
Automatic Recognition, Processing and Attacking of
Single Sign-On Protocols with Burp Suite

Christian Mainka∗ , Vladislav Mladenov† , Tim Guenther , and Jörg Schwenk

Horst Görtz Institute, Ruhr-University Bochum, Germany
{christian.mainka,vladislav.mladenov,tim.guenther,joerg.schwenk}@rub.de

Abstract

SAML, Mozilla BrowserID, OpenID, OpenID Connect, Facebook Connect, Microsoft Ac-
count, OAuth — today’s web applications are supporting a large set of Single Sign-On
(SSO) solutions. Some of them have common properties and behavior, others are com-
pletely different. This paper will give an overview of modern SSO protocols. We classify
them into two groups and show how to distinguish them from each other. We provide
EsPReSSO, an open source Burpsuite plugin that identifies SSO protocols automatically
in a browser’s HTTP traffic and helps penetration testers and security auditors to manipu-
late SSO flows easily.

1 Introduction

Using username/password combinations to authenticate on websites is still dominating the
Internet. From the security point of view the management of plethora login credentials is
not a trivial task and carries many risks – users tend to use weak and easy to remember
passwords or reuse passwords between different sites. Even if password managers are
used, attacks are still applicable [SJC+14, LHAS14].

Single Sign-On (SSO) systems simplify login procedures by using an Identity Provider
(IdP) to issue authentication tokens which can be consumed by Service Providers (SPs).
Thus, instead of managing multiple username/password combinations for each website, a
user just needs an account at an IdP which can then be used to log in on an SP.

The importance of SSO has become more important in the recent years, since large com-
panies like Facebook, Google, Microsoft and Salesforce offer different SSO services. For
∗The research was supported by the German Ministry of research and Education (BMBF) as part of the

VERTRAG research project.
†The author was supported by the SkIDentity project of the German Federal Ministry of Economics and

Technology (BMWi,FKZ: 01MD11030).



instance, Facebook’s SSO service Facebook Connect allows its users to connect their
Facebook account with various applications. More than 7 million applications use this
protocol[wfc]. Additionally, a non-academic overview [Jan13] claims that 87% of U.S.
customers are aware of SSO and more than half have tried it.

Today, there are several different SSO protocols. The most widespread are Kerberos,
SAML, OAuth, OpenID, and OpenID Connect. Kerberos is provided in Microsoft’s prod-
ucts like Active Directory Federation Service (ADFS) but rarely used in web applications.
SAML is a flexible and well standardized protocol offering extensive interoperability fea-
tures commonly used in enterprise solutions, governmental services and large companies.
OAuth, OpenID and OpenID Connect are less complex than SAML and easy to deploy.
Thus, these protocols are mostly used for delegated authentication and authorization for
websites and mobile devices. In recent years, companies have created and pushed their
own SSO protocols: Facebook designed Facebook Connect on top of the OAuth specifi-
cation. With Microsoft Account, Microsoft also offers an SSO protocol which is based on
OAuth. Only Mozilla developed their SSO protocol Mozilla BrowserID from scratch.

Figure 1: Modern websites offer multiple login possibilities.

In summary, SSO is com-
monly used in all ar-
eas – desktop and web
applications, mobile de-
vices, government insti-
tutions and enterprise en-
vironments. In this fo-
cus we mainly concen-
trate on web applications.
Figure 1 depicts a com-
mon example of what is
called social login on a website. The user can either login using its username and pass-
word, or use one of his existing accounts (Microsoft, Facebook, Google, . . . ). The hidden
part of the social login is the underlying protocol: The user does not see (because it is
not necessary) which exact SSO protocol is used. However, this information is impor-
tant when it comes to security audits: a security auditor (pentester) needs to know which
protocol is used so that he can evaluate its security.

A plethora design flaws and implementation errors in Kerberos [Sle01, Shi02], SAML
[MMF+14, SMS+12], OpenID [WCW12, TT07, SHB12], OAuth [Ego13, YZ14], OpenID
Connect [MM15c, MM15b, MM15a], Mozilla BrowserID [FKS14], and Facebook Con-
nect [ZE14] led to critical vulnerabilities.

There exist different approaches to analyze SSO: (1) Via formal analysis the according
protocol can be depicted, different threat scenarios can be automatically evaluated and
protocol design flaws plus risks can be discovered. Unfortunately, implementation flaws
cannot be detected via formal analysis. (2) Many researches concentrate on the analysis
of existing implementations. The authors tend to introduce a novel tool, which provides
an automated way to provide the security analysis. Unfortunately, such tools are limited
to only one SSO protocol or one attacker model. An additional limitation is the extensi-
bility in order to support more attack vectors and the false positive or false negative rates



according the discovered flaws.

The limitations mentioned above are relevant for researchers elaborating novel attacks
and security penetration testers, evaluating different services. Such analysis requires: (1)
Recognition of protocols and relevant messages, (2) automated decoding of messages and
security relevant parameters, (3) a flexible approach enabling the manual manipulation
of different messages and parameters within the authentication protocol and (4) a set of
existing attack vectors, which can be used for attacks.

To cover these limitations, we created a tool EsPReSSO1 which is able to (1) detect and
highlight SSO messages in the browser’s traffic flow (i.e. the SSO token in the HTTP
parameters) (2) determine the used SSO protocol. It currently supports all major SSO
protocols that are used in modern web applications. (3) Additionally, EsPReSSO detects
supported SSO protocols by just loading a website, e.g. a login page. (4) After the recog-
nition of the SSO protocol EsPReSSO facilitates the manipulation of the related messages
and automatically decodes and encodes them.

The main challenge tackled by EsPReSSO is the distinction between the different SSO
protocols. This task requires an in-depth analysis of all protocols and detailed knowledge
of the differences between them. For example, OpenID Connect and Facebook Connect
are both based on OAuth and similar. Thus, a simple verification if an OAuth parameter
is transmitted will not be able to distinguish between these protocols. Our paper will
therefore give a detailed overview of recent SSO protocols and how they can be identified.

Contributions. The main contributions of this paper are the following:

I We provide an overview of seven modern SSO protocols. We classify them into
OAuth family and other protocols and show, that the general protocol can be divided
into a few generic steps among all those SSO protocols.

I We have created EsPReSSO, an easy to use open source Burpsuite plugin that au-
tomatically identifies SSO protocol messages and classifies them, so that security
audits of modern web applications can benefit from it.

2 Foundations

2.1 Single Sign-On

SSO is a concept to login a user on an SP without storing any credentials on the SP. SSO
therefore uses an IdP as a trusted third party. The IdP creates an SSO token, sends it back
to the user, who passes it to the SP.

A generic description of SSO protocols is depicted in Figure 2. We will give more details
on the concrete protocols in section 3. Figure 2 illustrates an abstract and generic proto-
col flow for modern SSO protocols like OpenID, OpenID Connect, SAML and Facebook

1https://github.com/RUB-NDS/BurpSSOExtension

https://github.com/RUB-NDS/BurpSSOExtension


User UA SP IdP

(1.) Login request

(2.) Information Gathering

(3.) Token Request

(4.) Authentication

(5.) Token Response

(6.) Token Verification

(7.) success?

Figure 2: Generic protocol flow for SSO protocols.

Connect.

(1.) The user starts a login request using his user agent (UA) on the SP, for example by
submitting his email address (Mozilla BrowserID) or his identifier URL (OpenID, OpenID
Connect). (2.) Some SSO protocols then contact the IdP directly (server to server com-
munication). This phase can be used to establish key material which is later used to sign
and verify the messages or to determine the endpoint interfaces of the IdP, which will be
used. Such an endpoint is for instance the login page at the IdP for the user. (3.) The SP
responds to the first message with a token request. This message is then forwarded to the
SP by the user (to be more precise, by his UA.). (4.) The user then authenticates to his
IdP, typically by entering his username/password combination. Some protocols and IdPs
require further user interaction in order to authorize the access to user’s data like email
address, nickname, birthday or gender. This step is often transparent for the User if he is
already authenticated on the IdP. (5.) Next, the IdP sends the token response. This mes-
sage contains all information that is necessary for the SP to identify the user. The message
is forwarded to the IdP. (6.) The SP can then optionally contact the IdP again to verify
the token response. Depending on the protocol, this is not necessarily (e.g. in SAML),
because the token response contains a signature that can be verified.

2.2 Burpsuite

Burpsuite (Burp) is a penetration test tool by Portswigger2. It is available in a free and a
commercial professional version. Burp acts as an intercepting proxy. This way, Burp can
be configured on any UA as a proxy to log, intercept, display and modify HTTP traffic. The
most commonly used UAs for Burp is a web browser, but it is also possible to configure
it for any other application (e.g. Thunderbird, Skype, . . . ). In this paper, we use the free

2http://portswigger.net/

http://portswigger.net/


version of Burp. Features of the professional version are not necessary for our research.

Burp is often used by security auditors, researchers and penetration testers for the analysis
of different systems. The core functionality of Burp is to intercept and display HTTP
messages in a structured manner. Thus, a tester gets a quick overview of the target system,
all transmitted messages and parameters. In addition, Burp provides a GUI allowing the
full control over all messages - drop, forward, repeat, modify, send later, etc.. Thus, a tester
can design different attack scenarios and execute them manually via Burp. The results of
the attacks can be seen directly in the UA and analyzed by the tester.

Simple parameter manipulations are supported by Burp and can be executed manually.
However, more complex scenarios like decoding, manipulating and signing messages can-
not be started in automated manner. In addition, manually analyzing each HTTP message
can be time consuming and is often not necessary. In order to facilitate more complex
scenarios Burp offers extension points, which allow writing custom features for it. Burp
extensions can monitor and analyze any HTTP message that is passed through its proxy.
Extensions can modify them and create new UI elements to display them.

3 SSO Protocols

This section will give a short overview of existing SSO protocols used in the web and
introduces the necessary details used in EsPReSSO to identify them.

3.1 Protocol Classification

EsPReSSO is able to distinguish between seven different SSO protocols. We therefore
classified them into two categories as shown in Table 1: (1.) SSO protocols belonging to
the OAuth-Family and (2.) other protocols.

OAuth-Family Other
Decentralized Monolithic Decentralized Monolithic

OAuth Facebook Connect OpenID Mozilla BrowserID
OpenID Connect Microsoft Account SAML

Table 1: Overview on existing SSO protocols used in the web and their classification.

The OAuth-Family consists of four different protocols. (1.) OAuth itself [RFC] and (2.) OpenID
Connect, which is an extension of the original OAuth protocol [The14]. Both protocols
can be used decentralized. By decentralized, we mean, that the protocol is independent of
a specific provider. (3.) Facebook Connect [Mor08] and (4.) Microsoft Account [Mic08] in
contrast are monolithic, because they relay on the Facebook resp. Microsoft servers. Other
protocols are (1.) OpenID [spe07] and (2.) SAML [Org05], which are both decentralized,



and Mozilla BrowserID, which is monolithic3.

3.2 OAuth-Family Protocol Description

The following sections will give a quick overview of protocols of the OAuth family. We
do not provide details on how the protocol works, but rather concentrate on the aspects that
are necessary to distinguish them from each other. Our results are summarized in Table 2
on Page 8.

3.2.1 OAuth

OAuth is an authorization framework that allows delegating access on specific resources to
a third party. OAuth itself is not an SSO protocol [Sal14], but since previous research has
shown, that developers tend to falsely use it for SSO [CPC+14], we decided to add OAuth
to the list of supported SSO protocols by EsPReSSO. Taking Figure 2, OAuth follows this
protocol flow:

(1.) The user sends his login request to the SP.4 (2.) The OAuth protocol does not use the
information gathering phase, because all information on the IdP5 is configured once be-
forehand. (3.) According to the specification [RFC] within the token request the following
parameters are required:response_type and client_id. The parameter response_type

determines the flow that is going to be used. The most common flows are code and token.
Other flows can be found in the specification [RFC]. The parameter client_id is a unique
string identifying the SP. Further optional parameters, which can be used to identify an
OAuth token request are: scope for requesting permissions (e.g. the address-book or the
calendar), state and redirect_uri. (4.) Then, the user has to authenticate to the IdP and
authorize the requested permissions (scope) to the SP. (5.) The IdP generates the token
response. If the code flow is used, the token response contains a code parameter. For the
token flow, it contains a access_token parameter. (6.) The SP uses the received code or
access_token to retrieve information about the user from the IdP and to authenticate him.

3.2.2 OpenID Connect

OpenID Connect is a decentralized SSO protocol by adding an authentication layer to
OAuth [The14]. The general flow is almost identical to OAuth as described in the previ-
ous section. Thus, the distinction between OpenID Connect and OAuth is not trivial and
requires fine granular comparison.

3Mozilla BrowserID allows one to setup one’s IdP (Primary IdP-feature), but even in this use-case, the
protocol contacts the Mozilla server at login.persona.org first.

4In the context of OAuth, the user is commonly referred to as the Resource Owner and the SP as the Client.
To simplify the description and to unify all SSO protocol, we strictly use user/SP naming.

5Again, we use the term IdP instead of the OAuth term Authorization Server. We also use the term IdP for
the Resource Server.



According the specification a OpenID Connect token request must contain the follow-
ing parameter: scope, client_id, response_type, redirect_uri. Unfortunately, the
parameters are commonly used in OAuth too. Thus, the distinction on this level is not
possible. However, in OpenID Connect the token request must contain the value openid
in the scope parameter. Additionally, the token request can contain the parameter nonce,
which is required within the token flow. Based on these characteristics the token request
can be recognized.

The recognition of OpenID Connect token responses is more complicated and requires
more detailed distinction. Within the token flow an additional parameter id_token will be
sent by the IdP to the SP. The id_token is used only in OpenID Connect and provides
information about the authenticated user. Thus, the identification of the token response is
simple.

The OpenID Connect token response within the code flow is identical to the OAuth flow.
The only way to provide the distinction is to check the according token request sent before
and bind both messages. This binding can be done by using parameters like client_id,

state and redirect_uri, which are sent in the token request and token response.

3.2.3 Facebook Connect

Facebook Connect is a monolithic SSO protocol. It is based on OAuth and uses the same
protocol flow as described in subsubsection 3.2.1.

The token request within the Facebook Connect protocol can be recognized by the follow-
ing characteristics:

I The scope parameter can contain the value signed_request.

I In addition to the required OAuth parameters within a token request, the following
parameters are sent: domain, origin, sdk, app_id.

Identical to OpenID Connect, the recognition of the token response is not trivial. Within
the token flow, the parameter signed_request can be used. The value of this parameter is
a JSON Web Token (JWT) containing information about the authenticated user. Similar to
OpenID Connect the binding between the token request and token response via parameters
like client_id, state, redirect_uri can be used.

Since Facebook Connect is monolithic, calling the public known SSO endpoints of Face-
book’s API can be used to identify the flow, for instance https://graph.facebook.
com.

3.2.4 Microsoft Account

Microsoft Account is monolithic SSO protocol. It is based on OAuth and uses the same
protocol flow as described in subsubsection 3.2.1. Microsoft Account token request can
be easily detected by observing the scope parameter, which contains one of the following
values: wl.basic, wl.offline_access, wl.signin.

https://graph.facebook.com
https://graph.facebook.com


Protocol Message Type Recognition
OAuth Token Request Parameter: response_type

Token Response Parameter: code OR access_token

OpenID Connect Token Request Parameter: scope contains openid, nonce
Token Response Parameter: id_token

Facebook Connect Token Request Parameter: domain, origin, sdk, app_id,
scope contains signed_request

Token Response Parameter: signed_request, domain, origin,
sdk, app_id

URL http://static.ak.facebook.com/connect/

xd_arbiter

https://graph.facebook.com

Microsoft Account Token Request Parameter: scope contains wl.basic,
wl.offline_access or wl.signin

Token Response Parameter: authentication_token
URL https://login.live.com/oauth20_

authorize.srf

https://apis.live.net

https://www.contoso.com/callback.htm

Table 2: OAuth-Family message recognition and distinction

Identical to OpenID Connect, the recognition of the token response is not trivial. Within
the token flow, the parameter authentication_token can be used. The value of this pa-
rameter is a JWT containing information about the authenticated user. Similar to OpenID
Connect the binding between the token request and token response via parameters like
client_id, state, redirect_uri can be used.

Since Microsoft Account is monolithic, calling the public known SSO endpoints of Mi-
crosoft can be used to identify the flow, for instance https://login.live.com/
oauth20_authorize.srf.

3.3 Other SSO Protocols

In the following sections, we describe SSO protocols that are not based on OAuth. We
again focus on the properties which are important to identify the protocol rather than giving
a complete protocol description.

http://static.ak.facebook.com/connect/xd_arbiter
http://static.ak.facebook.com/connect/xd_arbiter
https://graph.facebook.com
https://login.live.com/oauth20_authorize.srf
https://login.live.com/oauth20_authorize.srf
https://apis.live.net
https://www.contoso.com/callback.htm
https://login.live.com/oauth20_authorize.srf
https://login.live.com/oauth20_authorize.srf


3.3.1 SAML

SAML is a decentralized SSO protocol that uses XML to describe the security token. In
the SAML protocol flow, there is commonly no interaction between the SP and the IdP 6,
so Steps (2.) and (6.) in Figure 2 are skipped. The protocol flow is as follows: (1.) The
user submits his login request to the SP. (3.) The SP generates the token request which
contains a parameter SAMLRequest. The value of the parameter is basically XML and
contains information on the to be used IdP (e.g. its URL). It is compressed using the
deflate algorithm [Deu96] (optional), then encoded using Base64 [Jos06] followed by an
URL-encoding [BLFM05]. (6.) The IdP generates the token response. This is again XML
that is encoded using Base64 and optionally using URL-encoding. The result is stored in
a parameter named SAMLResponse.

3.3.2 OpenID

OpenID is a decentralized SSO protocol, but in contrast to, for example, SAML, it is open
for dynamically using an IdP without any pre-configuration. By this means, anyone own-
ing an OpenID can submit his identifier, which is an URL, to an SP in Step (1.) as shown in
Figure 2. The SP will then discover the IdP in Step (2.) . He browses the URL and retrieves
in this way the URL of the IdP. (3.) Next, the SP generates the token request and sends it
back to the user. OpenID messages are easy to distinguish from other SSO protocols, since
relevant all parameters start with openid.*. Message (3.) can be identified by the param-
eter openid.mode=checkid_setup. Authentication to the IdP is provided as usual in Step
(4.) . The IdP then generates the token response in Step (5.) . This message can be iden-
tified due to the presence of a signature with parameter openid.sig. (6.) The SP can op-
tionally send the token response to the IdP and sets openid.mode=check_authentication
or he can choose to verify the signature on its own.

3.3.3 Mozilla BrowserID

Mozilla BrowserID is a monolithic SSO protocol developed by Mozilla and using Mozilla’s
server as an IdP during the authentication process. Interestingly, in Mozilla BrowserID
using arbitrary IdPs is possible. However, Mozilla’s SSO API is always called within the
protocol flow.

The recognition of Mozilla BrowserID is possible by the detection of the HTTP parameter
assertion containing information about the authenticated user within a JWT and a cookie
named browserid_state. In addition, a JSON message containing key material can be
used for the detection. The following parameters occurs within the message: pubkey, p, q,
g, algorithm, duration and email.

6An exception to this is the SAML Artifact Binding [Org05, Section 4.1.3]



4 EsPReSSO

This section provides a closer look on the design our Burp extension EsPReSSO.

4.1 Idea and Motivation

The Burp Extension for Processing and Recognition of Single Sign-On Protocols (EsPRe-
SSO), simplifies the analysis of SSO protocol flows. During our manual analysis of SSO,
we often meet the problem to do the same repetitive work over and over again to determine
the used protocol. To speed up the identification and to help inexperienced penetration
testers, we decided to develop EsPReSSO.

Its simple idea is to have an automatic scanning utility that passively inspects a browser’s
traffic by scanning HTTP parameters and keywords. In the background the analyzing
algorithm processes checks on the messages. If specific keywords and parameter-value
pairs occur, the request/response is highlighted and marked as the recognized protocol.
Additional we recognize SSO login possibilities by searching HTTP body responses, to
track entry points for further research.

4.2 Design

Figure 3: Setup of the scanner.

EsPReSSO’s core functionality is its scan-
ning engine and the presentation of the re-
sults. One of our design goals is to stick
as close as possible to Burp’s user expe-
rience. By this means, we used existing
structures like the logging mechanisms,
the proxy history and its entries.

4.2.1 Scanner

The scanner carries out the detection of
the SSO protocols according the described
characteristics in section 3. Initially, the
scanner uses Burp’s interfaces and au-
tomatically receives all incoming traffic.
Consequentially, it analyzes every loaded
website for SSO login possibilities. Si-
multaneously, it scans the HTTP parame-
ter and detects a SSO authentication process and the according SSO protocol.

The first submodule checks for the possibility to login with a specific SSO module, for



example OpenID or Facebook Connect. This is implemented by searching the HTTP
response messages through regular expressions for specific key words.

The second submodule inspects the HTTP traffic for specific properties that identify SSO
protocols. It therefore searches successively for characteristics that are unique in each SSO
protocol (cf. section 3). Please note the order of the given SSO modules, because distin-
guishing between protocols which partly base on the same protocol is difficult. OAuth is
part of the protocols OpenID Connect, Microsoft Account and Facebook Connect, there-
fore we check these protocols first.

In addition, the scanner collects all collected information about the recognized SSO pro-
tocols, which allows the analysis afterwards.

4.2.2 Visualizer

Once SSO relevant parameters are detected, they have to be visualized. The Visualizer
carries out this task by handling and filtering the collected data, converting the informa-
tions in human readable format (e.g. Base64-decoding or inflating) and calling different
Burp APIs to display the results.

In detail, the Visualizer includes the following features:

Burp History Burp provides a history tab containing all intercepted messages. Thus,
security auditors get an overview of the entire communication and can statically
analyze the intercepted data. The Visualizer facilitates the evaluation process by
highlighting the SSO relevant messages and by providing additional information
about the recognized protocol.

SSO History A new Burp history window displays recognized protocols with additional
data, for example, the used token and the protocol name. In comparison to the SSO
History window, only SSO relevant messages will be displayed. The Visualizer
provides more information about the messages, for example, the relation to other
messages and the decoded content.

Follow SSO Flow By right clicking on a SSO History item a new tab is dynamically
attached to the view with the complete protocol flow of the entry.7 Token requests
and responses will be assigned to each other, which facilitates the analysis of the
entire protocol.

JSON Tab By analyzing the MIME-type of the HTTP messages, the Visualizer detects
JSON messages and displays them. This feature is often used in OAuth to transmit
data to the SP.

JWT Tab Protocols that are known to make use of JSON Web Tokens (JWT) get auto-
matically a new tab to view the decoded JWT.

SAMLResponse/Request Tab Extra tab that displays the fully decoded and deflated SAML

7This feature is inspired by Wireshark’s follow TCP stream feature



Request/Response messages.

All new tabs come with syntax highlighting8.

4.2.3 Manipulator

Security auditors often have to manipulate HTTP messages in order to simulate differ-
ent attacks. Thus, in addition to the visualization of the protocols, EsPReSSO offers the
possibility to modify the content of the messages.

In order to process the manipulations, the Manipulator offers the following features:

I Editable area containing all relevant parameters and enabling the modifications.

I Modifications will be detected and the old content will be replaced. The flexible
architecture of EsPReSSO allows the manual or semi-automatic execution of modi-
fications by choosing an attack vector from a predefined set of attacks.

I Data, which is transformed in a human readable format, will be transformed back to
the original format. For instance, SAML tokens will be automatically decoded and
— if necessary — deflated.

5 Related Work

SSO Security Tools. In 2013, Bai et al. [BLM+13] have proposed AuthScan, a frame-
work to extract the authentication protocol specifications automatically from implementa-
tions. The authors concentrated on Man-in-the-Middle (MitM) attacks, Replay attacks and
Guessable tokens. More complex attacks like token manipulations were not considered.
In the same year, Wang et al. [XCWC13] developed a tool named InteGuard detecting the
invariance in the communication between the client and SP to prevent logical flaws in the
latter one. Another tool similar to InteGuard is BLOCK [LX11]. Both tools can detect and
mitigate attacks, but cannot be used for penetration testing of existing implementations and
manipulating the traffic. Zhou et al. [YZ14] published on USENIX’14 a fully automated
tool named SSOScan for analyzing the security of OAuth implementations and described
five attacks, which can be automatically tested by the tool. Further SSO protocols are not
considered. In 2014, Mainka et al. [MM15d] published a fully automated tool acting as
a malicious IdP for analyzing the security of OpenID implementations and described two
novel attacks.

SSO extensions. In 2015 an extension called “SAMLyze” was published at Black Hat [Bar15].
Its goal is to pentest SAML SPs fast and easy against XXE, DTDs and to perform auto-
matically a variety of SAML validations. In 2015 another extension analyzing SAML SPs
was published [Bis15]. It contains two core functionalities: Manipulating SAML Mes-
sages and manage X.509 certificates.

8We use RSyntaxTextArea: http://sourceforge.net/projects/rsyntaxtextarea/

http://sourceforge.net/projects/rsyntaxtextarea/


However, both extensions concentrate on SAML but to not consider further SSO protocols.

6 Conclusion and Future Work

EsPReSSO is the initial approach to create a tool capable to analyze different SSO proto-
cols according their characteristics, to display all relevant parameters in a human readable
format, and to manipulate the intercepted data in order to simulate different attacks. Thus,
EsPReSSO facilitates the security analysis of SSO protocols.

EsPReSSO contains three different modules: Scanner, Visualizer and Manipulator. Each
of these components can be easily extended. Thus, the detection of further protocols,
further features regarding the depiction of the messages and manipulation possibilities can
be added.

To the best of our knowledge, EsPReSSO is the first tool capable to detect, display and
modify multiple different SSO protocols at the same time.

In future, EsPReSSO’s functionality will be tested on a large set of websites and if needed
modifications approving the detection will be implemented. Another issue is the enlarge-
ment of the available attacking set by considering attacks like XML Signature Wrapping
(XSW) or attacks on JWTs.

Acknowledgements

References

[Bar15] Jon Barber. SAMLyze, August 2015.

[Bis15] Roland Bischofberger. SAMLRaider, Juli 2015.

[BLFM05] T. Berners-Lee, R. Fielding, and L. Masinter. Uniform Resource Identifier (URI):
Generic Syntax. RFC 3986 (INTERNET STANDARD), January 2005. Updated by
RFCs 6874, 7320.

[BLM+13] Guangdong Bai, Jike Lei, Guozhu Meng, Sai Sathyanarayan Venkatraman, Prateek
Saxena, Jun Sun, Yang Liu, and Jin Song Dong. AUTHSCAN: Automatic extraction
of web authentication protocols from implementations. NDSS, February, 2013.

[CPC+14] Eric Chen, Yutong Pei, Shuo Chen, Yuan Tian, Robert Kotcher, and Patrick Tague.
OAuth Demystied for Mobile Application Developers. In Proceedings of the ACM
Conference on Computer and Communications Security (CCS). ACM – Association
for Computing Machinery, November 2014.

[Deu96] P. Deutsch. DEFLATE Compressed Data Format Specification version 1.3. RFC 1951
(Informational), May 1996.

[Ego13] Egor Homakov. How we hacked Facebook with OAuth2 and Chrome bugs, Februrary
2013.



[FKS14] Daniel Fett, Ralf Kusters, and Guido Schmitz. An expressive model for the Web in-
frastructure: Definition and application to the Browser ID SSO system. In Security and
Privacy (SP), 2014 IEEE Symposium on, pages 673–688. IEEE, 2014.

[Jan13] Janrain. 2013 Consumer Research: The Value of Social Login, 2013.

[Jos06] S. Josefsson. The Base16, Base32, and Base64 Data Encodings. RFC 4648 (Proposed
Standard), October 2006.

[LHAS14] Zhiwei Li, Warren He, Devdatta Akhawe, and Dawn Song. The emperor’s new pass-
word manager: Security analysis of web-based password managers. In 23rd USENIX
Security Symposium (USENIX Security 14), 2014.

[LX11] Xiaowei Li and Yuan Xue. BLOCK: A Black-box Approach for Detection of State Vio-
lation Attacks Towards Web Applications. In Proceedings of the 27th Annual Computer
Security Applications Conference, ACSAC ’11, New York, NY, USA, 2011. ACM.

[Mic08] Microsoft. One account for all things Microsoft, May 2008.

[MM15a] Christian Mainka and Vladislav Mladenov. Connect2id Acknowledgement, 2015.

[MM15b] Christian Mainka and Vladislav Mladenov. CVE-2015-0959, 2015.

[MM15c] Christian Mainka and Vladislav Mladenov. CVE-2015-0960, 2015.

[MM15d] Christian Mainka and Vladislav Mladenov. Do not trust me: Using malicious IdPs
for analyzing and attacking Single Sign-On (Full Version with Attachments), 2015.
[online] http://bit.ly/maliciousIdPs_fullversion.

[MMF+14] Christian Mainka, Vladislav Mladenov, Florian Feldmann, Julian Krautwald, and Jörg
Schwenk. Your Software at my Service: Security Analysis of SaaS Single Sign-On
Solutions in the Cloud. In Proceedings of the 6th edition of the ACM Workshop on
Cloud Computing Security, CCSW ’14, Scottsdale, Arizona, USA, November 7, 2014,
pages 93–104, 2014.

[Mor08] Dave Morin. Announcing Facebook Connect, May 2008.

[Org05] Organization for the Advancement of Structured Information Standards. Security As-
sertion Markup Language (SAML) v2.0, 2005.

[RFC] IETF RFC6749. The OAuth 2.0 Authorization Framework.

[Sal14] Salesforce.com, inc. Inside OpenID Connect on Force.com, 2014.

[SHB12] San-Tsai Sun, Kirstie Hawkey, and Konstantin Beznosov. Systematically breaking and
fixing OpenID security: Formal analysis, semi-automated empirical evaluation, and
practical countermeasures. Computers & Security, 31(4), 2012.

[Shi02] Chris Shiflett. Passport Hacking Revisited, 2002.

[SJC+14] David Silver, Suman Jana, Eric Chen, Collin Jackson, and Dan Boneh. Password man-
agers: Attacks and defenses. In Proceedings of the 23rd Usenix Security Symposium,
2014.

[Sle01] Marc Slemko. Microsoft Passport to Trouble, 2001.

[SMS+12] Juraj Somorovsky, Andreas Mayer, Jörg Schwenk, Marco Kampmann, and Meiko
Jensen. On Breaking SAML: Be Whoever You Want to Be. In Presented as part of the
21st USENIX Security Symposium (USENIX Security 12), pages 397–412, Bellevue,
WA, 2012. USENIX.

http://bit.ly/maliciousIdPs_fullversion


[spe07] specs@openid.net. OpenID Authentication 2.0 – Final, December 2007.

[The14] The OpenID Foundation (OIDF). OpenID Connect Core 1.0, February 2014.

[TT07] Eugene Tsyrklevich and Vlad Tsyrklevich. Single Sign-On for the Internet: A Security
Story, July and August 2007.

[WCW12] Rui Wang, Shuo Chen, and XiaoFeng Wang. Signing Me onto Your Accounts through
Facebook and Google: A Traffic-Guided Security Study of Commercially Deployed
Single-Sign-On Web Services. In Proceedings of the 2012 IEEE Symposium on Secu-
rity and Privacy, SP ’12, Washington, DC, USA, 2012. IEEE Computer Society.

[wfc] Websites using Facebook Connect. visited on 2015-05-25.

[XCWC13] Luyi Xing, Yangyi Chen, X Wang, and Shuo Chen. InteGuard: Toward Automatic
Protection of Third-Party Web Service Integrations. In Proceedings of 20th Annual
Network & Distributed System Security Symposium, 2013.

[YZ14] David Evans Yuchen Zhou. Automated Testing of Web Applications for Single Sign-
On Vulnerabilities. In 23rd USENIX Security Symposium (USENIX Security 14), San
Diego, CA, August 2014. USENIX Association.

[ZE14] Yuchen Zhou and David Evans. SSOScan: Automated Testing of Web Applications for
Single Sign-On Vulnerabilities. 23rd USENIX Security Symposium, 2014.


	Introduction
	Foundations
	sso
	burp

	SSO Protocols
	Protocol Classification
	oauth-Family Protocol Description
	OAuth
	oidc
	fbc
	msa

	Other sso Protocols
	saml
	oid
	browserid


	espresso
	Idea and Motivation
	Design
	Scanner
	Visualizer
	Manipulator


	Related Work
	Conclusion and Future Work

