
Systematic Fuzzing and Testing of TLS Libraries

Juraj Somorovsky
Horst Görtz Institute for IT Security

Ruhr University Bochum
Hackmanit GmbH

juraj.somorovsky@rub.de

Abstract
We present TLS-Attacker, an open source framework for
evaluating the security of TLS libraries. TLS-Attacker al-
lows security engineers to create custom TLS message flows
and arbitrarily modify message contents using a simple in-
terface in order to test the behavior of their libraries.

Based on TLS-Attacker, we present a two-stage fuzzing
approach to evaluate TLS server behavior. Our approach
automatically searches for cryptographic failures and bound-
ary violation vulnerabilities. It allowed us to find unusual
padding oracle vulnerabilities and overflows/overreads in
widely used TLS libraries, including OpenSSL, Botan, and
MatrixSSL.

Our findings motivate developers to create comprehensive
test suites, including positive as well as negative tests, for the
evaluation of TLS libraries. We use TLS-Attacker to create
such a test suite framework which finds further problems in
Botan.

1. INTRODUCTION
Transport Layer Security (TLS) [27] is used to secure the

connection to websites, Web services, or to create Virtual
Private Networks (VPNs) and connect LANs from different
locations. Different application scenarios and protocol ex-
tensions quickly raised the complexity of this standard. Its
complexity led to various designs as well as implementation
failures in various attack scenarios. In the last few years,
we saw attacks targeting improper encryption algorithms
and configurations [12, 13, 44], complex state machines [17,
25, 39], extension specifications [19, 47], or attacks target-
ing implementation failures with buffer overflows and over-
reads [49].

The large number of recent attacks has motivated re-
searchers to provide further security analyses of TLS and
to develop novel security evaluation tools. In recent scien-
tific studies authors have considered the proper evaluation
of TLS state machines [25, 17], and they have also developed
tools for sending protocol messages in an arbitrary order [25]

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

CCS’16, October 24 - 28, 2016, Vienna, Austria
c© 2016 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ISBN 978-1-4503-4139-4/16/10. . . $15.00

DOI: http://dx.doi.org/10.1145/2976749.2978411

and even tools for modifying specific message fields [17].
The message field modifications provided by these tools are
rather static, i.e., a developer only has the ability to ex-
plicitly define values of specific message fields; however, he
cannot execute dynamic field modifications given precom-
puted values in TLS message flows, which is very important
for dynamic fuzzing. In view of the shortcomings of previous
approaches, and with intentions for extending the test cov-
erage of existing TLS libraries, it was necessary to develop a
new TLS testing framework – TLS-Attacker. TLS-Attacker
is able to create arbitrary TLS protocol flows and execute
dynamic modifications in TLS messages based on precom-
puted values.

Impact and applicability. Our approach allowed us to
find new vulnerabilities in widely used TLS libraries. These
include padding oracle vulnerabilities in OpenSSL [8], Ma-
trixSSL [6] and Botan [1], or boundary violations in Botan
and the first pre-release of OpenSSL-1.1.0. Furthermore,
with this approach we exposed the fact that GnuTLS [10]
does not verify specific message variables but instead silently
proceeds the TLS handshake. The vulnerabilities have been
reported to the developers and fixed in the newest versions.

TLS-Attacker and modifiable variables. Our frame-
work relies on a construct called modifiable variable. A mod-
ifiable variable is a container for basic data types like integers
or byte arrays. By accessing these data types, the modifiable
variable can dynamically modify the content of the original
variable value. For example, it is possible to increase or de-
crease an integer value or to execute an XOR operation on
a given byte array. We use modifiable variables to construct
TLS messages and TLS records. This allows us to dynami-
cally modify any byte at any time in the TLS protocol flow.

The main goal of TLS-Attacker is to provide an easy-to-
use framework with a simple user interface, allowing devel-
opers to create custom TLS protocol flows in order to dis-
cover state machine attacks [25, 17] or test countermeasures
against cryptographic attacks [55, 23]. This is possible di-
rectly in Java, using the TLS-Attacker interface. Further-
more, it is even possible to define custom protocol flows and
modifications using simple XML messages.

Two-stage fuzzing approach. To prove the practica-
bility of TLS-Attacker, we use it to construct a two-stage
fuzzing approach. In the first stage, we introduce crypto-
graphic fuzzing for known vulnerabilities like padding ora-
cle attacks [55] or Bleichenbacher attacks [23]. In the second
stage, we then systematically modify protocol message vari-

http://dx.doi.org/10.1145/2976749.2978411

ables and protocol flows to trigger specific implementation
bugs or buffer boundary violations.

TLS test suite. The padding oracle vulnerability we dis-
covered in OpenSSL [9] (CVE-2016-2107) was introduced by
writing a constant-time patch that should have mitigated
the Lucky 13 attack [13]. Unfortunately, a missing length
check for sufficient HMAC length turned the OpenSSL server
from a rather complex timing oracle to a direct padding or-
acle since the server responded with a different TLS alert.
This issue went unnoticed for nearly three years even though
OpenSSL became the primary TLS target library of the se-
curity research community. We observed a similar problem
in the MatrixSSL library. The impact of the insufficient
padding check, however, was worse than in OpenSSL; the
developers introduced a buffer overflow vulnerability by at-
tempting to patch the Lucky 13 attack.

These two cases clearly show that writing and maintain-
ing critical cryptographic libraries is of huge importance.
New security critical functionalities must be validated with
proper test suites. These test suites should not only include
positive tests, they must include negative tests verifying cor-
rect library behavior when sending invalid messages or in-
correctly formatted data.

We use TLS-Attacker to create a test suite concept for val-
idating TLS libraries. With our concept, the developers can
create valid and invalid TLS message flows containing arbi-
trary messages. The TLS responses can be validated with
predefined assertions which check for the correct message
contents. For example, it is possible to validate the correct-
ness of TLS alert message types or proper cryptographic
properties. The first test cases in our test suite already
showed insufficiencies in the Botan cipher suite support.

Contributions. This work makes the following contribu-
tions:

• TLS-Attacker: We provide a novel framework for the
evaluation of TLS libraries, which can be used by secu-
rity researchers or developers. The code is on GitHub:
https://github.com/RUB-NDS/TLS-Attacker.

• Novel fuzzing approach for TLS: Based on TLS-
Attacker, we implement a two-stage fuzzing approach
for the evaluation of TLS servers. Our approach al-
lows us to find different vulnerabilities in widely used
libraries.

• Modifiable variables: We present a concept of mod-
ifiable variables which provide a high flexibility for the
implementation of arbitrary cryptographic protocols
beyond TLS.

• TLS test suite: We also create a concept for testing
TLS libraries which is easily extensible with positive
and negative tests.

In our work we do not attempt to claim TLS-Attacker is
complete or that it detects every vulnerability. Our findings,
however, show that such a tool is necessary for the devel-
opment of secure TLS libraries. TLS-Attacker is currently
being integrated into Botan and MatrixSSL test suites.

2. TRANSPORT LAYER SECURITY
In the TCP/IP reference model, the TLS protocol is lo-

cated between the transport layer and the application layer.

ClientClient ServerServer

ClientHello

ServerHello, Certificate,
(ServerKeyExchange), ServerHelloDone

(Certificate), ClientKeyExchange,
(CertificateVerify), ChangeCipherSpec, Finished

ChangeCipherSpec, Finished

ApplicationData / Heartbeat

ApplicationData / Heartbeat

Figure 1: TLS protocol. After performing a TLS
handshake, the peers can communicate securely and
exchange Application or Heartbeat messages.

Its main purpose is to protect application protocols like
HTTP or IMAP. The first (unofficial) version was devel-
oped in 1994 by Netscape, and was named Secure Sockets
Layer. In 1999, SSL version 3.1 was officially standardized
by the IETF Working Group and renamed Transport Layer
Security [26]. The current version is 1.2 [27]. Version 1.3
is currently under development [28]. In addition to TLS,
which acts over reliable TCP channels, the working group
standardized DTLS [48] (Datagram TLS), which works on
the top of UDP.

TLS is complex and allows communication peers to choose
from a large number of different algorithms for various cryp-
tographic tasks (key agreement, authentication, encryption,
integrity protection). A cipher suite is a concrete selection of
algorithms for the required cryptographic tasks. For exam-
ple, TLS_RSA_WITH_AES_128_CBC_SHA defines RSA-PKCS#1
v1.5 public-key encryption in order to exchange a premaster
secret, and it also defines symmetric AES-CBC encryption
with a 128-bit key and SHA-1-based HMACs.

2.1 The Handshake Protocol
In order to establish a TLS connection between two peers

and exchange application data, a TLS handshake is executed
(cf. Figure 1). A TLS handshake is initiated by a TLS
client with a ClientHello message. This message contains
information about the TLS version and a list of supported
cipher suites. The server now responds with a ServerHello

message containing the selected cipher suite. Furthermore,
it sends its certificate in the Certificate message and in-
dicates the end of transmission with the ServerHelloDone

message. The client then sends a ClientKeyExchange mes-
sage, which contains an encrypted premaster secret. Based
on the premaster secret, all further connection keys are de-
rived. Finally, both parties send the ChangeCipherSpec and
Finished messages. The former notifies the receiving peer
that subsequent TLS messages will use the newly negotiated
cipher suite. The Finished message contains an HMAC
computed over all the previous handshake messages based
on a key derived from the premaster secret. Thereby, both
peers are authenticated and can exchange application data
or Heartbeat messages [50].

Note that this is an example of a TLS handshake with an
RSA cipher suite. The specification also supports (EC)DH

https://github.com/RUB-NDS/TLS-Attacker

Figure 2: When processing five plaintext bytes with
AES-CBC and HMAC-SHA, the encryptor needs
to append 20 bytes of the HMAC-SHA output and
seven bytes of padding.

cipher suites or usage of preshared keys. In addition, it is
possible for the client to authenticate with a certificate or to
use a session resumption to resume previous sessions. These
methods result in TLS handshakes with slightly different
structures with additional protocol messages. For exam-
ple, if a client-authentication is used, the client additionally
sends Certificate and CertificateVerify messages.

The exchanged messages have strict structures. For ex-
ample, an RSA-based ClientKeyExchange message consists
of a handshake type identifier (0x10), 3-byte long length in-
dication and an encrypted premaster secret.

Different messages and flows result in a complex protocol
making the design of TLS state machines and the proper
verification of protocol message structures very challenging.

2.2 The Record Layer
The record layer is used to transmit protocol messages.

Basically, it wraps the protocol messages and adds the in-
formation about the TLS protocol version, message type,
and message length. The contents of the TLS records are
encrypted after ChangeCipherSpec messages are exchanged.

In order to encrypt TLS records, it is possible to use differ-
ent cryptographic primitives. One of them is a MAC com-
bined with AES in CBC mode of operation. It uses the
MAC-then-Pad-then-Encrypt mechanism [27]. This means
that the encryptor first computes a MAC over the plain-
text, then it pads the message to achieve a multiple of block
length, and finally it uses AES-CBC to encrypt the cipher-
text. For example, if the encryptor attempts to encrypt five
bytes of data and uses HMAC-SHA (with 20 bytes long out-
put), we end up with two blocks. The second block needs to
be padded with seven bytes 0x06, see Figure 2. Note that
the encryptor can also choose a longer padding and append
23, 39, ...or 247 padding bytes.

For the description of our work, it is also crucial that one
record message can include one protocol message or several
messages at once. It is even possible to split one protocol
message into several records. This adds to the complexity
of the TLS standard.

2.3 TLS Extensions
Different application scenarios and cryptographic usages

have resulted in definition of various extensions to the TLS
protocol. The extensions can add cryptographic abilities of
TLS peers (supported elliptic curves [22, 42]), define new
protocol messages (heartbeat [50]), or change the maximum
number of bytes transmitted in one TLS record (Maximum
Fragment Length [31]). Protocol extensions are negotiated
in the ClientHello and ServerHello messages and their
correct processing is also crucial for securing a TLS protocol
execution.

2.4 TLS Libraries
There are several widely used libraries supporting TLS,

ranging from open source libraries like OpenSSL to closed
source libraries like Microsoft’s SChannel (Secure Channel).

In this paper, we analyze the following TLS server imple-
mentations: Botan [1], GnuTLS [10], Java Secure Socket Ex-
tension [5], MatrixSSL [6], mbedTLS [7], and OpenSSL [8].

3. ATTACK CATEGORIZATION
Recent years have shown that despite the wide usage of

TLS, TLS libraries suffer from severe security vulnerabili-
ties. In this section we concentrate on the description of the
attacks relevant to our paper since they are necessary to de-
scribe our findings. Further attacks and their categorization
can be found in [43, 51].

We have organized the relevant attacks into three basic
categories.

3.1 Cryptographic Attacks
Padding oracle attacks. One of the main design failures
in SSLv3 and TLS is the specification of the MAC-then-
Pad-then-Encrypt scheme in CBC cipher suites. In 2002
Vaudenay showed that this scheme makes security protocols
potentially vulnerable to padding oracle attacks [55]. These
attacks are based on the malleability of the CBC mode of
operation. CBC allows an attacker to flip specific bits in
the plaintext without knowing the secret key. If a server
allows the attacker to distinguish between valid and invalid
padding bytes (e.g., by sending different error messages), the
attacker can decrypt the message as follows. He starts with
decrypting the last message byte. To this end, he iteratively
flips bits in this byte and sends the message to the server.
Once he receives a valid padding response, he knows he has
correctly guessed the 0x00 byte. This allows him to decrypt
the last plaintext byte. Afterwards, he can proceed with
further padding bytes and decrypt the whole message [55].

In order to mitigate this attack, the implementation must
not allow an attacker to distinguish valid from invalid padding
structures in the decrypted messages. In 2013 AlFardan and
Paterson presented the Lucky 13 attack [13] and showed
that implementing countermeasures against padding oracle
attacks in TLS is very challenging. Lucky 13 exploits a tim-
ing side-channel arising from the countermeasures described
in the TLS recommendation [27].

TLS implementations attempt to implement various coun-
termeasures to make padding oracle attacks impossible. How-
ever, recent evaluations and scientific studies show that TLS
implementations still contain insufficient padding verifica-
tions [24, 41] or are vulnerable to variants of the Lucky 13
attack [11, 35].

Bleichenbacher’s attack. One of the most important at-
tacks in TLS history is Bleichenbacher’s million message at-
tack [23]. The attack targets the RSA PKCS#1 v1.5 encryp-
tion scheme, which is used in the TLS protocol to encrypt
a shared secret between both TLS peers. Essentially, Ble-
ichenbacher’s attack is also a padding oracle attack. The
attack is based on the malleability of the RSA encryption
scheme and assumes the existence of an oracle that responds
with “valid” or “invalid” according to the PKCS#1 v1.5 va-
lidity of the decrypted message.

A server defending against this attack must not allow for

the distinction between valid and invalid ciphertexts. How-
ever, recent studies show insufficiencies in the application
of this countermeasure, in the Java TLS implementation
(JSSE) and the Cavium accelerator chips [44]. Further stud-
ies show how to improve efficiency of this attack or how to
apply it to different protocols and standards [16, 15, 36].

3.2 State Machine Attacks
TLS is a complex protocol containing different message

flows. This results in complex state machine implementa-
tions which can contain severe security bugs. The first rel-
evant security vulnerability was discovered in 2014 and was
named Early CCS, or CCS injection vulnerability [39]. This
vulnerability allows an attacker to inject an early Change-

CipherSpec message into the TLS handshake and force the
TLS peer to derive a shared key based on a null secret. If a
Man-in-the-Middle (MitM) attacker and both TLS peers use
vulnerable OpenSSL versions, the attacker can force both
peers to establish a connection using a null secret and thus
read the whole communication.

The Early CCS vulnerability prompted researchers to
search for state machine vulnerabilities. They found dif-
ferent unexpected state transitions in widely used TLS li-
braries [17, 25]. For example, the Java TLS implementa-
tion contained a serious vulnerability which allowed one to
finish the TLS handshake without ChangeCipherSpec mes-
sages. This resulted in a plaintext communication between
the client and the server.

3.3 Overflows and Overreads
The Heartbleed bug in OpenSSL [49] has shown cryptog-

raphy engineers how critical a simple buffer overread can
be. Heartbleed allowed an attacker to read random bytes
from a server’s memory, for example, private cryptographic
keys [53]. The reason was a buffer overread vulnerability
in the OpenSSL heartbeat processing implementation. It
forced major servers to renew their private keys and certifi-
cates.

In the recent years, additional problems in various TLS
libraries like buffer overflows or integer overflows have ap-
peared [29, 9, 2]. These buffer boundary violations moti-
vated us to execute further security evaluations of TLS im-
plementations.

4. REQUIREMENTS AND RELATED WORK
The recent development in the area of TLS and the high

number of memory and state machine attacks motivated us
to construct an enhanced evaluation of TLS implementa-
tions. In the following section we first describe requirements
for a flexible TLS library. We analyze different approaches
to achieve these requirements, discussing their advantages
and disadvantages.

4.1 Requirements for a Flexible TLS Testing
Framework

Given the recent TLS attacks, we can summarize the fol-
lowing requirements for a new, flexible analysis tool.

Flexible stateless TLS handshake execution. Flexible
protocol execution is necessary for state machine validations
as well as for different fuzzing strategies. It is important that
the framework does not derive the current state from the
exchanged protocol messages. The security developer has to

be able to set the protocol execution state at an arbitrary
point of time, after an arbitrary number of messages have
been exchanged. For example, he is able to define specific
state transitions, or the exact point when the messages will
be encrypted.

Flexible modification of arbitrary TLS variables. The
security developer has to be able to execute arbitrary mod-
ifications to TLS variables. This includes various variables
used in the TLS protocol flow, for example, length variables
indicating the length of TLS messages and extensions, as
well as specific cryptographic keys and secrets. It is not
only necessary to simply set these variables, but the secu-
rity developer has to perform variable modifications at run-
time. For example, by evaluating the POODLE vulnerabil-
ity [45] in a TLS server library, a security engineer analyzes
whether a correct padding validation has been implemented.
For this purpose, he needs to execute modifications in spe-
cific plaintext bytes before the message gets encrypted in
the record layer. More precisely, if the plaintext message
consists of data||MAC||pad (data concatenated with MAC
and padding), the security developer is only interested in the
modification of specific padding bytes (e.g., he wants to ap-
ply an XOR operation on the first padding byte). The rest
of the plaintext message has to stay untouched, otherwise a
MAC failure can be triggered.

Systematic fuzzing of message variables. In order to
trigger specific vulnerabilities, the TLS testing framework
has to provide a list of variables given in the TLS protocol
and be able to systematically modify these variables.

Easy to use interface. The TLS testing framework has
to provide a simple interface to create new protocol flows
and modifications. The security developer has to be able
to define new protocol sets or protocol fuzzings and execute
them automatically with the tested TLS library.

Detection of crashes and invalid protocol flows. The
TLS testing framework has to provide an ability in order
to detect TLS server crashes or invalid protocol flows. If a
failure is detected, the protocol flow has to be recorded and
the developer has to be able to execute the same protocol
flow to re-analyze the discovered issue (e.g., after triggering
a buffer overflow).

4.2 Approaches and Related Work
The first trivial approach is to patch an existing TLS li-

brary. However, patching every variable in the TLS protocol
flow could be complicated. The code would need to be modi-
fied at different places, nested in several function levels. This
would result in a huge overhead, especially when considering
the complex code of open source libraries like OpenSSL.

Another possible approach is to use a TLS library and
control its flow using a debugging interface. For example,
the Java Platform Debugger Architecture (JPDA) [4] pro-
vides a programming interface that allows a developer to
create software agents which can monitor and control Java
applications. The developer could use the JSSE library and
write a fuzzing extension within a Java agent. The agent
would modify only the needed variables directly during TLS
protocol flow. This would allow one to execute correct TLS
message flows and modify only specific variables. This ap-
proach, however, has a significant drawback. TLS libraries
are constructed to execute correct TLS protocol flows. In

order to trigger the Early CCS vulnerability or other state
machine attacks, an invalid TLS protocol flow has to be
constructed.

A possible approach to execute fuzzing attacks is to take
a fuzzing framework (e.g., Peach Fuzzer1 or American Fuzzy
Lop2) and initialize it with an intercepted TLS protocol flow.
The fuzzer generates its messages based on the given proto-
col messages and sends them to the server. This approach
could be applied to several plaintext messages in the TLS
handshake. However, the TLS protocol flow also contains
messages that are encrypted and authenticated using freshly
generated keys. For example, in order to send a Heartbeat

message, the complete TLS handshake must be executed
first [50].3

De Ruiter and Poll implemented a customized tool to eval-
uate TLS state machines [25]. Their tool, however, does
not allow one to modify custom protocol message variables.
Berdouche et al. designed a novel TLS tool – FLEXTLS [18].
FLEXTLS was previously used to develop many prominent
attacks (e.g., Triple Handshake [19]) and to discover state
machine attacks [17]. This tool allows one to construct new
protocol message flows and set custom variable values. How-
ever, in FLEXTLS the variables can only be initialized with
explicit values. The tool is not intended to perform dynamic
variable modifications. This means that more difficult mod-
ifications of variables with XOR or ADD operations are not
supported. Furthermore, no TLS fuzzing is supported.

Very recently, two novel TLS testing frameworks have
been developed: tlsfuzzer and Scapy-SSL/TLS [38, 46].
These TLS frameworks support stateless protocol executions
and variable modifications. They are useful for developing
new attacks and protocol modifications. Currently, they do
not contain any consistent fuzzing strategies, nor dynamic
variable modifications.

5. TLS-ATTACKER: DESIGN AND IMPLE-
MENTATION

The state-of-the-art of TLS evaluations motivated us to
develop a novel flexible TLS framework. The main goal of
this framework is to offer developers and security engineers
a simple and accessible approach to evaluate their TLS im-
plementations.

TLS-Attacker is implemented in Java with the support of
the Maven project management tool.4

5.1 Modifiable Variables
At the heart of our framework, we implement a construct

called ModifiableVariable. A ModifiableVariable is a
wrapper for simple data types like integers or byte arrays.
This wrapper contains the original value of a specific variable
and provides its value by a getter method. While accessing
the variable, the ModifiableVariable container is able to
apply predefined modifications.

1http://peachfuzzer.com
2http://lcamtuf.coredump.cx/afl
3We note that the Heartbleed bug could have been triggered
by sending an unencrypted Heartbeat message during the
TLS handshake since the vulnerable OpenSSL version incor-
rectly accepted the Heartbeat message before the Change-
CipherSpec message.
4https://maven.apache.org

A simplified example of this construct provided for integer
data types gives the following listing:

pub l i c c l a s s Mod i f i ab l e In t eg e r {
pr i va t e i n t or igValue ;
p r i va t e Mod i f i ca t i on mod i f i c a t i on ;

pub l i c i n t getValue () {
i f (mod != nu l l) {

re turn mod i f i c a t i on . modify (or igValue) ;
}
re turn or igValue ;

}
}

ModifiableInteger contains two variables: a wrapped
origValue and a modification. The origValue is used to
hold the original integer value computed during a program
execution. While accessing the variable over getValue(),
this method is able to execute specific modifications before
the original value is returned.

Usage of modifiable variables. The best way to present
the functionality of this concept is by means of a simple
example:

Mod i f i ab l e In t eg e r i = new Mod i f i ab l e In t eg e r () ;
i . s e tOr i g ina lVa lue (30) ;
i . s e tMod i f i c a t i on (new AddModif ication (20)) ;
System . out . p r i n t l n (i . getValue ()) ; // 50

In this example, we define a new ModifiableInteger and
set its value to 30. Next, we define a new modification –
AddModification – which simply returns a sum of two in-
tegers. We set its value to 20. If we execute the above
program, the result 50 is printed. This is because by ac-
cessing the original integer value, its value gets increased by
20.

A similar concept is applied for all basic data types: in-
tegers, bytes, or byte arrays. ModifiableInteger contains,
for example, these modifications: add, explicitValue, xor,
shift, or subtract. Similar modifications are accessible to
other numeric types. ModifiableByteArray is a container
for byte arrays and contains, for example, the following mod-
ifications: delete, insert, or xor. It is worth mentioning
that the modifications can be concatenated and executed
successively.

Modifiable variables in protocol messages. All rele-
vant protocol messages and record data are stored in modifi-
able variables. An example is shown in the following
ClientHello protocol message:

pub l i c c l a s s Cl ientHel loMessage {
Mod i f i ab l e In t eg e r compressionLength ;
Modif iableByteArray compress ions ;
Mod i f i ab l e In t eg e r c ipherSu i teLength ;
Modif iableByteArray c i ph e rSu i t e s ;
. . .

}

The ClientHello message is used in the TLS protocol flow
and the variable values are computed dynamically. Before
executing the protocol flow, the modifiable variables allow
us to set arbitrary variable modifications or to define ex-
plicit variable values. The variables are then dynamically
modified during the protocol execution. For example, the
developer can use 2 cipher suites and set the explicit value
of cipherSuitesLength to 5. TLS-Attacker then uses an
invalid length value while serializing the ClientHello mes-
sage, which could possibly trigger an overflow.

http://peachfuzzer.com
http://lcamtuf.coredump.cx/afl
https://maven.apache.org

5.2 High-Level Overview
TLS-Attacker is divided into several Maven modules

(cf. Figure 3). The concept of modifiable variables is lo-
cated in a separate ModifiableVariable module so that
further applications can profit from its functionality. The
Transport module contains transport handling utilities for
TCP and UDP. The core module is TLS, which contains a
TLS protocol implementation. This is divided into further
packages. The protocol package contains protocol messages
and their handlers. The workflow package contains a flexi-
ble protocol flow implementation which allows one to define
arbitrary message order. Further relevant packages are de-
picted in Figure 3. The Attacks and Fuzzer modules are
based on the TLS functionalities and define several TLS at-
tacks and fuzzing techniques. The TestSuite module defines
an extensible TLS test suite.

TLS-Attacker currently implements the TLS 1.0, 1.1, 1.2
and DTLS 1.2 protocol versions and the client-side func-
tionality, including client-side authentication. Furthermore,
it implements these features:

• Key exchange algorithms: RSA, ECDH(E), DH(E)

• Encryption algorithms: AES-CBC, 3DES-CBC

• Extensions: EC, EC point format [22], Heartbeat [50],
Maximum fragment length [31], Server name indica-
tion [31], Signature and hash algorithms

This allows us to cover the majority of the relevant TLS
attacks. Further features are in development.

5.3 The TLS Module
TLS is the core module of TLS-Attacker. It implements

the complete TLS functionality, using modifiable variables
and the transport handlers from the Transport module. It
solely relies on the cryptographic functionality provided by
the standard Java cryptographic providers and the Bouncy
Castle library (version 1.54).

The TLS module is divided into several packages. The
config package contains classes for TLS protocol configu-
ration. TLS constants (cipher suites, key exchange algo-
rithms, alerts) are defined in the constants package. The
crypto package contains TLS specific cryptographic func-
tionalities which extend the basic behavior of Java crypto-
graphic providers.

The protocol package implements the TLS protocol mes-
sages and their handlers. Each protocol message is defined
by a handler (responsible for message processing) and a mes-
sage state (representing the current state of the TLS mes-
sage). For example, the handshake package contains the
HandshakeMessageHandler and HandshakeMessage classes
(see Figure 3). The abstract HandshakeMessage class con-
tains general handshake variables used by all handshake
messages, e.g., the handshake message type. ClientHel-

loMessage extends HandshakeMessage and includes Clien-

tHello specific variables like an array of cipher suites or the
cipher suite length. Note that all these variables are modifi-
able to achieve high flexibility. Processing of handshake mes-
sages is provided by the HandshakeMessageHandler classes.
Each handler implements two functions: prepareMessage

used while sending TLS message and parseMessage used
while parsing incoming messages.

A similar concept of handlers and messages is implemented
for the TLS record handling defined in the record package.

The workflow package contains TLS protocol executors.
The TLS protocol execution solely depends on the defined
TLS messages. A TLS executor takes a list of protocol
messages as an input, searches for proper message handlers,
and lets them process the defined messages. This approach
presents two notable advantages:

1. It makes it very convenient for a TLS-Attacker user to
define custom TLS protocol flows with arbitrary mes-
sage ordering just by setting specific TLS messages.

2. The processed TLS protocol flows can be stored for
further analysis or even for a repeatable execution.

5.4 Using TLS-Attacker Interfaces
In the following section we present how TLS-Attacker in-

terfaces can be used to construct a custom protocol message
flow detecting vulnerability to Bleichenbacher’s attack. We
chose this attack as an example since it requires a deep in-
tervention in the TLS protocol functionality, including mod-
ification of the plain padded premaster secret.

Detecting Bleichenbacher’s oracle with ≈ 10 lines of
code. The design of TLS-Attacker supports simple defini-
tions of new attacks. The following example shows a custom
protocol flow by explicitly setting the plaintext value of a
padded premaster secret. This code can be used to evaluate
the correctness of countermeasures against Bleichenbacher’s
attack [23].

TlsContext context = i n i t i a l i z eT l sCon t e x t (c on f i g) ;
WorkflowExecutor executor =

in i t i a l i z eWork f l owExecuto r (context) ;

// Se t t ing e x p l i c i t mod i f i c a t i on o f the premaster
s e c r e t

RSAClientKeyExchangeMessage r sa = new
RSAClientKeyExchangeMessage () ;

Modi f iab leVar iab le<byte []> pms = new
Modi f iab leVar iab le <>() ;

pms . s e tMod i f i c a t i on (new Exp l i c i tVa lueMod i f i c a t i on (
VALUE)) ;

r sa . setPla inPaddedPremasterSecret (pms) ;

// Construct ing pro toco l message f low
List<ProtocolMessage> m = context .

getProtoco lMessages () ;
m. add (new Cl ientHel loMessage ()) ;
m. add (new ServerHel loMessage ()) ;
m. add (new Cer t i f i c a t eMes sage ()) ;
m. add (new ServerHelloDoneMessage ()) ;
m. add (r sa) ;
m. add (new ChangeCipherSpecMessage (ConnectionEnd .

CLIENT)) ;
m. add (new FinishedMessage (ConnectionEnd .CLIENT)) ;
m. add (new Aler t (ConnectionEnd .SERVER)) ;

// Protoco l execut ion
executor . executeWorkflow () ;

By setting a custom premaster secret, the security en-
gineer enforces TLS-Attacker to execute a TLS handshake
with this custom value. The execution of TLS handshakes
with different premaster secret values can trigger different
server behaviors and thus reveal an oracle which can be used
to perform Bleichenbacher’s attack.

Note that constructing such a protocol flow with a com-
mon TLS library would need a deep knowledge of the library.
On the other hand, with TLS-Attacker, security engineers
can easily use the TLS-Attacker interfaces to define new pro-
tocol flows with specific message modifications and embed
them into their test suites.

 ClientHelloHandler

 prepareMessage()
 parseMessage()

 ClientHelloMessage

 cipherSuites: ModifiableByteArray
 cipherSuiteLength: ModifiableInteger
 ...

 getCipherSuites()
 setCipherSuites()
 ...

TLS
Attacker

TLS
Attacker

ModifiableVariableAttacks TLS Transport Fuzzer

Modules

Packages

config constants cryptoprotocol record workflow

alert application heartbeat handshake

TestSuite

 HandshakeMessage

 type: ModifiableByte
 ...

 getType()
 ...

 HandshakeMessageHandler

 prepareMessage()
 parseMessage()

 ClientHelloMessage

 cipherSuites: ModifiableByteArray
 cipherSuiteLength: ModifiableInteger
 ...

 getCipherSuites()
 setCipherSuites()
 ...

 ClientHelloMessage

 cipherSuites: ModifiableByteArray
 cipherSuiteLength: ModifiableInteger
 ...

 getCipherSuites()
 setCipherSuites()
 ...

 ClientHelloHandler

 prepareMessage()
 parseMessage()

 ClientHelloHandler

 prepareMessage()
 parseMessage()

Figure 3: TLS-Attacker is divided into several Maven modules. The core module is TLS implementing the
protocol functionality and flexible protocol execution. All protocol messages use modifiable variables.

Not only for Java developers. Convenient XML se-
rialization. It is not necessary to develop Java in order
to construct arbitrary protocol flows with custom modifica-
tions. Instead, we decided to use JAXB (Java Architecture
for XML Binding) [3] for serialization and deserialization of
TLS protocol flows. This allows a developer to define the
same protocol flow as above using a simple XML document:

<workflowTrace>
<protoco lMessages>
<Cl i en tHe l l o>
<messageI s suer>CLIENT</messageI s suer>
<supportedCompressionMethods>
<CompressionMethod>NULL</CompressionMethod>

</ supportedCompressionMethods>
<supportedCipherSui tes>
<CipherSuite>TLS RSA WITH AES 128 CBC SHA</

CipherSuite>
<CipherSuite>TLS RSA WITH 3DES EDE CBC SHA</

CipherSuite>
. . .

</ supportedCipherSui tes>
</ C l i en tHe l l o>
<Serve rHe l l o>
<messageI s suer>SERVER</messageI s suer>

</ Serve rHe l l o>
<Ce r t i f i c a t e>
<messageI s suer>SERVER</messageI s suer>

</ C e r t i f i c a t e>
<ServerHel loDone>
<messageI s suer>SERVER</messageI s suer>

</ServerHel loDone>
<RSAClientKeyExchange>
<messageI s suer>CLIENT</messageI s suer>
<plainPaddedPremasterSecret>
<byteArrayExp l i c i tVa lueModi f i ca t ion>
<e xp l i c i tVa l u e>

00 02 8B 2B FC 66 ED 21 07 9A F8 5F 92 8E 34 38
. . . .

81 51 B5 91 E6 B3 1D F8 BB 98 48 31 8F 73 A2 CE
60 0A 31 CC 34 D7 0D 42 F6 3F D1 59 20 53 71 5E

</ exp l i c i tVa l u e>
</ byteArrayExp l i c i tVa lueModi f i ca t ion>

</ pla inPaddedPremasterSecret>
</RSAClientKeyExchange>
<ChangeCipherSpec>
<messageI s suer>CLIENT</messageI s suer>

</ChangeCipherSpec>
<Fin i shed>

<messageI s suer>CLIENT</messageI s suer>
</Fin i shed>
<Alert>
<messageI s suer>SERVER</messageI s suer>

</Aler t>
</ protoco lMessages>

</workflowTrace>

6. FUZZING WITH TLS-ATTACKER
TLS-Attacker provides a suitable framework for perform-

ing fuzzing attacks. Based on our observations about the
previous TLS attacks and vulnerabilities, we designed an
extensible approach for performing a systematic evaluation
of TLS libraries. Our approach is divided into two stages,
see Figure 4.

In the following sections we first describe the basics behind
our fuzzing strategies and vulnerability detection, and then
we describe both fuzzing stages.

6.1 Fuzzing Strategies
We employed several fuzzing strategies from the mutators

used in Peach Fuzzer5 and American Fuzzy Lop,6 which are
relevant for TLS fuzzing. We implemented these strategies
using our modifiable variables.

5http://community.peachfuzzer.com/v3/Mutators.html
6http://lcamtuf.coredump.cx/afl/technical details.txt

http://community.peachfuzzer.com/v3/Mutators.html
http://lcamtuf.coredump.cx/afl/technical_details.txt

Stage 2: FuzzingStage 2: Fuzzing

Stage 1: Crypto

- Bleichenbacher Attack
- Padding Oracle Attack
- POODLE
- Invalid Curve Attack
- ...

Stage 1: Crypto

- Bleichenbacher Attack
- Padding Oracle Attack
- POODLE
- Invalid Curve Attack
- ...

 Phase 1:
 Variable Detection

 Phase 2:
 Random Variable Fuzzing
 Record modification

 Phase 3:
 Random Protocol Flow
 Random Variable Fuzzing
 Record modification

Figure 4: Fuzzing with TLS-Attacker is divided
into two stages; first various cryptographic attacks
are executed, then a systematic protocol fuzzing is
started.

For example, TLS-Attacker generates the following mod-
ifications during fuzzing with integers. The original integer
value can be XORed with random bits, shifted left or right,
and increased or decreased by a random value. In addition,
specific values can be returned based on a dictionary consist-
ing of a zero value and values causing overflows in specific
number representations. Similar strategies are employed by
modification of further numeric data types.

Byte arrays are modified by applying additional strategies.
TLS-Attacker automatically generates modifications which
duplicate arrays, remove or insert specific bytes, or shuffle
the given byte array. The dictionary with explicit values
contains an empty array or arrays consisting of 0x00 and
0xFF values.

Note that the design of modifiable variables allows TLS-
Attacker to chain generated modifications as well.

6.2 Vulnerability Detection
In order to detect buffer boundary violations, integer over-

flows, or other memory corruptions [34, 33], the runtime
behavior of the TLS library has to be observed. For this
purpose, we use AddressSanitizer (ASan).7 ASan is a mem-
ory error detector which can be enabled at compile time in
recent versions of LLVM or GCC compilers. It is typically
used while fuzzing C and C++ applications. If a fuzzer finds
a memory error in an application compiled with ASan, the
application crashes, prints an error message, and exits with
a non-zero code.

We use Asan to compile C and C++ TLS libraries before
we start TLS-Attacker fuzzing. If a memory error or a dif-
ferent bug in a TLS server compiled with ASan is triggered,
the server crashes and outputs an error message describing
the cause of the detected boundary violation.

ASan is of course not suitable for TLS applications devel-
oped in different languages, like Java. For anomaly detection
in Java servers and other servers which cannot be compiled
with ASan, we analyze the protocol flows with a TLS context
analyzer. The TLS context analyzer investigates whether a
TLS protocol flow has been executed correctly, contains an
invalid protocol flow with an additional protocol message,
or whether a message in a valid protocol flow is modified by
a specific modification.

In case a runtime error or an invalid protocol flow in the

7http://clang.llvm.org/docs/AddressSanitizer.html

above cases is detected, TLS-Attacker stores the protocol
flow in an XML file. This file can later be used for further
analysis.

6.3 Two-Stage Fuzzing

Cryptographic Attacks.
In the first stage, we investigate the cryptographic be-

havior of the analyzed TLS server. We attempt to trigger
different error messages by sending invalid padding bytes or
forcing the server to accept invalid elliptic curve points [21,
37]. TLS-Attacker can dynamically collect the server re-
sponses and store them for further analysis.

Currently, TLS-Attacker implements checks for Bleichen-
bacher’s attack [23], padding oracle attacks [55], invalid curve
attacks [37], and POODLE [45].

Fuzzing for Buffer Boundary Violations.
TLS-Attacker allows one to execute random variable mod-

ifications or to construct invalid messages. We use these
features in the second stage where we attempt to trigger an
invalid server behavior and find buffer boundary violations.
This stage is divided into three phases.

The starting point for each phase is a set of known TLS
protocol flows. This includes correct TLS protocol flows as
depicted in Figure 1, as well as several invalid TLS protocol
flows identified in the previous years [39, 17, 25]. At the
beginning of the fuzzing process, TLS-Attacker attempts to
execute these protocol flows and stores correctly executed,
complete protocol flows for further executions in the next
phases. These are described below.

Phase 1: Searching for “influencing variables”. A
TLS protocol flow and its messages contain a huge amount
of variables: message length values, derived keys, or cer-
tificates. Not all of these variables are suitable for fuzzing.
For example, it is not necessary to fuzz random values (e.g.,
client random) or variables which are not validated. There-
fore, our framework allows one to use an explicit blacklist
of variables that should be omitted during the fuzzing pro-
cess. In addition, in the first phase, TLS-Attacker iteratively
changes all variables from the TLS protocol flow and ana-
lyzes whether those variables influence the correct protocol
flow.

For example, we found that some TLS libraries do not
validate specific length variables at all. See the following
section.

Phase 2: Fuzzing with variable modifications. In the
second phase, we continue only with the variables from the
first phase that were identified as influencing the TLS proto-
col flow. We execute correct protocol flows with randomly
modified variables. In this phase, more variables can be
modified at once or the modifications can be chained.

As discussed in Section 2.2, a TLS record can contain one
protocol message, several protocol messages (this is the de-
fault behavior of TLS-Attacker), or even one protocol mes-
sage can be sent in several records. The distribution of pro-
tocol messages in a different number of records could po-
tentially trigger an invalid server behavior. Therefore, in
addition to the variable modifications, in this phase we at-
tempt to split protocol messages into different numbers of
TLS records with randomly chosen record lengths.

http://clang.llvm.org/docs/AddressSanitizer.html

Phase 3: Fuzzing with random protocol flows. In
the last phase, we continue the fuzzing process with addi-
tional randomized protocol flows. For this purpose, we add
or remove random protocol messages from the configured
protocol sequences.

7. TLS FUZZING EVALUATION
The number of fuzzing attempts in Stage 2 can be con-

figured by the developer. Depending on the performance of
the tested library, the number of TLS protocol flows and the
resulting duration varies. For example, for OpenSSL-1.1.0-
pre3, we were able to execute 166,000 flows in one hour,
resulting in about 46 protocol flows per second. The tests
were executed on a laptop with an Intel Core i7 5600U CPU.

Note that it is not our intention to fully analyze the im-
pact of the detected vulnerabilities or describe complete at-
tacks. Our contribution is to prove the practicability of our
fuzzing approach by finding novel vulnerabilities and their
sources. The presented vulnerabilities have been reported
and patched by the library developers, proving their rele-
vance.

7.1 Padding Oracle Attacks
In recent years we observed several scientific results prov-

ing the padding oracle exploitation possibilities in widely
used TLS libraries. Irazouqui et al. showed how to exploit
cache access times in co-located virtual machines in cloud en-
vironments to gain sufficient timing differences for executing
the Lucky 13 attack [35]. Almeida et al. and Albrecht and
Paterson showed that an extended version of the Lucky 13
timing attack is still applicable to the s2n library provided
by Amazon [14, 11].

Surprisingly, it is not always necessary to execute complex
timing attacks. As we show in the following section promi-
nent TLS libraries are vulnerable to direct padding oracle
attacks, where servers respond with different alert messages.
The vulnerabilities result from incorrect sanity checks of the
decrypted CBC ciphertexts [13].

Unusual padding oracle in Botan.
By evaluating Botan 1.11.21, we observed different re-

sponse messages sent by the analyzed TLS server. Further
analysis revealed that directly after the record data is de-
crypted, the implementation evaluates the length of the un-
padded data record_len and whether this data has enough
length for HMAC validation (e.g., while using
TLS_RSA_WITH_AES_128_CBC_SHA, the HMAC is 20-byte long):

i f (r e c o r d l e n < mac pad iv s i z e)
throw Decoding Error (”Record sent with i n v a l i d

l ength ”) ;

If there is not enough data for MAC validation, the server
responds with a DECODE_ERROR alert. This alert differs from
a typical case when an invalid padding is used (cf. Figure 5).

In order to trigger the DECODE_ERROR alert for a
TLS_RSA_WITH_AES_128_CBC_SHA cipher suite (20-byte long
HMAC output, 16-byte long AES block cipher), the de-
crypted message has to consist of at least 32 bytes (two
blocks), and it has to contain at least 13 valid padding bytes.
This means that the attacker has to set at least 13 bytes to
trigger the alert and use padding oracle attacks. This is
possible in scenarios where the attacker knows parts of the
plaintext, for example, if the victim uses a browser which
sends known HTTP headers to the website [30].

0c 0c 0c 0c 0c 0c 0c 0c 0c 0c 0c 0c 0c

BAD_RECORD_MAC

DECODING_ERROR

0c 0c 0c 0c 0c 0c 0c 0c 0c 0c 0c 0c 0c

43 4441 42 45 M M M M M M M M M M M

M M M M MM M M M M 0606 06 06 06 06 0605

M M M M M M M M M M MM M M M M M

M M M

M

Figure 5: Direct padding oracle provided by Botan
1.11.21. In case of an invalid padding, Botan
responds with BAD_RECORD_MAC. In case of a valid
padding, Botan attempts to process the HMAC. It
responds with a DECODE_ERROR if the number of re-
maining bytes is insufficient for HMAC validation.

The vulnerability was fixed after our disclosure in version
1.11.22 and has been labeled CVE-2015-7824.

Unlucky patch of Lucky 13 in OpenSSL.
OpenSSL relies on two versions of AES: software imple-

mentation provided directly by OpenSSL and hardware im-
plementation relying on AES-NI [32].8 For each of these
AES versions, a different CBC functionality in OpenSSL is
implemented. The following vulnerability was present only
in the CBC functionality implemented for the hardware ver-
sion of AES (AES-NI). This version is enabled by default on
machines with recent CPUs. We performed our tests with
OpenSSL 1.0.2g.

In order to patch the Lucky 13 attack, OpenSSL develop-
ers have introduced new code validating padding bytes and
HMAC in constant-time. The code attempts to implement a
very delicate CBC sanity checking countermeasure provided
by AlFardan and Paterson [13]. The OpenSSL validation is
implemented in methods aesni_cbc_hmac_sha1_cipher and
aesni_cbc_hmac_sha256_cipher and works follows:

1. It verifies whether the ciphertext can provide enough
data for HMAC and minimal padding. For example,
ciphertexts consisting of 16 bytes are directly rejected
by OpenSSL because they do not provide enough data
for HMAC validation.

2. It decrypts the AES-CBC ciphertext into a message m
of length lm and interprets the last byte of the mes-
sage as a padding byte lpad. Furthermore, it internally
computes the maximum padding value: maxpad =
lm − lhmac (where lhmac represents the HMAC output
length).

3. For validation purposes, it computes an HMAC hmac′

over the TLS record header and lm − lpad − lhmac −
1 bytes of the decrypted message m. It constructs
hmac′||pad′ where pad′ consists of lpad + 1 padding
bytes.

4. At the end, it validates whether the last (maxpad +
lhmac) bytes of the message m are equal to hmac′||pad′.

8AES-NI is an extended set of instructions available in re-
cent Intel and AMD CPUs.

M M M M

M M M M M M M M M M MM M M M M M

1f 1f 1f 1f 1f 1f 1f 1f 1f 1f 1f 1f 1f1f 1f 1f

1f 1f 1f 1f 1f 1f 1f 1f 1f 1f 1f 1f 1f1f 1f 1f

Figure 6: When OpenSSL 1.0.2g decrypts two full
padding blocks, it creates an internal structure
for constant-time HMAC and padding validation:
hmac′||pad′. However, only the padding bytes are
validated.

Unfortunately, the code is missing one important sanity
check. According to [13], directly after decrypting the ci-
phertext in the second step, the implementation must check
whether there is enough plaintext data. If lhmac + lpad +1 >
lm, there are not enough plaintext bytes to validate both
HMAC and padding. Therefore, the padding validation
should run over 256 dummy padding bytes and the HMAC
should be validated over the record header and the first
lm − lhmac bytes of m [13].

Because the OpenSSL code does not validate the decrypted
message length, it is possible to completely skip the HMAC
validation. Consider a vulnerable server using HMAC-SHA
that processes a CBC ciphertext. The CBC ciphertext de-
crypts to 32 valid padding bytes 0x1F. After the message is
decrypted in the second step, the server computes maxpad =
lm − lhmac = 12. In the third step, it computes hmac′

over the TLS record header and an empty message. It con-
structs hmac′||pad′ where pad′ consists of 32 0x1F bytes.
In the fourth step, it uses hmac′||pad′ to validate contents
of the decrypted message. The validation is, however, per-
formed only over (maxpad + lhmac) = 32 decrypted bytes.
Even though OpenSSL internally computes an HMAC value
hmac′, this value is completely ignored during the valida-
tion process, the HMAC validation step succeeds, and the
decrypted message is processed further.9 See Figure 6.

The above described functionality obviously results in a
different timing behavior. However, further message pro-
cessing results even in a different TLS alert message. The de-
crypted message is processed in the function
ssl3_get_record, which attempts to remove the padding
and HMAC bytes and computes the new plain message length
rr->length = lm − lhmac − lpad − 1, which is declared as
an unsigned integer. Note that in our case, the decrypted
message consists of 32 bytes, lhmac = 20 and lpad = 31.
Thus, the computation results in an integer underflow of
rr->length. This underflow is further caught by the valida-
tion of the maximum plaintext length in the same OpenSSL
method:

i f (rr−>l ength > SSL3 RT MAX PLAIN LENGTH) {
a l = SSL AD RECORD OVERFLOW;
SSLerr (SSL F SSL3 GET RECORD ,

SSL R DATA LENGTH TOO LONG) ;
goto f e r r ;

}

This if branch results in a different alert message, namely:
RECORD_OVERFLOW. TLS-Attacker detected that this alert mes-

9Note that the same behavior can be observed by sending 32
equal padding bytes pad where lpad > 0x1F. Even though the
padding is incomplete, the implementation only validates
the equality of the 32 decrypted message bytes.

sage differed from the typical BAD_RECORD_MAC alert, and re-
ported a problem after executing the first evaluation stage.

In order to trigger the RECORD_OVERFLOW alert, the at-
tacker needs to send a ciphertext which decrypts to 32 equal
bytes. The attacker can exploit this behavior in specific
BEAST scenarios [30] by controlling 31 bytes of the plaintext
data. In comparison to the previous Botan vulnerability, the
attacker is only able to recover at most 16 subsequent plain-
text data at most because of the CBC mode of operation
properties [52, 54].

The vulnerability was fixed after our disclosure in OpenSSL
1.0.2h / 1.0.1t. It has been labeled CVE-2016-2107.10

Unlucky patch of Lucky 13 in MatrixSSL.
A similar problem with patching the Lucky 13 attack

could be observed in the MatrixSSL library. The develop-
ers of MatrixSSL, however, introduced a much more serious
buffer overflow vulnerability while attempting to implement
a Lucky 13 countermeasure.

The vulnerability has been patched after our disclosure in
MatrixSSL 3.8.2.

7.2 Bleichenbacher’s Attack on MatrixSSL
In 2014 Meyer et al. [44] analyzed vulnerabilities of TLS

libraries to Bleichenbacher attacks. Most libraries were only
vulnerable to timing attacks at that time.

In this work we could find a direct Bleichenbacher vulner-
ability in MatrixSSL. The vulnerable server responds with
a different TLS alert (ILLEGAL_PARAMETER) in case the de-
crypted ClientKeyExchange message is correctly formatted
but contains an invalid TLS version number. Otherwise, the
server responds with a DECRYPT_ERROR alert. This kind of
vulnerability was in a fact first described by Klima et al. in
2003 [40].

The vulnerability has been patched after our disclosure in
MatrixSSL 3.8.2.

7.3 Missing Length Checks
Our analysis in phase 1 of the second stage revealed inter-

esting results regarding the checks of different length vari-
ables. For example, GnuTLS 3.4.9 does not strictly check
the length variables in the following extensions: max frag-
ment length, elliptic curves, EC point format extension, and
signature and hash algorithms extension. If an invalid length
variable is contained in one of these fields in the ClientHello
message, GnuTLS just proceeds with the TLS handshake
without further message parsing. We could observe a simi-
lar behavior in OpenSSL.11

We assume this behavior is caused by performance op-
timizations included in the evaluated library. An attacker
could use it for fingerprinting of TLS server library. More-
over, this behavior becomes interesting in light of the very
recent SLOTH attack [20]. By performing this attack, the
attacker attempts to find hash collisions for a transcript of
protocol messages. Thereby, he tampers selected handshake
message fields so that the messages remain valid. Not vali-
dating specific message fields gives the attacker more modi-
fication freedom and improves the attack.

10Commit 70428eada9bc4cf31424d723d1f992baffeb0dfb:
https://github.com/openssl/openssl/commit/
70428eada9bc4cf31424d723d1f992baffeb0dfb

11https://github.com/openssl/openssl/issues/265

https://github.com/openssl/openssl/commit/70428eada9bc4cf31424d723d1f992baffeb0dfb
https://github.com/openssl/openssl/commit/70428eada9bc4cf31424d723d1f992baffeb0dfb
https://github.com/openssl/openssl/issues/265

7.4 Overflows and Overreads
By fuzzing the variables in the first and second phases, we

were also able to find array boundary vulnerabilities.

Stack overflow in OpenSSL-1.1.0-pre1. By fuzzing the
first pre-version of the OpenSSL 1.1.0 library (OpenSSL-
1.1.0-pre1), ASan reported a stack overflow vulnerability
and the server crashed. Our analysis of the vulnerability
revealed that the stack overflow is caused by sending an
overlong DH parameter in the DHClientKeyExchange mes-
sage. TLS-Attacker triggered this bug by a left shift of the
original BigInteger value, as we found in the resulting pro-
tocol flow configuration document:

<workflowTrace>
<protoco lMessages>
. . .
<DHClientKeyExchange>
<y>
<b i g I n t e g e r Sh i f t L e f tMod i f i c a t i o n>
<s h i f t>41</ s h i f t>

</ b i g I n t e g e r Sh i f t L e f tMod i f i c a t i o n>
</y>

</DHClientKeyExchange>
. . .
</ protoco lMessages>

</workflowTrace>

When we found this vulnerability (February 2016),
OpenSSL has already published a new version, OpenSSL-
1.1.0-pre2, which did not include this vulnerability. The
OpenSSL security team mentioned in our email correspon-
dence that they knew about this vulnerability internally.12

Since the security vulnerabilities in OpenSSL pre-releases
are not public, we were not aware of this fact.

The vulnerability is not present in any of the newest
OpenSSL release versions (1.0.2g).

Potential buffer overread in Botan 1.11.28. Further-
more, we found a buffer overread vulnerability in Botan
1.11.28. This vulnerability was found by executing the sec-
ond phase of the fuzzing stage by modifying bytes in the
underlying record layer:

<workflowTrace>
<protoco lMessages>

. . .
<ChangeCipherSpec>
<messageI s suer>CLIENT</messageI s suer>
<r e co rd s>
<record>
<maxRecordLengthConfig>0</

maxRecordLengthConfig>
</ record>

</ r eco rds>
</ChangeCipherSpec>
. . .

</ protoco lMessages>
</workflowTrace>

The resulting protocol flow revealed that by sending an
empty TLS record, the server attempts to use an invalid
array index. The failure is triggered by a randomly selected
configuration of the maximum record length, which is set to
zero with maxRecordLengthConfig.

Even though Botan 1.11.28 does not directly verify the
length of the incoming TLS records, further handshake han-
dlers can successfully reject the message and throw an error.

12The vulnerability has been fixed in the following
commit: https://github.com/openssl/openssl/commit/
e2b420fdd708e14a0b43a21cd2377cafb0d54c02

These subsequent verifications turn the resulting vulnerabil-
ity into a rather harmless buffer overread, which only con-
firms the functionality of TLS-Attacker.

We reported the issue to Botan developers. It has been
patched in Botan 1.11.29.

8. BUILDING A TLS TEST SUITE
The uncovered vulnerabilities have strongly motivated de-

velopers to build TLS test suites with negative tests to val-
idate correct TLS behavior in specific cases. TLS negative
tests could then have mitigated several vulnerabilities found
in this paper. For example, a padding oracle test suite could
have sent encrypted records with modified padding contents
to trigger different TLS alerts. Developers introducing new
functionality (e.g., Lucky 13 countermeasures) would have
been warned about invalid message processing before releas-
ing new library versions.

We have managed to extend TLS-Attacker with a Test-

Suite module allowing TLS developers to easily build pos-
itive and negative test suites. In the following section we
describe the usage of assertions with our framework and
present an experimental test suite for cipher suite usage
across TLS protocols. Note that the TLS test suite is a work-
in-progress and this section aims at describing the suitability
of TLS-Attacker for this purpose.

8.1 Usage of Assertions
In order to build comprehensive TLS test suites, we have

extended the TLS-Attacker functionality with assertions. In
particular, we have extended modifiable variables with as-
serting values that allow developers to validate resulting con-
tents of modifiable variable fields after the TLS protocol is
executed.

The following listing gives an example of a TLS protocol
flow containing assertions which detect the OpenSSL vul-
nerability:

<workflowTrace>
<protoco lMessages>

. . .
<Fin i shed>
<messageI s suer>CLIENT</messageI s suer>
<r e co rd s>
<Record>
<plainRecordBytes>
<byteArrayExp l i c i tVa lueModi f i ca t ion>
<e xp l i c i tVa l u e>

3F 3F 3F 3F 3F 3F 3F 3F 3F 3F 3F 3F 3F 3F 3F 3F
3F 3F 3F 3F 3F 3F 3F 3F 3F 3F 3F 3F 3F 3F 3F 3F

</ exp l i c i tVa l u e>
</ byteArrayExp l i c i tVa lueModi f i ca t ion>

</ pla inRecordBytes>
</Record>

</ r eco rds>
</Fin i shed>
<Alert>
<messageI s suer>SERVER</messageI s suer>
< l e v e l>
<as s e r tEqua l s>2</ as s e r tEqua l s>

</ l e v e l>
<de s c r i p t i o n>
<as s e r tEqua l s>20</ as s e r tEqua l s>

</ d e s c r i p t i o n>
</Aler t>

</ protoco lMessages>
</workflowTrace>

In this listing we can see a TLS protocol flow setting the
explicit value of the plain padded TLS record to 32 0x3F

bytes. Thus, it potentially triggers a RECORD_OVERFLOW alert
in vulnerable OpenSSL implementations (CVE-2016-2107).

https://github.com/openssl/openssl/commit/e2b420fdd708e14a0b43a21cd2377cafb0d54c02
https://github.com/openssl/openssl/commit/e2b420fdd708e14a0b43a21cd2377cafb0d54c02

After executing the protocol flow, we expect to receive a TLS
alert message. This TLS alert message contains assertions
for the level (2) and description (20) values. This ensures
that the protocol flow only succeeds if the server correctly
responds with a BAD_RECORD_MAC alert message.

Similar test cases can be defined for other cryptographic
attacks or protocol behaviors.

8.2 Experimental Test Suite for Correct Ci-
pher Suite Handling

We have created a proof-of-concept test suite for the val-
idation of correct cipher suite support in TLS protocols.
The test suite takes the available cipher suites and checks
whether they are available for correct protocol versions. For
example, TLS_RSA_WITH_AES_256_CBC_SHA256 must only be
accepted in TLS 1.2 but rejected in other protocol versions.

We also executed the tests with the analyzed frameworks,
detecting that Botan (1.11.30) is not standard-compliant
and that it incorrectly accepts TLS 1.2 cipher suites in TLS
1.0 and 1.1 protocols. This does not pose a direct security
risk. However, using secure cipher suites in older protocols
could possibly undermine their security and should be cor-
rectly handled with the TLS framework.

We notified Botan developers about this issue. They in-
tend to fix this issue in the next Botan version.

9. DISCUSSION
In this paper we showed that widely used TLS libraries

can include critical vulnerabilities which can be exposed by
systematic fuzzing. The case of the OpenSSL stack overflow
shows that a critical vulnerability can be introduced in a
specific library version, for example, by code restructuring.
More interestingly, new vulnerabilities can be introduced by
implementing countermeasures against known attacks. The
cases of padding oracle attacks in OpenSSL and MatrixSSL
showed that an incorrect countermeasure can turn a server
offering a timing oracle into a direct oracle or even into a
server with a buffer overflow vulnerability.

We conclude that similar fuzzing technologies, as intro-
duced in our paper, should be included into library test
suites and should be included into continuous integration, or
should be run before the new library versions are released.
MatrixSSL and Botan libraries are in a phase of including
TLS-Attacker into their test suite.

In future work, TLS-Attacker fuzzing could be extended
to include new fuzzing strategies or compile-time instrumen-
tation to observe new code paths at runtime. The concepts
of TLS-Attacker fuzzing could also be extended to validate
TLS clients or even to test security protocols beyond TLS,
e.g., IPSec or SSH.

Acknowledgments
We would like to thank Hanno Böck, Robert Gawlik,
Thorsten Holz, Tibor Jager, René Korthaus, Felix Lange,
Christian Mainka, Robert Merget, Daniel Neus, Florian
Pfützenreuter, Philip Riese, Jörg Schwenk, and Aaron Za-
uner for their helpful discussions and additional contribu-
tions. We also extend our thanks to our reviewers for their
insightful comments and suggestions.

This work was partially supported by the European Com-
mission through the FutureTrust project (grant 700542-
Future-Trust-H2020-DS-2015-1) and by the Federal Office

for Information Security through project 197 (Sichere Im-
plementierung einer allgemeinen Kryptobibliothek).

10. REFERENCES
[1] Botan: Crypto and TLS for C++11.

http://botan.randombit.net/.
[2] Gnutls security advisory.

http://www.gnutls.org/security.html.
[3] Java Architecture for XML Binding.

https://jaxb.java.net/.
[4] Java platform debugger architecture. http:

//docs.oracle.com/javase/1.5.0/docs/guide/jpda/.
[5] Java Secure Socket Extension (JSSE).

https://docs.oracle.com/javase/8/docs/technotes/
guides/security/jsse/JSSERefGuide.html.

[6] matrixSSL. Compact Embedded SSL/TLS stack.
http://www.matrixssl.org/.

[7] mbed TLS. https://tls.mbed.org/.
[8] OpenSSL – Cryptography and SSL/TLS Toolkit.

https://www.openssl.org.
[9] OpenSSL security advisory.

https://www.openssl.org/news/vulnerabilities.html.
[10] The GnuTLS Transport Layer Security Library.

http://www.gnutls.org.
[11] Albrecht, M. R., and Paterson, K. G. Lucky

microseconds: A timing attack on amazon’s s2n
implementation of TLS. In Advances in Cryptology -
EUROCRYPT 2016 - 35th Annual International
Conference on the Theory and Applications of
Cryptographic Techniques, Vienna, Austria, May 8-12,
2016, Proceedings, Part I (2016), pp. 622–643.

[12] AlFardan, N., and Paterson, K.
Plaintext-Recovery Attacks Against Datagram TLS.
In Network and Distributed System Security
Symposium (NDSS 2012) (Feb. 2012).

[13] AlFardan, N. J., and Paterson, K. G. Lucky
Thirteen: Breaking the TLS and DTLS Record
Protocols. 2013 IEEE Symposium on Security and
Privacy 0 (2013), 526–540.
http://www.isg.rhul.ac.uk/tls/TLStiming.pdf.

[14] Almeida, J. B., Barbosa, M., Barthe, G., and
Dupressoir, F. Verifiable side-channel security of
cryptographic implementations: constant-time
MEE-CBC. In Fast Software Encryption - 23rd
International Conference, FSE (2016).

[15] Aviram, N., Schinzel, S., Somorovsky, J.,
Heninger, N., Dankel, M., Steube, J., Valenta,
L., Adrian, D., Halderman, J. A., Dukhovni, V.,
Käsper, E., Cohney, S., Engels, S., Paar, C.,
and Shavitt, Y. DROWN: Breaking TLS Using
SSLv2. In 25th USENIX Security Symposium
(USENIX Security 16) (Aug. 2016).

[16] Bardou, R., Focardi, R., Kawamoto, Y., Steel,
G., and Tsay, J.-K. Efficient Padding Oracle
Attacks on Cryptographic Hardware. In Advances in
Cryptology – CRYPTO (2012), Canetti and
R. Safavi-Naini, Eds.

[17] Beurdouche, B., Bhargavan, K.,
Delignat-Lavaud, A., Fournet, C., Kohlweiss,
M., Pironti, A., Strub, P.-Y., and Zinzindohoue,
J. K. A messy state of the union: taming the
composite state machines of TLS. In IEEE Symposium
on Security & Privacy 2015 (Oakland’15) (2015),
IEEE.

[18] Beurdouche, B., Delignat-Lavaud, A., Kobeissi,
N., Pironti, A., and Bhargavan, K. FLEXTLS: A
Tool for Testing TLS Implementations. In 9th
USENIX Workshop on Offensive Technologies
(WOOT 15) (Washington, D.C., Aug. 2015), USENIX
Association.

http://botan.randombit.net/
http://www.gnutls.org/security.html
https://jaxb.java.net/
http://docs.oracle.com/javase/1.5.0/docs/guide/jpda/
http://docs.oracle.com/javase/1.5.0/docs/guide/jpda/
https://docs.oracle.com/javase/8/docs/technotes/guides/security/jsse/JSSERefGuide.html
https://docs.oracle.com/javase/8/docs/technotes/guides/security/jsse/JSSERefGuide.html
http://www.matrixssl.org/
https://tls.mbed.org/
https://www.openssl.org
https://www.openssl.org/news/vulnerabilities.html
http://www.gnutls.org
http://www.isg.rhul.ac.uk/tls/TLStiming.pdf

[19] Bhargavan, K., Delignat-Lavaud, A., Fournet,
C., Pironti, A., and Strub, P.-Y. Triple
Handshakes and Cookie Cutters: Breaking and Fixing
Authentication over TLS. In IEEE Symposium on
Security & Privacy 2014 (Oakland’14) (2014), IEEE.

[20] Bhargavan, K., and Leurent, G. Transcript
Collision Attacks: Breaking Authentication in TLS,
IKE, and SSH. In Proceedings of the ISOC Network
and Distributed System Security Symposium (NDSS
’16) (Feb 2016).

[21] Biehl, I., Meyer, B., and Müller, V. Differential
fault attacks on elliptic curve cryptosystems. In
Proceedings of the 20th Annual International
Cryptology Conference on Advances in Cryptology
(London, UK, UK, 2000), CRYPTO ’00,
Springer-Verlag, pp. 131–146.

[22] Blake-Wilson, S., Bolyard, N., Gupta, V.,
Hawk, C., and Moeller, B. Elliptic Curve
Cryptography (ECC) Cipher Suites for Transport
Layer Security (TLS). RFC 4492 (Informational), May
2006. Updated by RFCs 5246, 7027.

[23] Bleichenbacher, D. Chosen ciphertext attacks
against protocols based on the RSA encryption
standard PKCS #1. In Advances in Cryptology —
CRYPTO ’98, vol. 1462 of Lecture Notes in Computer
Science. Springer Berlin / Heidelberg, 1998.

[24] Böck, H. A little POODLE left in GnuTLS (old
versions), Nov. 2015. https://blog.hboeck.de/archives/
877-A-little-POODLE-left-in-GnuTLS-old-versions.
html.

[25] de Ruiter, J., and Poll, E. Protocol State Fuzzing
of TLS Implementations. In 24th USENIX Security
Symposium (USENIX Security 15) (Washington,
D.C., Aug. 2015), USENIX Association, pp. 193–206.

[26] Dierks, T., and Allen, C. The TLS Protocol
Version 1.0. RFC 2246 (Proposed Standard), Jan.
1999. Obsoleted by RFC 4346, updated by RFCs
3546, 5746, 6176, 7465, 7507.

[27] Dierks, T., and Rescorla, E. The Transport Layer
Security (TLS) Protocol Version 1.2. RFC 5246
(Proposed Standard), Aug. 2008. Updated by RFCs
5746, 5878, 6176, 7465, 7507, 7568, 7627, 7685.

[28] Dierks, T., and Rescorla, E. The Transport Layer
Security (TLS) Protocol Version 1.3.
draft-ietf-tls-tls13-04, Jan. 2015.

[29] Dietz, W., Li, P., Regehr, J., and Adve, V.
Understanding integer overflow in c/c++. In
Proceedings of the 2012 International Conference on
Software Engineering (Piscataway, NJ, USA, 2012),
ICSE 2012, IEEE Press, pp. 760–770.

[30] Duong, T., and Rizzo, J. Here come the ⊕ Ninjas.
Unpublished manuscript, 2011.

[31] Eastlake, D. Transport Layer Security (TLS)
Extensions: Extension Definitions. RFC 6066
(Proposed Standard), Jan. 2011.

[32] Gueron, S. Intel Advanced Encryption Standard
(AES) New Instructions Set, Revision 3.01, 2012.

[33] Haller, I., Slowinska, A., Neugschwandtner,
M., and Bos, H. Dowsing for overflows: A guided
fuzzer to find buffer boundary violations. In Presented
as part of the 22nd USENIX Security Symposium
(USENIX Security 13) (Washington, D.C., 2013),
USENIX, pp. 49–64.

[34] Haugh, E. Testing c programs for buffer overflow
vulnerabilities. In In Proceedings of the Network and
Distributed System Security Symposium (NDSS)
(2003).

[35] Irazoqui, G., Inci, M. S., Eisenbarth, T., and
Sunar, B. Lucky 13 strikes back. In Proceedings of
the 10th ACM Symposium on Information, Computer
and Communications Security (New York, NY, USA,
2015), ASIA CCS ’15, ACM, pp. 85–96.

[36] Jager, T., Schinzel, S., and Somorovsky, J.
Bleichenbacher’s attack strikes again: breaking
PKCS#1 v1.5 in XML Encryption. In Computer
Security - ESORICS 2012 - 17th European Symposium
on Research in Computer Security, Pisa, Italy,
September 10-14, 2012. Proceedings (2012), S. Foresti
and M. Yung, Eds., LNCS, Springer.

[37] Jager, T., Schwenk, J., and Somorovsky, J.
Practical Invalid Curve Attacks on TLS-ECDH. 20th
European Symposium on Research in Computer
Security (ESORICS) (2015).

[38] Kario, H. Testing TLS. Ruxcon, Oct. 2015.
https://github.com/tomato42/tlsfuzzer.

[39] Kikuchi, M. CCS Injection Vulnerability, 2014.
http://ccsinjection.lepidum.co.jp.

[40] Kĺıma, V., Pokorný, O., and Rosa, T. Attacking
RSA-Based Sessions in SSL/TLS. In Cryptographic
Hardware and Embedded Systems - CHES 2003,
vol. 2779 of Lecture Notes in Computer Science.
Springer Berlin / Heidelberg, Sept. 2003.

[41] Langley, A. The POODLE bites again, Nov. 2014.
https://www.imperialviolet.org/2014/12/08/
poodleagain.html.

[42] Merkle, J., and Lochter, M. Elliptic Curve
Cryptography (ECC) Brainpool Curves for Transport
Layer Security (TLS). RFC 7027 (Informational), Oct.
2013.

[43] Meyer, C. 20 Years of SSL/TLS Research : An
Analysis of the Internet’s Security Foundation. PhD
thesis, Ruhr-University Bochum, Feb. 2014.

[44] Meyer, C., Somorovsky, J., Weiss, E., Schwenk,
J., Schinzel, S., and Tews, E. Revisiting SSL/TLS
Implementations: New Bleichenbacher Side Channels
and Attacks. In 23rd USENIX Security Symposium,
San Diego, USA (August 2014).

[45] Möller, B., Duong, T., and Kotowicz, K. This
POODLE bites: exploiting the SSL 3.0 fallback, 2014.

[46] Moneger, A. Penetration Testing Custom TLS
Stacks. ShmooCon, Feb. 2016.
https://github.com/tintinweb/scapy-ssl tls.

[47] Ray, M., and Dispensa, S. Renegotiating TLS.
Tech. rep., PhoneFactor, Inc., Nov. 2009.

[48] Rescorla, E., and Modadugu, N. Datagram
Transport Layer Security Version 1.2. RFC 6347
(Proposed Standard), Jan. 2012. Updated by RFC
7507.

[49] Riku, Antti, Matti, and Mehta. Heartbleed,
cve-2014-0160, 2015. http://heartbleed.com/.

[50] Seggelmann, R., Tuexen, M., and Williams, M.
Transport Layer Security (TLS) and Datagram
Transport Layer Security (DTLS) Heartbeat
Extension. RFC 6520 (Proposed Standard), Feb. 2012.

[51] Sheffer, Y., Holz, R., and Saint-Andre, P.
Summarizing Known Attacks on Transport Layer
Security (TLS) and Datagram TLS (DTLS). RFC
7457 (Informational), Feb. 2015.

[52] Somorovsky, J. Curious Padding oracle in OpenSSL
(CVE-2016-2107). http://web-in-security.blogspot.de/
2016/05/curious-padding-oracle-in-openssl-cve.html.

[53] Sullivan, N. The results of the cloudflare challenge.
https://blog.cloudflare.com/
the-results-of-the-cloudflare-challenge.

[54] Valsorda, F. Yet Another Padding Oracle in
OpenSSL CBC Ciphersuites.
https://blog.cloudflare.com/
yet-another-padding-oracle-in-openssl-cbc-ciphersuites.

[55] Vaudenay, S. Security Flaws Induced by CBC
Padding — Applications to SSL, IPSEC, WTLS... In
Advances in Cryptology — EUROCRYPT 2002,
vol. 2332 of Lecture Notes in Computer Science.
Springer Berlin / Heidelberg, Apr. 2002.

https://blog.hboeck.de/archives/877-A-little-POODLE-left-in-GnuTLS-old-versions.html
https://blog.hboeck.de/archives/877-A-little-POODLE-left-in-GnuTLS-old-versions.html
https://blog.hboeck.de/archives/877-A-little-POODLE-left-in-GnuTLS-old-versions.html
https://github.com/tomato42/tlsfuzzer
http://ccsinjection.lepidum.co.jp
https://www.imperialviolet.org/2014/12/08/poodleagain.html
https://www.imperialviolet.org/2014/12/08/poodleagain.html
https://github.com/tintinweb/scapy-ssl_tls
http://heartbleed.com/
http://web-in-security.blogspot.de/2016/05/curious-padding-oracle-in-openssl-cve.html
http://web-in-security.blogspot.de/2016/05/curious-padding-oracle-in-openssl-cve.html
https://blog.cloudflare.com/the-results-of-the-cloudflare-challenge
https://blog.cloudflare.com/the-results-of-the-cloudflare-challenge
https://blog.cloudflare.com/yet-another-padding-oracle-in-openssl-cbc-ciphersuites
https://blog.cloudflare.com/yet-another-padding-oracle-in-openssl-cbc-ciphersuites

	Introduction
	Transport Layer Security
	The Handshake Protocol
	The Record Layer
	TLS Extensions
	TLS Libraries

	Attack Categorization
	Cryptographic Attacks
	State Machine Attacks
	Overflows and Overreads

	Requirements and Related Work
	Requirements for a Flexible TLS Testing Framework
	Approaches and Related Work

	TLS-Attacker: Design and Implementation
	Modifiable Variables
	High-Level Overview
	The TLS Module
	Using TLS-Attacker Interfaces

	Fuzzing with TLS-Attacker
	Fuzzing Strategies
	Vulnerability Detection
	Two-Stage Fuzzing

	TLS Fuzzing Evaluation
	Padding Oracle Attacks
	Bleichenbacher's Attack on MatrixSSL
	Missing Length Checks
	Overflows and Overreads

	Building a TLS Test Suite
	Usage of Assertions
	Experimental Test Suite for Correct Cipher Suite Handling

	Discussion
	References

