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Abstract. We describe a concept of mutual remote attestation for two
identically configured trusted (TPM based) systems. We provide a cryp-
tographic protocol to achieve the goal of deriving a common session key
for two systems that have verified each other to be a clone of themselves.
The mutual attestation can be applied to backup procedures without
providing data access to administrators, i. e. one trusted systems exports
its database to another identical trusted system via a secure channel
after mutual attestation is completed.
Another application is dynamically parallelizing trusted systems in order
to increase the performance of a trusted server platform.
We present details of our proposed architecture and show results from ex-
tensive hardware tests. These tests show that there are some unresolved
issues with TPM-BIOS settings currently distributed by PC hardware
manufacturers since the specification regarding measurement of extended
platform BIOS configuration is either not met or the usage of undocu-
mented options is required.
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1 Introduction

Recent developments related to the legal and social aspects of privacy issues
call for technical measures enforcing strict restrictions and requirements on the
collection, use and disclosure of personal data. Trusted systems can be used for
secure storage of sensitive data.

Once a system state is defined as a trusted state and the system is set up to
this state, its security characteristics can be transferred to a system clone that
is composed of identical software (boot chain components, operating system,
and applications) and matching hardware. A system clone can be generated via
methods such as copying the contents of one system hard disk image to another
disk, or automatic installation using an install-script. The execution of these
procedures will result into a run-capable system clone (depending on operating
system characteristics). Mutual attestation is the key functionality to verify the
secure cloning of trusted platforms.



Applications using cloned trusted platforms include

– Database synchronization: database management systems that offer a re-
stricted access to its databases. Further, the database can be synchronized
and backed up without the need of low-level table access for administrators.

– Parallel computing: clustering synchronous trusted servers increase the out-
put performance and reduce the response time compared to stand-alone
servers.

– Enforcing restrictions expressed through rights expression language (RELs)
across systems: a REL description might require the system to restrict ac-
cess and maintain a state (i. e. a maximum of n queries are permitted on
a database in order to avoid illegitimate database duplication). This state
needs to be distributed across physical systems in a way that one logical sys-
tem stays consistent (i. e. set up 2 physical systems that allow n/2 requests
each until the next synchronization takes place).

The implementation of any of the above projects requires an efficient and
reliable remote attestation scheme. The ideal architecture should possess the
following components: 1 systematic integrity measurement and automated in-
tegrity measurement verification procedures; 2 a secure key exchange protocol
that allows both systems to possess a common session key. Existing Trusted
Computing Standards provide extensive architectures and opensource compo-
nents for the purpose of carrying out trust based applications. To our dismay,
we have not found any off-the-shelf protocol or software which may provide a
ready implementation of our trust-cloning project. A search of web shows that
there are (section 2.2) some available opensource software tools that are de-
signed to carry out functionalities of attestation for TPM based systems. These
tools are mostly experimental, and do not take into account the implementation
architecture of mutual attestation as an whole. A tailor-designed and ready-to-
implement mutual attestation architecture is desired.

Contributions: Our contributions in this paper are as follows

1. We propose a mutual remote attestation protocol for two identically config-
ured TPM hardware and provide implementation details.

2. We describe in details the hardware test results and discuss to what extent
system cloning is possible for TPM based hardware.

Our mutual remote attestation scheme has particular merit in a corporate
setting where database synchronization and backup are constantly required be-
tween available servers. The protocol is easy to implement and requires no in-
tervention of a third party, such as a trusted certification authority once the
attestation procedure has started. Our mutual attestation scheme can be viewed
as a small step in the development of much needed peer-to-peer (P2P) attesta-
tion techniques.

The plan of the paper is as follows. Section 2 presents the related work
on remote attestation, its applications and the available tools to perform the
attestation. Our Mutual Attestation Scheme is explained in section 3. Section 4



provides a discussion and conclusion on the scheme. The appendices A and B
give a detailed design of our proposed protocol and some test values respectively.

2 Background and Related Work

2.1 Remote Attestation

Specifying the notion of trust in computing platforms has been a goal of com-
puter science research for decades. The use of secure operating system environ-
ments were proposed in the 1970s [23]. The premise of a secure system is built
upon the philosophy that any system is only as secure as the foundation upon
which it is built.

The Trusted Computing Group (TCG) is an industry standards body formed
to develop and promote specifications for trusted computing and security tech-
nologies. The TCG proposed a trust model where each device is equipped with a
hardware root-of-trust associated with the platform that can measure integrity
metrics and may confirm these metrics to other parties. Regarding PCs this
hardware is a chip called the Trusted Platform Module (TPM) and the process
of reporting the integrity of a platform is known as remote attestation. When
the TPM reports the values of the integrity metrics that it has stored, the TPM
signs those values using a TPM identity.

To achieve the goals of remote attestation, TCG has introduced in version 1.1
specifications the concept of privacy certification authority (Privacy CA) [14]. It
works briefly as follows. Each TPM is equipped with a RSA key pair called an
Endorsement Key (EK). The Privacy CA is assumed to know the Endorsement
Keys of all valid TPMs. Now, when TPM needs to authenticate itself to a verifier,
it generates a second pair of RSA key called an Attestation Identity Key (AIK),
it sends the AIK public key to the Privacy CA, and authenticates this public
key w.r.t the EK. The Privacy CA will check whether it finds the EK in its list
and, if so, issues a certificate to the TPM’s AIK key. The TPM can then forward
this certificate to the verifier and authenticate itself w.r.t. this AIK.

As discussed by Brickell, Camenisch and Chen [4], version 1.2 of the TCG
specifications incorporate the Direct Anonymous Attestation (DAA) protocol.
This protocol is designed to address anonymity issues of remote attestation.
The DAA scheme is rather sophisticated [4, 5] whose implementation requires
novel techniques and methods [7, 9, 10]. Many applications related to privacy
preserving and privacy enhancing are built upon the concept of DAA [2, 6, 18,
20].

There have been several proposal in the literature to combine DAA with key
exchange protocols. Balfe et al. [3] proposed anonymous authentication protocol
in peer-to-peer networks by embedding DAA with TLS and IPSec. Cesena et
al. [8] proposed an anonymous authentication protocol based on TLS and DAA
including a reference implementation. Recently, Li and Walker [26] incorporated
DAA scheme into a key exchange protocol. Further, they introduced a security
model for key exchange with anonymous authentication, and provided rigorous
security proof under the proposed model.



2.2 Available Remote Attestation Opensource Tools

The implementation of our trusted system cloning applications as described in
the introduction requires the initiation of a mutual attestation protocol. Even
though anonymity of the systems is not required during the attestation, we do
require that the session keys to be authenticated with respect to some certifica-
tion authorities. The successful authentication of critical keys assures a system
that a remote platform who is trying to access the database is truly operating
on trusted hardware modules.

As stated in the previous section, the certification of AIK keys ideally calls
for the interaction with a Privacy CA. Theoretically, a Privacy CA should hold
a list of all valid EK certificates delivered from TPM manufacturers. However,
this kind of trust chain infrastructure at present is still lacking. To the authors’
knowledge, currently only Infineon [27] is providing TPMs with Endorsement
certificates.

Despite the lack of certification authorities, there exists several opensource
tools that allow users to carry out experimentally the steps of mutual attesta-
tion. The TPM Quote Tools [25] contain a collection of programs that provides
functionalities such as AIK key generation, TPM quote operations, and TPM
quote verification operations.

Another ongoing project is Trusted Computing for the Java Platform [13].
The project is developed and maintained at the Institute for Applied Information
Processing and Communication, Graz University of Technology. The package at
present stage includes a basic implementation of a Privacy CA Server.

In the next section, we shall describe a mutual attestation protocol for two
identically configured TPM based systems. During the protocol, AIK keys are
generated, and we do make the assumption that all genuinely generated AIK
keys are certifiable by some means. This assumption should be reasonable as
Trusted Computing technologies and its related infrastructure are ever growing
at present.

3 Mutual Attestation Scheme

3.1 High-Level Description

Our scheme allows mutual remote attestation between two identically configured
TPM based systems, and provides a common session key for both systems at the
end of the protocol. The scheme is an integrity based attestation. The reader
can find the details of the protocol in appendix A. Figure 1 gives a pictorial
representation of the protocol. We shall in this section explain the underlying
ideas and discuss some of the implementation issues.

Though anonymity is not required during the attestation, we do require on-
site systematic integrity measurement and automated measurement verification
procedure. In fact, our mutual attestation scheme is very much driven by the
the Cloning-Applications at hand, whereas schemes proposed in [26, 17] are much
more theoretical and are not implementable at present. The security proof of our



protocol can be derived along the line as described in [26]. The protocol is of
the challenge-and-response type. Both TPM based systems during attestation
issue a sequence of challenges. The systems then mutually attest towards each
other by demonstrating that they satisfy the specified attestation criterion. The
attestation criteria are: system integrity (PCR values) and integrity of the AIK
keys.

Initially, system I generates an AIK key AIKI and obtains a certificate CertI
from a certification authority (e.g. Privacy CA). The purpose of the certificate
is to verify the integrity of AIKI . Similarly, system II generates an AIK key
AIKII and obtains a certificate CertII . Both systems now exchange and then
verify each others’ certificates.

Assuming the certificates are valid, both systems start a Diffie-Hellman key
exchange protocol. This is achieved as follows. From a list of agreed-upon primes,
system I selects a prime with required security parameter and a primitive root
g mod p. Next, system I selects an secret integer a and computes its public
Diffie-Hellman parameter (A = ga). Similarly, system II generates its public
Diffie-Hellman parameter (B = gb) where b is system II ’s secret parameter.

Next, system I and system II exchange their public Diffie-Hellman param-
eters. This allows each system to compute the shared Diffie-Hellman key. For
example, system I computes its key as skeyI = Ba where B is system II ’s pub-
lic DH parameter. And system II computes its key as skeyII = Ab where A is
system I ’s public DH parameter. Notice, we have not assumed skeyI = skeyII

at this point of the protocol. The keys skeyI and skeyII are to be compared at
the next step of integrity check. This assumption is needed to prevent man-in-
the-middle type of attacks.

System integrity check is the next step. To prove system integrity, system
I uses the TPM Quote utilities to sign a set of PCR values using its AIK key.
If the AIK key is genuine and controlled by the TPM, it will only sign true
and correct PCR values, which may therefore be taken to accurately represent
the state of the signing system. Also to keep the quote fresh, the quote also
includes a hashed skeyI. System I sends sign(PCR ||hash(skeyI)) to system
II. After verifying the signature, system II checks the integrity of system I by
comparing system I ’s PCR values with its own. System II also checks that skeyI

is correctly formed. This is achieved by comparing hash(skeyI) with his own
key hash(skeyII). The hashed exchange of skey is pivotal here as eavesdroppers
will not have access to skey (one-wayness of the cryptographic hash function)
and the fresh key is linked to the trusted system state.

This completes the steps of mutual attestation. And since hash(skeyI) =
hash(skeyII), both systems at this point possess the common session key skeyI =
skeyII =: skey.

3.2 Diffie-Hellman Key Exchange

The key skey is computed by both systems following the Diffie-Hellman key ex-
change protocol [11]. Since the finite field Diffie-Hellman algorithms has roughly
the same key strength as RSA for the same key size, we have chosen the DH



parameter to be of the size 2048 bits. The key length is reckoned sufficient until
the end of 2016 [12].

We fix a group generator g, and find a safe 2048-bit prime whose group
generator is g. This can be easily implemented using for example the open source
software OpenSSL. The private key for system I (w.r.p. system II ) is then a
randomly generated integer a in the interval [2, p− 1]. System I ’s public Diffie-
Hellman parameter is then computed as

A = ga mod p.

And system II ’s public DH parameter is computed as

B = gb mod p

where b is system II ’s private key.
In practice, a list of such safe primes is pre-generated and stored on both

systems. At the beginning of each session of mutual attestation, a agreed-upon
prime p will be selected from the list.

System I System II

AIKI + CertI AIKII + CertII

1. verify............................................................................................................................................................................................................................................................................................................................................................................................... ............
AIKI + CertI

2. verify ...........................................................................................................................................................................................................................................................................................................................................................................................................
AIKII + CertII

3. A = ga

B = gb

............................................................................................................................................................................................................................................................................................................................................................................................... ............
A

...........................................................................................................................................................................................................................................................................................................................................................................................................
B

4. skeyI = Ba

skeyII = Ab

............................................................................................................................................................................................................................................................................................................................................................................................... ............
Quote(PCRI |H(skeyI))AIKI

...........................................................................................................................................................................................................................................................................................................................................................................................................

Quote(PCRII |H(skeyII))AIKII

6. verify quote verify quote

Fig. 1. Mutual Attestation Scheme for Identically Configured TPM Systems

3.3 TPM Quote and Verify

The most important part of the attestation is the system integrity check. TPM
has a set of special volatile registers called platform configuration registers (PCRs).



These 160-bit long registers are used to keeping track of the integrity information
during a bootstrap process. The TCPA specification defines a set of functions
for reporting PCR values [14, 15]. The TPM Quote operation is able to sign a
specified set of PCRs. The input of the Quote function also includes a 160 bit
challenge file. By including this value in the Quote signature, the verifier knows
that the Quote is fresh and is not an old replay of an old quote. In our protocol,
the challenge file is a SHA-1 hash on skey. Each system can verify the integrity
of the other system by comparing received PCR quote with its own PCR values.

3.4 Hardware Test Results

System name Machine Model BIOS Version TPM Manufacturer
& Chip Version

Lenovo T510 System 1 4384-GEG 1.35 (6MET75WW) STM 1.2.8.16

Lenovo T510 System 2 4384-GEG 1.35 (6MET75WW) STM 1.2.8.16

Lenovo T60 1951-WWA 2.20 (79ETE0WW) ATML 1.2.11.5

Lenovo T61 8889-ABG 2.26 (7LETC6WW) ATML 1.2.13.9

Lenovo M58p 9965-A5G (5CKT61AUS) WEC 1.2.2.16
Table 1. Test Environment

No.System(s) Description Result

1 T510 System 1 reboot system same PCR 0–15 values

2 T510 System 2 1. Boot order changed, 2. dynamic selection of
different bootmedia

PCRs 1,4 are changed for 1.
as well as 2.

3 T510 System 1 booting two different OSs PCRs 4,5 differ as well as OS
specific PCRs 8–15

4 T510 System 1 without extended reporting
switch on/off Ultrabay
switch on/off Firewire

same PCR 0–15 values in all
4 subcases

5 T510 System 1 activated CMOS Reporting
switching Ultrabay on/off

PCR 1 differs
→ on/off is detected

6 T510 System 1 BIOS default settings plus SMBIOS extended re-
porting
switch on/off Ultrabay

same PCR 0–15 values
→ on/off is undetected

7 T510 System 1 BIOS default settings plus NVRAM extended re-
porting
switch on/off Ultrabay

PCR 1 differs
→ on/off is detected

8 T510 System 1 BIOS default settings plus ESCD extended re-
porting
switch on/off Ultrabay

PCR 1 differs
→ on/off is detected

Table 2. Hardware Test cases for a Single System



No.System(s) Description Result

1 T510 System 1,
T61,M58p

measure different hardware configurations with
same boot chain without extended reportinga

differences in PCRs 0,1,2,4,6
(please note next test case!)

2 T510 System 1,
T60

measure different hardware configurations with
same boot chain without extended reporting

PCR 1 is equal on both sys-
tems

3 T510 System 1,
T510 System 2

BIOS default settings plus maximum extended
reporting (BIOS ROM String and ESCDb and
CMOS and NVRAM and SMBIOS)

PCR 1 differs between (iden-
tical hardware) systems

4 T510 System 1,
T510 System 2

BIOS default settings plus CMOS extended re-
porting

PCR 1 differs between (iden-
tical hardware) systems

5 T510 System 1,
T510 System 2

BIOS default settings plus NVRAM extended re-
porting

PCR 1 differs between (iden-
tical hardware) systems

6 T510 System 1,
T510 System 2

BIOS default settings plus ESCD extended re-
porting

PCR 1 is equal on both
(identical hardware) sys-
tems

a without extended reporting does refer to the BIOS menu Security Reporting Options
settings: BIOS ROM String and ESCD and CMOS and NVRAM and SMBIOS are
in the state Disabled.

b ESCD (Extended System Configuration Data) is a subset of the nonvolatile BIOS
memory (still named CMOS in the BIOS settings.)

Table 3. Hardware Test cases Multiple Systems

The root of trust in the mutual attestation protocol lies at the fact that two
identically configured TPM based hardware have the same boot-up values in
certain platform configuration registers. This is a claim laid out in the relevant
TCG specifications [16] which we have rigorously tested in the lab. Together
with the BIOS CRTM, the TPM forms a root of Trust: the TPM allows a secure
storage and the reporting of relevant security metrics into PCRs. These metrics
can be used to detect changes to previous configurations from which it can easily
be deduced whether a system clone is comparable in its security metrics or not.
In our tests, we compared extensively the boot-up PCR values among different
TPM hardware.

Despite the fact that there exists a TCG Generic Server Specification we
could not supply our test bed environment with ready-to-use server hardware
since TPM-based servers are still a shortage with respect to the IT hardware
market. Thus, for our test results we limited ourselves to the testing of TPM
equipped notebook and desktop hardware. Table 1 shows the hardware test
environment. The tested hardware include : IBM Lenovo T510, IBM Lenovo
T61, IBM Lenovo T60, and IBM Lenovo M58p (Desktop computer). All the
platforms have a TPM 1.2 chip on main-board1.

There are similar hardware test results in the literature. Sadeghi et al. [1, 22]
tested a core set of TPM functionalities on TPM chips from different vendors.

1 TPM hardware details: Atmel TPM 97SC3203 (on T60, T61), Chipset integrated
TPM (on T510), 9965-A5G TPM 1.2 Winbond (on the M58p Desktop)



The compliance test results show that there exist discrepancies in the behaviors
among different TPM chips. Several TPMs show non-compliant behavior with
respect to the TCG specification and errors occur sometimes in the runtime
library [24].

For single system testings (Table 2), we fix a TPM platform and record the
boot-up PCR values for the various system settings. For instance, we have booted
up two different Linux OS systems (No. 3 in Table 2). The boot-up PCR values
are recorded in Figure 3.4. We have found resulted differences in PCRs 4, 5 and
8 - 15. Changing boot order or dynamically selecting a different bootmedia (No.
2 in Table 2) results differences in PCRs 1 and 4 (Figure 2.3). We have also
tested the effects of on/off DMA activation on PCRs. Our test results show that
the vendor default configuration does not include Extended Security Reporting
Options (in BIOS submenu) in the PCRs measurement. And the activation of
BIOS DMA features (No. 4 in Table 2) results in no differences in PCRs. The
activation of BIOS DMA features is detected only after we switch on the CMOS,
NVRAM and ESCD reporting in the Extended Security Reporting Options.

The significance of the DMA tests is the following: DMA allows devices to
transfer data without supervision by the CPU. An attacker with physical access
to the trusted system may activate DMA options in the BIOS and subsequently
connect a hardware to the system to access its memory [21, 19]. To prevent such
a security flaw, DMA can be disabled in the BIOS settings and any change of
this setting should be reflected in the configuration register values. A system
with a changed DMA setting will then not be able to qualify as a clone of a
trusted system .

Among different hardware platforms (Table 3), there exists expected PCRs
discrepancies (No. 1 in Table 3). We also extensively tested among the Extended
Security Report Options (No. 3 - 6 in Table 3) between two similar hardware.
While the activation of most of the Extended Reporting features resulted differ-
ences in PCRs 1, the only exception is being the BIOS ESCD extended reporting
feature whose activation has produced the same PCRs 1 on both platforms. This
system behavior is not documented in the system documentation. Our testing
on the T510s show that the ESCD reporting option is the only feature fulfilling
the double requirements:

1. same PCR 1 value return after identical system hardware (here T510 vs.
T510) measurement

2. a change of DMA related BIOS options (stored in the non-volatile BIOS
memory) is detected and results in a changed PCR 1 value (see test cases 8
in Table 2 and 6 in Table 3)

The other available reporting option (CMOS, NVRAM, SMBIOS) do not
meet the specified TCG requirement [16]: platform configuration information
being either unique (e.g. serial numbers) or automatically updated (e.g. clock
registers) must not be measured into PCR 1. The activation of any one of the
three extended security reporting options above on two identical systems results
in different PCRs 1 (see test cases 3–5 in Table 3).



4 Discussion and Conclusion

Our contribution in this paper is the proposal of a mutual attestation protocol
for identical TPM based platforms. We also provide source code and bootable
prototypes on our project website2.

Trusted Platform Modules are deployed in many PC clients (especially laptop
computers) since 2006 and they can be therefore viewed as commodity goods.
However, software applications using the TPM attestation functions are still rare
and to our knowledge limited to project prototypes.

While the ability of attesting a remote platform is supposed to be one of the
main functionalities of the Trusted Platform Module, TPM based remote at-
testation is still no ready-to-use technology. Real-world attestation applications
require not only that the system architecture to have a ready-to-implement TCG
Software Stack, but it must also have compatible hardware to support the rele-
vant TPM operations.

The hardware issues we have identified in section 3.4 require us to use two
identical hardware for the purpose of cloning TPM based systems, taking into
account the fact that the BIOS machine code needs to be part of the trusted
boot chain. Though hardware equivalence is rather a strong requirement for the
cloning procedures, it is still insufficient in the following sense: We were unable
to add security relevant BIOS settings to the verifiable state of the system in
an appropriate way. The activation of the extended reporting options results
into different PCR values for identical systems. Only by rigorously testing the
undocumented options in the BIOS setup submenu, we were able to derive a
BIOS configuration from which our mutual attestation scheme can be carried
out: i.e. the cloned system has the same PCR values and a change of security
relevant BIOS variables (e.g. DMA activation) is detected.

Our results show that the specified requirement [16] that “platform configura-
tion information being unique or automatically updated must not be measured”
is apparently violated. The full activation of extended security reporting options
results in different values on identical systems.

Note that the situation for TPM-Sealing is quite different from attestation
since there are ready-to-use software libraries and only one TPM platform is
involved per sealing or de-sealing procedure. An application architecture making
use of this TPM-based function would run on any compatible hardware since
sealed files are not to be migrated to different platforms in any case.

The purpose of Trusted Computing is to enable each endpoint to make a
trusted decision about the other endpoint, regardless of hardware background
and software configurations. Indeed in reality, it is hard to expect a homogeneous
enterprise with identical hardware, and completely synchronized BIOS settings,
and globally verified Service Packs installed. Future research in trusted comput-
ing should focus on more robust and flexible mechanism for trust establishment
and infrastructure. In the meantime, we will require from the system vendors a
well documented TPM platform together with a full disclosure of BIOS internal

2 http://www.daprim.de/



integrity checks regarding the extended security reporting options. The present
situation that the platform owner is required to test undocumented options, and
to find out which of these options being in line with the TCG specifications is
not acceptable.
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A Mutual Attestation Protocol

0. System I generates a AIK key AIKI and obtains a certificate CertI . System II generates a AIK
key AIKII and obtains a certificate CertII .
1. System I and system II exchange their certificates and public AIK keys:

I
(AIKpub

I , CertI)
−−−−−−−−−−−→ II, II

(AIKpub
II , CertII)

−−−−−−−−−−−−→ I

2. System I verifies system II ’s certificate. System II verifies system I ’s certificate. The protocol
continues upon successful verifications of both certificates.
3. Let p be the agreed-upon prime of required security parameter and a group generator g that
will be used to generate the Diffie-Hellman parameters. System I randomly selects an integer a in
the interval [2, p − 1]. System II randomly selects an integer b in the interval [2, p − 1]. System I
computes value A and system II computes value B:

A = ga mod p, B = gb mod p.

4. System I sends A to system II. System II sends B to system I:

I
A−→ II, II

B−→ I

5. System I computes the key skeyI . System II computes the key skeyII :

skeyI = Ba, skeyII = Ab

6. The systems process mutual system integrity check. The steps are:

a System I signs the PCR values and hashed skeyI and forwards it to system II. System II signs
the PCR values and hashed skeyII and forwards it to system I.

I
Quote(PCRI ||H(skeyI)−−−−−−−−−−−−−−−−→ II, II

Quote(PCRII ||H(skeyII)−−−−−−−−−−−−−−−−−→ I

b System I verifies the signature. System I compares the received PCRII values with its own
PCR values, then it compares the received H(skeyII) with its own hashed key H(skeyI).
If all the values agree, system I grants database access to system II. The session key is the
common keys H(skeyII) = H(skeyI).

c System II verifies the signature. System II compares the received PCRI values with its own
PCR values, then it compares the received H(skeyI) with its own hashed key H(skeyII).
If all the values agree, system II grants database access to system I. The session key is the
common keys H(skeyII) = H(skeyI).



B Example PCR Values

mult ip l e systems − t e s t case 2
Lenovo T510 System 1
PCR−00: 42 A2 AF 18 81 7C . . .
PCR−01: 48 DF F4 FB F3 A3 . . . <===>
PCR−02: 24 5B 5C E4 FF F1 . . .
PCR−03: 3A 3F 78 0F 11 A4 . . .
PCR−04: 1E F2 2E 55 6D 02 . . .
PCR−05: 3F C8 89 02 05 59 . . .
PCR−06: 58 5E 57 9E 48 99 . . .
PCR−07: 3A 3F 78 0F 11 A4 . . .
PCR−08: 03 B3 B2 AE 7E 2B . . .
PCR−09: F6 E5 F7 35 B0 2F . . .
PCR−10: 00 00 00 00 00 00 . . .
PCR−11: 00 00 00 00 00 00 . . .
PCR−12: F0 22 54 28 39 D1 . . .
PCR−13: 34 42 7B 49 32 23 . . .
PCR−14: A8 28 2F BD A7 BC . . .

IBM T60
PCR−00: A2 7B 2C EF 5B 0B . . .
PCR−01: 48 DF F4 FB F3 A3 . . .
PCR−02: 53 DE 58 4D CE F0 . . .
PCR−03: 3A 3F 78 0F 11 A4 . . .
PCR−04: C0 D0 F2 DF 3D F9 . . .
PCR−05: 13 E3 62 E8 6D 4B . . .
PCR−06: 58 5E 57 9E 48 99 . . .
PCR−07: 3A 3F 78 0F 11 A4 . . .
PCR−08: 03 B3 B2 AE 7E 2B . . .
PCR−09: F6 E5 F7 35 B0 2F . . .
PCR−10: 00 00 00 00 00 00 . . .
PCR−11: 00 00 00 00 00 00 . . .
PCR−12: F0 22 54 28 39 D1 . . .
PCR−13: 34 42 7B 49 32 23 . . .
PCR−14: A8 28 2F BD A7 BC . . .

Fig. 2. Boot-up PCR Values of IBM T510 and IBM T60 Without Extended Report-
ing: different hardware configurations with the same bootchain, but without extended
reporting results the same PCR 1

s i n g l e system − t e s t case 2
Lenovo T510 System 2
PCR−00: 42 A2 AF 18 81 7C . . .
PCR−01: 56 6E BA FB 53 FE . . . <∗∗∗>
PCR−02: 24 5B 5C E4 FF F1 . . .
PCR−03: 3A 3F 78 0F 11 A4 . . .
PCR−04: 78 6E AD 00 83 A0 . . . <∗∗∗>
PCR−05: 3F C8 89 02 05 59 . . .
PCR−06: 58 5E 57 9E 48 99 . . .
PCR−07: 3A 3F 78 0F 11 A4 . . .
PCR−08: 03 B3 B2 AE 7E 2B . . .
PCR−09: F6 E5 F7 35 B0 2F . . .
PCR−10: 00 00 00 00 00 00 . . .
PCR−11: 00 00 00 00 00 00 . . .
PCR−12: F0 22 54 28 39 D1 . . .
PCR−13: 34 42 7B 49 32 23 . . .
PCR−14: A8 28 2F BD A7 BC . . .

Lenovo T510 System 2
PCR−00: 42 A2 AF 18 81 7C . . .
PCR−01: CB B7 0F E9 7A D0 . . .
PCR−02: 24 5B 5C E4 FF F1 . . .
PCR−03: 3A 3F 78 0F 11 A4 . . .
PCR−04: 1E F2 2E 55 6D 02 . . .
PCR−05: 3F C8 89 02 05 59 . . .
PCR−06: 58 5E 57 9E 48 99 . . .
PCR−07: 3A 3F 78 0F 11 A4 . . .
PCR−08: 03 B3 B2 AE 7E 2B . . .
PCR−09: F6 E5 F7 35 B0 2F . . .
PCR−10: 00 00 00 00 00 00 . . .
PCR−11: 00 00 00 00 00 00 . . .
PCR−12: F0 22 54 28 39 D1 . . .
PCR−13: 34 42 7B 49 32 23 . . .
PCR−14: A8 28 2F BD A7 BC . . .

Fig. 3. Boot-up PCR values of IBM T510 Before and After Boot Order is Changed:
changing bootorder or dynamically selecting a different bootmedia results differences
in PCR 1 and 4

s i n g l e system − t e s t case 3
Lenovo T510 System 1
PCR−00: 42 A2 AF 18 81 7C . . .
PCR−01: 48 DF F4 FB F3 A3 . . .
PCR−02: 24 5B 5C E4 FF F1 . . .
PCR−03: 3A 3F 78 0F 11 A4 . . .
PCR−04: 1E F2 2E 55 6D 02 . . . <∗∗∗>
PCR−05: 3F C8 89 02 05 59 . . . <∗∗∗>
PCR−06: 58 5E 57 9E 48 99 . . .
PCR−07: 3A 3F 78 0F 11 A4 . . .
PCR−08: 03 B3 B2 AE 7E 2B . . . <∗∗∗>
PCR−09: F6 E5 F7 35 B0 2F . . . <∗∗∗>
PCR−10: 00 00 00 00 00 00 . . .
PCR−11: 00 00 00 00 00 00 . . .
PCR−12: F0 22 54 28 39 D1 . . . <∗∗∗>
PCR−13: 34 42 7B 49 32 23 . . . <∗∗∗>
PCR−14: A8 28 2F BD A7 BC . . . <∗∗∗>

Lenovo T510 System 1
PCR−00: 42 A2 AF 18 81 7C . . .
PCR−01: 48 DF F4 FB F3 A3 . . .
PCR−02: 24 5B 5C E4 FF F1 . . .
PCR−03: 3A 3F 78 0F 11 A4 . . .
PCR−04: A3 CE B1 EF AC 90 . . .
PCR−05: 99 21 E8 EA 42 08 . . .
PCR−06: 58 5E 57 9E 48 99 . . .
PCR−07: 3A 3F 78 0F 11 A4 . . .
PCR−08: 00 00 00 00 00 00 . . .
PCR−09: 00 00 00 00 00 00 . . .
PCR−10: 00 00 00 00 00 00 . . .
PCR−11: 00 00 00 00 00 00 . . .
PCR−12: 00 00 00 00 00 00 . . .
PCR−13: 00 00 00 00 00 00 . . .
PCR−14: 00 00 00 00 00 00 . . .

Fig. 4. Boot-up PCR values of IBM T510 based on two different Operating Systems:
identical hardware runninig on different Linux Operating Systems results differences
in PCR 4,5 and 8 - 15


