
How to authenticate mobile devices in a web environment -
The SIM-ID approach

Florian Feldmann, Jörg Schwenk
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Abstract: With the advent of the iPhone AppStore and Google Play, the ’walled gar-
den’ approach of telecommunication companies to supply content to their customers
using standard GSM/UMTS/LTE authentication has failed: Neither Google nor Apple,
nor any other content provider on the mobile internet, uses the SIM card for authen-
tication. This is mainly due to the fact that mobile telecommunication and internet
architectures differ substantially.

In this paper, we propose several bridging technologies to fill this gap. We exem-
plarily show how to use SIM authentication for web-based Single-Sign-On protocols.
Starting from simple password replacement in the authentication between User Agent
(UA) and Identity Provider (IdP), we show how we can achieve strong channel bind-
ings between all TLS channels and SIM based authentication.

1 Introduction

In many ways, today’s smartphones can be regarded as fully operational computer sys-
tems, packing most features of desktop PCs from a few years ago in addition to extended
communication functionality. This makes it possible to run applications similar to those
of desktop PCs on these devices.

Many of these applications require communication with one or several internet servers
providing a certain service (hence called “Service Provider”, or SP). In most cases, these
services require some form of authentication or authorization because certain information
connected to these services may either be privacy restricted (e.g. personal data, the user
does not wish to make publicly available) or legally restricted (e.g. certain company data
which only employees of the corresponding company should have access to).

The most prominent type of authentication method nowadays is the username/password
combination. This method, however, has some significant drawbacks: Passwords can be
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spyed out by an attacker during transmission and weak passwords could even be guessed
easily. Though password policies can be used to force users to choose strong passwords
and data encryption can be used to protect passwords from being spyed upon, there is still
the risk of computer viruses and trojans reading the authentication data directly from the
user’s computer (e.g. by monitoring user input) or mounting Man-in-the-Middle attacks
on security critical connections.

On desktop PCs, antivirus software is relatively common these days. On mobile devices,
however, antivirus software is not yet as common. Also several shortcomings of mobile
devices (e.g. restricted display size or restricted input possibilities) make it even harder
for users to detect malicious behaviour on their devices. Thus, on these devices it is not
advisable to use username/password combinations for login procedures. Instead, we pro-
pose a novel variant of Single Sign-On (SSO) services, where a user authenticates himself
to a trusted entity which in turn authenticates the user towards the desired service. The
proposed procedure makes use of the authentication features already available in every
mobile device, i.e. the authentication features of GSM/UMTS using the SIM card plugged
into mobile devices.

Previous Works The WebSIM approach [GKP00], proposed in 2000 by Guthery, Kehr
and Posegga, shows how to implement web server functionality into a SIM card, thus
rendering the SIM card accessible by internet applications. In [KPS+01], Kehr et al.
enhance this work and define an internet authentication protocol using features of the SIM
Application Toolkit [3GP07a] and WebSIM. However, their approach significantly differs
from the Single Sign-On protocols currently used, thus, it cannot easily be applied to
current SSO scenarios. Also, it does not provide any information on secure TLS bindings
nor any other security against Man-in-the-Middle attacks. Further, their implementation of
WebSIM only took into account regular mobile phones, e.g. mobile phones providing only
basic telephony functionality like phone calls or SMS, and not the nowadays commonly
used smartphones, which are much more powerful and also customizable by the user, e.g.
by installing additional software applications.

The Generic Authentication Architecture (GAA) [3GP13] specified by 3GPP for UMTS
shares some similarities to our approach, but does not take into account current web ar-
chitectures and developments. Instead, it forces service providers to support the interfaces
defined in GAA. Secure TLS bindings are mentioned in this specification, but it is not
explicitely defined how to use them in this context.

In [3GP12b], a framework is defined by 3GPP which allows for the adaption of the afore-
mentioned GAA into actual standardized SSO scenarios. This very closely resembles our
approach, but also does not provide any further information on secure TLS bindings. This
is exactly the gap our work tries to close.



2 Related Work

For our approach, we mainly combine three existing mechanisms to form a new and secure
authentication method for mobile devices: We make use of the mobile device’s inherent
authentication feature using the SIM card, utilize this feature to enhance a Single Sign-On
login procedure and secure this procedure by applying certain cryptographic bindings.

2.1 SIM card authentication

Each “Subscriber Identity Module”, or SIM for short, features a unique and secret key
KSIM (chosen by the mobile service operator during SIM card creation) which it shares
with the corresponding mobile service operator. Also, several algorithms (e.g. for authen-
tication, key derivation or encryption) are available on the SIM card which make use of
the secret key KSIM and generate corresponding cryptographic responses when triggered
by a certain input. Detailed information on SIM cards can be found in [3GP07b]. For our
purpose, only one algorithm is of interest, namely the authentication algorithm specified
in the UMTS standard [3GP12a].

The standard does not demand a specific cryptographic algorithm to be used as authenti-
cation algorithm, but rather only states its functionality leaving the actual implementation
to the design decisions of the mobile service operators. In short, the algorithm takes as
input a 128 bit random value nonce and uses the secret key KSIM to compute the dis-
tinct corresponding “signed response” SRES, which is also 128 bits in length. Note, that
“signed” in this case is rather a descriptive name and does not pertain to an actual digi-
tal cryptographic signature. The authentication algorithm functions more like a Message
Authentication Code (MAC). As both SIM card and mobile service operator know the se-
cret key KSIM , the algorithm can be used for a challenge/response protocol where the
challenger checks the other party’s response - it computes the expected result XRES (by
computing auth(KSIM , nonce)) and compares it to the received value SRES.

2.2 Single Sign-On

A Single Sign-On scenario is comprised of three parties - a user agent UA wishing to au-
thenticate himself to a service provider SP and a trusted third party called identity provider
IdP. UA and SP do not share any secret information which could be used by UA to authen-
ticate himself to SP. This especially means that UA does not have a username/password
combination for SP. Both parties UA and SP, however, have some sort of trust established
in IdP, i.e. UA has some option to authenticate himself to IdP and SP trusts certain security
assertions issued by IdP.

Figure 1 shows a typical Single Sign-On scenario. First, the user agent UA tries to access
some restricted information on SP (denoted by the “GET” command). Because SP does
not initially know and trust UA, it issues a so called “Authentication Request” Auth Req
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Figure 1: Single-Sign On

to UA containing a redirect to the corresponding identity provider IdP. This authentication
request holds information about the issuer SP and possibly about the authentication meth-
ods accepted by SP to grant access to the requested ressource. UA forwards Auth Req to
IdP, which starts an “Authentication” procedure with UA.

This authentication could be done by a simple username/password combination. Due to the
sensitive nature of an IdP (usually, UA can use the same login information to get access
to multiple service providers) this, however, should be avoided. Some form of strong
authentication should be used between UA and IdP. Examples for strong authentication
include smartcards, one-time passwords or biometric data.

After UA has authenticated himself to IdP, IdP issues a “Token” to UA with a redirect mes-
sage to the service provider who originally issued the authentication request. This Token
must be integrity protected (most times this is done by IdP creating a digital signature over
it) and should include information about the identity of UA.

Once UA has forwarded the Token to SP, SP can validate the signature and then use the
information given in the Token about the identity of UA to grant access to corresponding
resources.

Several frameworks allowing SSO systems to be built currently exist and are already
widely in use (e.g. OpenID [RR06], OAuth [HL10], Facebook Connect [MU11] or the
Security Assertion Markup Language (SAML) [CKPM05]). Our approach is very well
suited to be used in conjunction with SAML, but can easily be adopted for any other SSO
framework.

2.3 Secure Bindings

Several attacks are known which allow an adversary to gain Man-in-the-middle access to
certain secure connections between parties or steal authentication Tokens from the user
agent to use them to authenticate himself as UA to SP (examples can be found in [Kam08],
[SSA+09], [Mar09]).

To counter these threats, secure bindings have been proposed, which can be used to cryp-
tographicaly bind certain identity information to specific TLS/SSL connections or specific
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Figure 2: SSO login procedure with tls-unique binding

2.3.1 TLS-unique

For our purpose the tls-unique binding proposed in RFC 5929 [AWZ10] is of specific
interest. The idea of this binding is to take some information uniquely identifying a certain
TLS/SSL connection and cryptographically bind it to the authentication information. The
Finished messages are the last two messages sent from user agent to server, resp. server
to user agent, during the TLS/SSL connection establishment and the first messages which
are actually encrypted with the key material derived in the connection establishment. They
contain a MAC over all messages previously sent in this connection establishment, thus
uniquely identifying this specific TLS/SSL session (any other TLS/SSL session would be
established with at least differing user agent and/or server nonces, resulting in different
Finished messages). By default, the first Finished message of a connection is used to
uniquely identify it for the purpose of tls-unique bindings.

Figure 2 shows a Single Sign-On login procedure as described in Section 2.2. Before
forwarding the authentication request to IdP, UA extracts the first Finished message from
the TLS/SSL session established between UA and SP (shown in red) and appends it to the
authentication request. If the subsequent authentication procedure between UA and IdP
results in a positive outcome, IdP will include the Finished message it received from UA
into the authentication token (along with all other information for this token as described
above). When SP receives the token and successfully validates its signature, SP also ex-
tracts the first Finished message from the TLS/SSL session established with UA (note that
this must still be the same TLS/SSL session, so the session must be kept alive through-
out the authentication procedure and no renegotiation is allowed). It then compares the
extracted Finished message to the one included in the authentication token. Because an
attacker mounting a Man-in-the-Middle attack on the TLS/SSL session between UA and
SP will have different Finished messages in its connections to UA and SP respectively, SP
will detect any MitM attacker at this point.



2.3.2 Strong Locked Same Origin Policy

The Same Origin Policy (SOP) implemented in most current web browsers protects user
data by allowing e.g. cookies only to be sent to the same server which has stored the
cookie in the first place. The “same server” is hereby denoted by the triplet of (protocol,
domain name, port). The Strong Locked Same Origin Policy (SLSOP) [KSTW07] en-
hances this concept to cryptographically bind an SSO Token to the public/private key pair
of the intended SP. A detailed analysis of SSO using SLSOP is given in [SKA11].

3 The SIM-ID Protocol

In order to enhance the security of SSO login procedures on mobile devices we include
SIM card functionality into it. As shown in Section 2.2, Figure 1 shows a typical SSO
login procedure between a Client UA (in this case a mobile device) and a Service Provider
SP, utilizing a trusted Identity Provider IdP to establish the authentication between UA
and SP. In our scenario, SP is most likely a web server requiring user authentication to
provide a certain service. SP is assumed to have a public/private key pair pkSP /skSP

along with a corresponding certificate to check the validity of its public key. The user
agent UA in this particular setup is a mobile web browser running on a mobile device. The
web browser does not own any cryptographic keys, but has access to a SIM card sharing a
symmetric secret key KSIM with the corresponding mobile service provider. This mobile
service provider also acts as Identity Provider IdP possessing its own public/private key
pair pkIdP /skIdP together with the shared key KSIM . We assume that this IdP is trusted
by UA and the Service Provider(s) SP associated with it. We also assume that IdP knows
the correct public keys pkSPi

of its associated Service Providers.

3.1 SIM-ID Authentication Towards Mobile Network Provider

In our proposal the mobile network operator will serve as Identity Provider in the SSO
scenario. Thus, the mobile device requires a means to authenticate itself to the mobile
network operator. The GSM/UMTS standards already provide authentication of a mo-
bile device towards a base station, i.e. mobile network operator. In case of UMTS, this
authentication is even mutual. This approach was originally intended for securing com-
munications within GSM/UMTS networks, but can easily be adapted for use in internet
(e.g. WLAN) connection scenarios.

As described in Section 2.1, UMTS authentication between mobile device and base station
is performed by mutually sending a nonce to which the other partner replies with the value
resulting from the authentication algorithm using the symmetric secret key KSIM . As
KSIM is known only to the SIM card and the mobile network operator, this functions as
an implicit authentication between the two parties.

We use exactly this authentication algorithm in conjunction with the tls-unique binding



described in Section 2.3.
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Figure 3: SIM-ID protocol - Authentication Towards Mobile Network Provider

Figure 3 shows the resulting protocol. First, UA establishes a TLS/SSL connection with
IdP and extracts the first Finished message FIN (according to the tls-unique binding).
UA forwards FIN to the authentication algorithm on its SIM card, which computes and
returns the signed response value RES = auth(KSIM , F IN). UA then sends an authen-
tication request Auth Req, a nonce NUA and the authentication value RES to IdP via the
established TLS/SSL connection.

IdP now verifies the authentication value by also extracting the first Finished message
FIN from the TLS/SSL channel, performing the same computation of auth(KSIM , F IN)
and comparing this value with the received RES. To protect against an attacker imper-
sonating IdP, IdP is also required to perform an authentication by computing the signed
response SRES = auth(KSIM , NUA) and sending the result to UA. UA can now use
the SIM card to check whether the expected response to his nonce NUA equals the one re-
ceived from IdP by computing XRES = auth(KSIM , NUA) and comparing SRES ==
XRES.

3.2 SIM-ID Authentication Towards Service Provider

With authentication between mobile network provider and mobile device already described
in Section 3.1, we now concentrate on how to extend this authentication to a three-party-
scenario.

Figure 4 shows the setup and the enhanced SSO protocol. Note that according to Sec-
tion 3.1 we already assume a mutually authenticated TLS/SSL connection between UA
and IdP, even though this is not explicitly shown in the figure.

We denote by [m]ski a signature over message m created with the secret key ski of party
i which is sent along with the message (thus, [m]ski means we send the message m and
its correponding signature in the same communication phase). Likewise, {m}pki denotes
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Figure 4: SIM-ID protocol

an encryption of message m with public key pki for intended recipient i (of course, in this
case only the encrypted message {m}pki is sent, not the plaintext m).

With the authentication request Auth Req corresponding to the selected SSO scheme, SP
sends a nonce NS (the request, or at least the nonce, should be signed with the private
key skSP of SP to protect integrity and authenticity of the nonce). When forwarding the
authentication request to IdP, UA extracts the nonce NS and sends it to its integrated SIM
module. The SIM module then takes the nonce NS as input and uses the authentication
algorithm to calculate the corresponding response RES = auth(KSIM , NS).

The response s = RES can now be sent back to SP where it can be validated. If for
some reason the value RES should be further used by both parties, e.g., by deriving a
symmetric key from it, the value should obviously not be sent in the clear. Instead, it can
be blinded using a cryptographic one way function g (e.g. a cryptographic hash function),
thus sending s = g(RES).

In the next step UA has to authenticate himself to IdP in order to receive an authentication
token. In Section 3.1 we already described an authentication protocol between a mobile
network operator and a mobile device. Technically, though, every mutual authentication
protocol between UA and IdP could be used here.

After authentication between UA and IdP has been performed, IdP calculates an expected
result XRES = auth(KSIM , NS) using the symmetric key KSIM corresponding to



the authenticated user. XRES is encrypted with the public key of SP, pkSP , and the
resulting cipher text {XRES}pkSP is included into the authentication token (the format
of this token is dependent on the actual SSO scheme selected, but like the nonce NS in the
authentication request before, this token should at least be signed using the private key of
IdP, skIdP , to ensure integrity and authenticity). IdP sends the token to UA, who forwards
it to SP (the Token and the authentication value s can also be sent together in one single
message).

When SP receives the token, it is validated according to the chosen SSO scheme. Also,
SP decrypts the encrypted value {XRES}pkSP and checks if s == XRES (or checks
if s == g(XRES) instead, if the blinded version is used).

3.2.1 Including Bindings

As we have not yet assumed any TLS/SSL session between UA and SP - apart from the
encryption of XRES with the public key of SP (and of course the authentication proce-
dure between UA and IdP, described in Section 3.1) no encryption is used - the protocol
described thus far is prone to a simple Man-in-the-middle attack between UA and SP: An
attacker could simply read all data sent from UA to SP and then steal the result value s as
well as the token and use both to authenticate himself as UA against SP.

The viability of the proposed protocol becomes visible when SSL/TLS is used for the com-
munication between UA and SP as well. After all, the connection between a mobile web
browser and a corresponding web server providing access to restricted resources should
most likely be encrypted to provide a secure transport of these resources.

Utilizing the idea described in Section 2.3 we can bind the authentication info of UA
to the current TLS/SSL session, again by using the first Finished message FIN from
the TLS/SSL session establishment. Only two minor adjustments have to be done to the
protocol to include this form of session binding:

• When creating the blinded response s, the user agent also includes the first Finished
message FIN by calculating s = g(FIN XOR RES)

• Similarily, SP also takes the Finished message into account by checking if s ==
g(FIN XOR XRES)

In Figure 5, the enhanced protocol is shown.

Note that the actual TLS-unique binding has the Finished message sent from user agent to
IdP, where it is included into the token. The corresponding equivalent in our case would
be to input FIN into the authentication function of the SIM card, providing RES =
auth(KSIM , F IN) and having the IdP also compute this value as XRES = FKSIM

(FIN)
(compare Section 3.1). However, the SP is not able to compute this value himself, and also
there is no possibility for him to extract FIN from XRES. The SP does not gain any
knowledge about the Finished message sent from user agent to IdP and thus it is not pos-
sible for SP to check whether or not the token is really bound to a specific TLS channel.



SPUASIM
K

SIM
, pk

IdP
, sk

IdP
K

SIM
pk

SP
, sk

SP

IdP

GET

[Auth_Req, N
S
]sk

SP

Authentication

[Token (including N
S
, {XRES}pk

SP
)]sk

IdP

N
S

RES
RES = auth(K

SIM
, N

S
)

[Auth_Req, N
S
]sk

SP

s

[Token (including N
S
, {XRES}pk

SP
)]sk

IdP

s = g(RES XOR FIN)

s == g(XRES XOR FIN)?

TLS Channel

Figure 5: SIM-ID protocol with included TLS-unique binding

By using s = g(FIN XOR RES) on UA side and checking if s == g(FIN XOR
XRES) on SP side, SP can be sure that the user agent really is the mobile device which
it claims to be (because XRES is confirmed by the trusted IdP) and also that it shares the
current TLS channel with SP (by providing the correct Finished message).

Also note that by encrypting the value XRES specifically for SP, we effectively included
a server end-point binding of SLSOP type (compare Section 2.3.2).

4 Conclusions and Outlook

We have shown how to adapt the UMTS authentication procedure for use within internet
scenarios. Our proposed solution makes use of secure cryptographic bindings to strengthen
the mutual authentication between a user agent UA and a mobile service provider acting
as identity provider IdP. By using these secure bindings, we can effectively prevent an
attacker from being able to mount a Man-in-the-Middle attack on the communication be-
tween UA and IdP.

We have then extended our protocol to also apply to a three party Single Sign-On scenario,
where UA wants to authenticate to a service provider SP without any prior shared secret
between UA and SP. For this purpose we use a mutually trusted third party IdP to build



mutual trust between UA and SP. Our protocol is also robust against impersonation attacks
and Man-in-the-Middle attacks between UA and SP.

Our protocol can be used with any existing Single Sign-On scheme. Service providers
which already support Single Sign-On with the tls-unique channel binding, only need
minor adjustments to their authentication procedures. Users can continue to use their
current mobile devices and do not need any additional secure hardware.

The limitations of our protocol become evident when considering mobile malware present
on the user’s device: Though a simple keylogger would no longer be sufficient to spy out
the user’s username/password combination (this type of espionage in our protocol is, in
fact, impossible, as we do not use username/password combinations), a powerful malware
which has gained full control of the mobile device could use the SIM card to authenticate
against arbitrary service providers. Once the user has unlocked use of his SIM card, there
is nothing stopping a malware from obtaining the required authentication values from it,
as the SIM card cannot distinguish between ’legal’ (i.e. invoked by the user) and ’illegal’
(i.e. triggered by the malware) authentication requests. In short, with our protocol, IdP
and SP will be convinced that they both are communicating with a specific mobile device
(or rather, a mobile device using a specific SIM card), but they cannot be sure whether the
communication was conducted by the regular user or a mobile malware.
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