be ap-
pended as an attribute to the DOM at the position of which
the event was triggered:

Listing 6: DOM-Access
<s c r i p t>
var element = document . createElement (”

SLSOPCookiesDataElement ”) ;
element . s e tAt t r i bu t e (” id ” , ”MyPubkeyRetriever ”) ;
element . s e tAt t r i bu t e (”getPublicKey ” , ”https :// xxx .

xxx . xxx/ ”) ;
document . documentElement . appendChild (element) ;
var evt = document . createEvent (”Events ”) ;
evt . in i tEvent (”getPublicKeyEvent ” , true , f a l s e) ;

// i s t r i ggered , when pub l i c key i s requested
element . dispatchEvent (evt) ; // branch to the

extension

var PK = document . getElementById (”
MyPubkeyRetriever ”) . g e tAt t r ibute (”PublicKey ”) ;
// get the pub l i c key

i f ((PK==PK1) | | (PK==PK2) | |) // search for
r e t r i v ed pub l i c key in cookie database

{ form . submit () }

else
(a l e r t (”Wrong PK”) ;) // or op t i ona l l y s i l e n t

f a i l
</s c r i p t>

The following listing shows the code that enables our exten-
sion to retrieve the public key. We basically fetch the public
key using the above mentioned dummy socket and append
it to the DOM.

Listing 7: Public key retrieval by the browser ex-
tension
getPublicKeyEvent : function (evt) {

var ur l = makeURI(evt . t a r g e t . g e tAt t r ibute (”
GetPublicKey ”) , nu l l , nu l l) ; // f e t ch ur l
and check for v a l i d i t y

i f (u r l != nu l l) {
var pubKey = this . retr ievePubKey (u r l . spec) ; //

f e t ch pub l i c key using the dummy socket
evt . t a r g e t . s e tAt t r i bu t e (”PublicKey ” , pubKey) ;

// append the pub l i c key to the DOM of the
source document

}

To be able to detect redirects and handle them accordingly
we have to check the status code of every incoming HTTP
responses. If we detect a SLSOP secured redirect we initiate
our dummy socket and obtain the corresponding public key
of the target. Then we check if the retrieved public key
matches anyone from the appended one. If that is the case
we follow the redirect, otherwise we cancel the transport:

Listing 8: Redirect Binding
//Get s ta tuscode and see i f i t i s a r ed i r e c t
var statusCode = aHttpChannel . r e sponseStatus ;
var dest = aHttpChannel . getResponseHeader (”

Locat ion ”) ;
i f ((statusCode == 302) && (dest != nu l l)) {
// create an URI−ob j ec t
var destUr l = this . makeURI(dest) ;
//see , i f there i s a pk appended , i f so ge t des t

ur l and pk back
var url and pubkey = this . extractPubKeyFromUrl (

des tUr l . spec) ;
// i f nothing i s there , we don ’ t care . . .
i f (ur l and pubkey == nu l l)

return ;
// get the cer t
var pubKeyDest = this . f e t chCer t (des tUr l . host) ;
// i f the r e t r i e v ed pubkey does not match the

appended one , do NOT
// fo l l ow the r ed i r e c t
i f (ur l and pubkey [1] != pubKeyDest) {

aHttpChannel . cance l (nu l l) ;
}
// rewr i te l oca t ion header , without the appended

pks
aHttpChannel . setResponseHeader (”Locat ion ” ,

ur l and pubkey [0] , f a l s e) ;
}

5. SECURITY ANALYSIS
Unfortunately the security of the TLS protocol has not

yet been proven secure in the standard model. To prove
the security of our scheme, we would therefore first have to
prove the security of TLS, which is beyond the scope of this
work. Nevertheless, we would like to give a practical security
analysis regarding the threat classes defined above: As we
solely use TLS to secure the data-transport and to ensure
the authenticity of the communication peers, we rely on a
foundation that is considered to be secure. Additionally, our

concept is based on the server’s public key presented during
the TLS handshake and not on a complex and error-prone
PKI system. We therefore elude the problems that may arise
operating and relying on such an infrastructure.

For illustration purposes we split the SSO-Protocol into
several phases as illustrated in Figure 2

Passive Attackers.
As described before, we assume that all data is transmit-

ted via TLS. There has been no evidence that TLS is sus-
ceptible to passive attacks and research carried out so far
suggests that it is very unlikely that we will see any success-
ful passive attacks on TLS in the near future.

As long as the ciphers both peers agreed on during the
TLS handshake are considered secure, passive attackers have
no other possibility than brute forcing the derived session
key in order to reveal any information. With present tech-
nology this is not possible within practical timeframe and
we therefore exclude passive attackers as a present risk.

Active Attackers.

1. Initial Resource Request: Here an active attacker
could reroute the initial resource request to a server
under his control, by manipulating the DNS-mapping
or by exploiting deficiencies in the underlying (rout-
ing) protocols. However, as no authentication ticket is
present yet, there is nothing an adversary could steal.

2. Sign-On Phase: In this phase an active attacker
could strike in and reroute the traffic to its own server
trying to scam the user into surrendering his creden-
tials. Using these credentials the attacker could then
impersonate the legitimate user. The feasibility of this
attack is strongly related to the authentication system
used. If a password based scheme is employed and the
user is not able to adequately identify the server, such
an attack is within the bounds of possibility.

We therefore propose an out of band initialization,
which issues a long-term SLSOP-authentication token
in the form of a SLSOP-Cookie. This token should be
bound to the public key of the IP and is used in sub-
sequent request to authenticate the user. As a result,
this token will only be transmitted to a server possess-
ing the corresponding private key and thus rendering
network attacks in this phase useless.

3. Ticket Exchange Phase: The authentication-ticket
issued to the client by the IP is bound to the public key
of the target SP. Hence, this ticket is only sent to the
server, which is able to perform the TLS handshake
with the corresponding private key. Therefore an ac-
tive attacker manipulating the communication flow in
this stage, is not able to intercept this ticket.

4. Application Data Transfer: In this phase every au-
thentication step has already taken place and the ac-
tual data of the requested application is transferred.
An attacker against this phase could only try to de-
crypt the application data, which would again imply
breaking the confidentiality of the TLS channel.

In the following we present a few attacks that may seem
to compromise the security of our system independent of our

Figure 2: Phases of a typical Web-based SSO session

protocol phases and we provide evidence, that these attacks
do not apply to our solution.

Hash Collisions for MD5. In 1996, Hans Dobbertin first
showed that it is (theoretically) feasible to find collisions for
the hash function MD5 [10]. At this time he already sug-
gested to sustain from using MD5 as a compression function
in security critical applications. In 2005 for the first time, it
was practically possible to find collisions for PostScript doc-
uments [9] and X.509 certificates [25, 24]. Shortly after, the
collision resistance MD5 was considered broken (admitted
also by it’s designer Ron Rivest).

At Eurocrypt 2007 Stevens et al. presented an attack
that enables an adversary to find chosen-prefix collisions for
MD5 [35]. This attack was improved in 2008 to find a way to
to change a normal SSL certificate (issued by RapidSSL) into
a working CA certificate using a cluster of Sony Playstations,
that could be verified under their MD5 hashes [29]. These
certificates could then be used to create other certificates
that would appear to be legitimate and issued by RapidSSL.
This attack was later again improved to be able to find short
chosen-prefix collision [36].

All those attacks do not apply to our protocol, as a suc-
cessfull attack would require MD5 to be vulnerable against
second preimage attacks. However, although MD5 is (for
good reasons) not considered collision resistant any more,
there are no feasible second preimage attacks against the
compression function.

Cross-Site Scripting Attacks. As we still use some kind
of authentication token in our solution, it may seem that
our proposed protocol may be vulnerable to theft of this to-
ken using Cross-Site Scripting attacks. We cope with this
attack by storing our token in a seperate database not ac-
cessible by the browser’s DOM. If a seperate database is not
manageable we can still provide security by modifying the
transport mechanisms used to transmit this token (e.g. al-

ways checking if the public key of the recipient is matching
to the token).

6. CONCLUSION AND OUTLOOK
While our solution seems to enable a secure binding be-

tween service providers and their clients, some open prob-
lems still exist. Although easy to implement, our solution
does need some minor adjustments on the server side, de-
tailed in the following section. As mentioned in section 2,
a session could be compromised by downloading malicicious
applets or scripts. To cope with this threat, we need addi-
tional security checks, which are outlined in Section 6.2.

6.1 Deployability
To be compliant to the zero-footprint requirement of browsers,

our XSLSOP scheme is solely based on technologies already
incorporated in all major browsers. Only small changes
have to be applied to the processing of HTTP requests over
an SSL transport. In order to fulfill our requirements, the
browser needs to recognize the public key learned during the
establishment of the SSL transport and has to provide means
to ensure that data, which is bound to a specific public key,
will only be send over a corresponding SSL secured chan-
nel. To satisfy the conformance criteria for the HTTP-Post
Binding, a new JavaScript function had to be implemented
in the user agent. On the server side however, there is tech-
nically no work to be done. The option of setting custom
header fields and constructing dynamic URLS is a standard
function implemented in all common server-side scripting
languages as for example PHP or ASP.NET. The only major
issue we are facing here is the exchange and management of
public key information between Relying Party and Identity
Provider. But as we focus solely on SSO scenarios, where
data exchange is performed on a regular basis, this issue can
be considered neglectable.

6.2 Treatment of Mixed Content
To secure the subsequent communication between Service

Provider and Client against origin-contamination, as de-
scribed by Barth et al. [4], we may further enhace our scheme
to enforce, that all content has to be retrieved over SSL and
is only accepted/executed, if the corresponding channel was
established to a server possessing a certain, matching pub-
lic key. This could be realized, for example, by enforcing a
special response header after receiving the ticket (this has
to be configured at the Service Provider), similar to Force-
HTTPS as introduced in [15]. Another option would be to
stricten transport security, e.g. to enforce a policy that lists
all public keys of the server, that is entitled to serve content
to the user and blacklisting all other keys.

7. REFERENCES
[1] Decentralized identification.

http://www.waterken.com/dev/YURL/.

[2] J. Altman, N. Williams, and L. Zhu. Channel Bindings
for TLS. RFC 5929 (Proposed Standard), July 2010.

[3] M. Backes, I. Cervesato, A. D. Jaggard, A. Scedrov,
and J.-K. Tsay. Cryptographically sound security
proofs for basic and public-key kerberos. Cryptology
ePrint Archive, Report 2006/219, 2006.
http://eprint.iacr.org/.

[4] A. Barth, C. Jackson, and J. C. Mitchell. Robust
defenses for cross-site request forgery. In CCS ’08:
Proceedings of the 15th ACM conference on Computer
and communications security, pages 75–88, New York,
NY, USA, 2008. ACM.

[5] A. Boldyreva and V. Kumar. Provable-security
analysis of authenticated encryption in kerberos.
Cryptology ePrint Archive, Report 2007/234, 2007.
http://eprint.iacr.org/.

[6] S. Cantor, J. Kemp, R. Philpott, and E. Maler.
Assertions and Protocol for the OASIS Security
Assertion Markup Language (SAML) V2.0. OASIS
Standard, 15.03.2005, 2005.
http://docs.oasis-open.org/security/saml/v2.0/

saml-core-2.0-os.pdf.

[7] B. den Boer and A. Bosselaers. Collisions for the
compression function of md5. In EUROCRYPT ’93:
Workshop on the theory and application of
cryptographic techniques on Advances in cryptology,
pages 293–304, Secaucus, NJ, USA, 1994.
Springer-Verlag New York, Inc.

[8] R. Dhamija, J. Tygar, and M. Hearst. Why phishing
works. In Proceedings of the SIGCHI conference on
Human Factors in computing systems, pages 581–590.
ACM, 2006.
http://graphics8.nytimes.com/images/blogs/

freakonomics/pdf/Why_Phishing_Works-1.pdf.

[9] Dobbertin. Postscript collisions for md5, 2005.

[10] H. Dobbertin. Cryptanalysis of MD5 Compress -
presented at the Rumpsession of Eurocrypt ’96, May
1996.

[11] S. Gajek, T. Jager, M. Manulis, and J. Schwenk. A
browser-based kerberos authentication scheme. In
ESORICS ’08: Proceedings of the 13th European
Symposium on Research in Computer Security, pages
115–129, Berlin, Heidelberg, 2008. Springer-Verlag.

[12] T. Groß. Security analysis of the SAML single sign-on
browser/artifact profile. In Annual Computer Security

Applications Conference. IEEE Computer Society,
2003.

[13] T. Groß and B. Pfitzmann. Saml artifact information
flow revisited. Research Report RZ 3643 (99653), IBM
Research, 2006. http://www.zurich.ibm.com/
security/publications/2006.html.

[14] HttpOnly cookies. First implemented by Microsoft
Internet Explorer developers for Internet Explorer 6
SP1, 2002.

[15] C. Jackson. Forcehttps: Protecting high-security web
sites from network attacks. In In Proceedings of the
17th International World Wide Web Conference, 2008.

[16] C. Jackson and A. Barth. Beware of finer-grained
origins. In In Web 2.0 Security and Privacy (W2SP
2008), 2008.

[17] T. Jager, F. Kohlar, S. Schäge, and J. Schwenk.
Generic compilers for authenticated key exchange.
pages 232–249, 2010.

[18] D. Kaminski. Dns server+client cache poisoning,
issues with ssl, breaking *forgot my password*
systems, attacking autoupdaters and unhardened
parsers, rerouting internal traffic;
http://www.doxpara.com/DMK_BO2K8.ppt. -, 2008.

[19] D. Kaminsky. It’s the end of the cache as we know it -
black ops 2008. Black Hat Briefings, Las Vegas,
Nevada, USA, July 2008.

[20] C. Karlof, U. Shankar, J. D. Tygar, and D. Wagner.
Dynamic pharming attacks and locked same-origin
policies for web browsers. In CCS ’07: Proceedings of
the 14th ACM conference on Computer and
communications security, pages 58–71, New York, NY,
USA, 2007. ACM.

[21] F. Kohlar, J. Schwenk, M. Jensen, and S. Gajek.
Secure bindings of saml assertions to tls sessions. In
ARES, pages 62–69, 2010.

[22] D. Kormann and A. Rubin. Risks of the passport
single signon protocol. Computer Networks,
33(1–6):51–58, 2000.

[23] D. Kristol and L. Montulli. Http state management
mechanism, Oct. 2000.

[24] A. Lenstra, X. Wang, and B. de Weger. Colliding
x.509 certificates. Cryptology ePrint Archive, Report
2005/067, 2005. http://eprint.iacr.org/.

[25] A. K. Lenstra and B. de Weger. On the possibility of
constructing meaningful hash collisions for public
keys. pages 267–279, 2005.

[26] E. Maler, P. Mishra, and R. Philpott. Assertions and
Protocol for the OASIS Security Assertion Markup
Language (SAML) V1.1. OASIS Standard, 02.09.2003,
2003.
http://www.oasis-open.org/committees/download.

php/3406/oasis-sstc-saml-core-1.1.pdf.

[27] M. Marlinspike. More tricks for defeating ssl in
practice. Blackhat DC, 2009.
https://www.blackhat.com/presentations/bh-dc-
09/Marlinspike/BlackHat-DC-09-Marlinspike-
Defeating-SSL.pdf.

[28] C. Masone, K.-H. Baek, and S. Smith. Wske: Web
server key enabled cookies. In S. Dietrich and
R. Dhamija, editors, Financial Cryptography, volume

4886 of Lecture Notes in Computer Science, pages
294–306. Springer, 2007.

[29] D. Molnar, M. Stevens, A. Lenstra, B. de Weger,
A. Sotirov, J. Appelbaum, and D. A. Osvik. MD5
considered harmful today - Creating a rogue CA
Certificate. 25th Chaos Communication Congress,
Berlin, Germany, 2008.

[30] B. Pfitzmann and M. Waidner. Analysis of liberty
single-signon with enabled clients. IEEE Internet
Computing, 7(6):38–44, 2003.

[31] D. Recordon and D. Reed. Openid 2.0: a platform for
user-centric identity management. In DIM ’06:
Proceedings of the second ACM workshop on Digital
identity management, pages 11–16, New York, NY,
USA, 2006. ACM.

[32] J. Schwenk, L. Liao, and S. Gajek. Stronger bindings
for saml assertions and saml artifacts. In Proceedings
of the 5th ACM CCS Workshop on Secure Web
Services (SWS’08), pages 11–20. ACM Press, 2008.

[33] M. Slemko. Microsoft passport to trouble, 2001. http:
//alive.znep.com/~marcs/passport/page2.html.

[34] M. Stevens, A. Lenstra, and B. de Weger.
Chosen-prefix Collisions for MD5 and Applications.
Submitted to Journal of Cryptology, June 2009.
https://documents.epfl.ch/users/l/le/lenstra/

public/papers/lat.pdf.

[35] M. Stevens, A. K. Lenstra, and B. de Weger.
Chosen-prefix collisions for MD5 and colliding X.509
certificates for different identities. pages 1–22, 2007.

[36] M. Stevens, A. Sotirov, J. Appelbaum, A. K. Lenstra,
D. Molnar, D. A. Osvik, and B. de Weger. Short
chosen-prefix collisions for MD5 and the creation of a
rogue CA certificate. pages 55–69, 2009.

