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Abstract. A digital multi-coupon is similar to a paper-based booklet containing
k coupons that can be purchased from one vendor and later redeemed at a vendor
in exchange for services. Current schemes, offering privacy-protection and strong
security properties such as unsplittability of multi-coupons, address business sce-
narios with a single vendor and multiple customers, and require customers to
redeem coupons in some fixed order.
In this paper, we propose a multi-coupon scheme for federated environments that
preserves the security and privacy properties of existing schemes, as well as their
asymptotic communication and computation complexity. We define a generic for-
mal security model and show that our scheme meets the formal requirements of
this framework. Moreover, in contrast to previous solutions, we allow customers
to redeem their coupons in an arbitrary order.

Keywords: coupons, privacy, unlinkability, unsplittability, payment system, loy-
alty, federation

1 Introduction

Coupons are the basis for successful business models and are widely used in practice.
Companies distribute (paper-based) coupons to customers for various marketing pur-
poses, like encouraging loyalty, providing discounts, setting up prepayment models,
and attracting new customers. A special variant are coupon booklets, where all coupons
are contained in a booklet and are only valid as long as they are attached to the booklet.
This ensures a property we call unsplittability: the single coupons cannot be redeemed
autonomously; instead, they can only be shared among customers by giving away the
entire booklet each time a coupon is spent.

We call coupon booklets (and their electronic equivalents) multi-coupons (MCs).
A vendor provides a customer with a new multi-coupon in the issue procedure. The
customer can then use the coupons from this multi-coupon in the redeem procedure
to pay the vendor. During redemption, the vendor verifies that the coupon is valid and
authentic, and provides the customer with the specified good or service. Each coupon
in a multi-coupon can be used only once. In the following, we denote by object the
good or service implied by a coupon. Any item that can be bought may become an
object in practice, e.g., clothes, songs, books, videos, tickets, and even services, such as
discounts, access to computer resources, etc.



Multi-Coupons in a Vendor Federation. Until now, multi-coupons were proposed in
use cases with a single vendor. Hence, one approach to make MCs more user-friendly
is to make them usable in a more general scenario, where a federation of vendors is
involved. For instance, consider a cooperation between transportation companies, dif-
ferent cultural institutions, restaurants, and shops offering joint coupons to tourists who
can then visit any of the indicated places of interest, eat at the participating restaurants,
and buy goods from the listed shops at discount prices. Note that paper-based variants
of such cooperations exist in many cities (e.g., [1–3]) and enjoy popularity. The general
case is that tourists buy a special card which is accompanied with coupons offering dis-
counts. This card should be presented prior to using any of the coupons (i.e., coupons
are unsplittable).

Obviously, it would be more convenient if a tourist could buy the MC at any in-
volved vendor and would not be forced to go to a central place like the tourist infor-
mation. A trivial solution could be to connect each vendor to one central server which
issues the electronic MCs, but more intelligent solutions which allow the vendors to act
autonomously as much as possible are certainly preferrable. Moreover, there might be
several competing vendors in the federation that provide the same service, e.g., differ-
ent restaurants, where a customer could get a meal at a reduced price. In such cases, it
might be desirable that the vendor who actually provided the service – e.g., the restau-
rant which served the meal – obtains money for it. In our scheme, a vendor can prove
that a customer redeemed a coupon to him, and hence he could charge the coupon issuer.

We remark that the above scenario is just a use case where a digital multi-coupon
scheme maintained by a federation of vendors would be of potential interest, and that
the scheme designed in this paper is general and could be employed in different business
models through the specification of its object types.

Electronic multi-coupon schemes (MCSs) are in several ways superior to paper-
based schemes. Despite the lower production costs and the possibility to buy and gen-
erate them over the Internet, they enable finer business models tailored to the different
types of customers. However, new and specific security considerations need to be taken
into account.
Security and Privacy Considerations. In contrast to paper-based coupon booklets, it
is very easy to create a perfect copy of an electronic MC. Further, when dealing with
an MCS, we must also consider attacks in which different users collude and attempt
to cheat on vendors. Moreover, privacy and anonymity of customers become more im-
portant since the vendor may try to infer and store additional information about them
including purchase habits, gender, age, etc. This would harm privacy and allow client
profiling and price discrimination [17]. For optimal user privacy, vendors should not be
able to link different transactions to one user (i.e., unlinkability should be provided).

Unforgeability and unsplittability are essential properties of an MCS (see [8, 10,
15]). The users should not be able to forge coupons or share (“split”) an MC in such a
way that several users can spend coupons from one MC independently. In the literature,
weak unsplittability (also called all-or-nothing sharing) has been proposed (see, e.g.,
[10]): a user who wants to share a single coupon with someone else has to share the
entire MC and all the secret data associated with that MC. Our scheme fulfills a stronger
definition, called unsplittability (cf. [11]): If two users share coupons from an MC, then
if one of them redeems, the second one cannot redeem any coupon from the same
MC without interaction with the first user, even if both users know the entire secret
data. To support business models where the vendor which provides the user with a
service can charge money from the issuer of the coupon, additional requirements must



be met. During the redemption protocol, the issuer of the coupon must be identifiable,
and other vendors must be protected from being incorrectly held responsible for issuing
this coupon. In Section 3, we actually define two requirements, framing resistance (the
requirement of the issuer) and claimability (the requirement of the redeeming vendor).

Although payment issues are important for the deployment of an MCS in practice,
they cannot be completely solved by cryptographic techniques. Hence, these issues are
out of scope of this paper. Here, we assume that it suffices that a judge can execute an
algorithm Claim to verify that a coupon, issued by a given issuer, has been redeemed
to a given vendor.
Contribution. We introduce a new multi-coupon scheme deployable for a federation
of vendors. Our scheme provides unlinkability, unsplittability, unforgeability, framing
resistance and claimability. We introduce a formal security framework with definitions
of these properties in which we prove the security of our scheme.

Previous MCSs suffer from the problem that they either do not provide unsplittabil-
ity, or all the coupons in a multi-coupon have to be redeemed in sequential order (fixed
during issue). If an MCS is to be used with a federation of vendors, such a restriction
can be a strong limitation: imagine that the vendors want to offer an MC with coupons
for different types of goods. In that case, customers certainly would want to decide
themselves in which order they want to redeem their coupons. Hence, we need a non-
sequential MCS, where the coupons can be redeemed in arbitrary order. However, the
scheme of [11] offers nice features that we want to retain, in particular, coupon objects.
These allow to have different types of coupons in one MC. We improve and extend this
scheme in two important aspects: our scheme can be used by a group of vendors, which
also introduces new security requirements. Moreover, we do not require the order of
redemption of the single coupons to be fixed when the MC is issued. Furthermore, MCs
can be created and issued offline without any connection to the vendors at which the
coupons can be redeemed. For instance, this allows in practice to install a variety of
selling booths in the tourist card example mentioned above.

Redeem complexity (both computation and communication) is constant w.r.t. the
size k of the MC (i.e., the number of coupons it contains), and complexity of the proto-
col for issuing MCs is linear in k, which is the best we can get when each coupon has
individual attributes (like coupon objects). If all coupons in an MC are the same (i.e., no
coupon objects are used), ideas from [6] can be used to further reduce the complexity.
Organization. First, we give an overview of our scheme, define general multi-coupon
schemes and describe our realization in Section 2. In Section 3, we give a formal frame-
work with game-based formal definitions of the requirements, and provide sketches for
security proofs. We discuss related work in Section 4. Finally, we conclude our article
in Section 5. Further details can be found in the extended version.3

2 Our Federated Multi-Coupon Scheme
2.1 Informal Description of a Multi-Coupon’s Lifecycle
In our scheme, a group of vendors V with common databases DB ,DB ′ (trusted by the
vendors) executes protocols with users U to issue and redeem coupons. The databases
are used only during the redeem protocol. A multi-coupon M contains k individual
coupons, which include, among other information, a coupon identifier id . The coupons
are all cryptographically tied to M , which has an MC identifier mid and a freshness

3 see http://www.trust.rub.de/home/publications



identifier fid . To simplify the description below, we temporarily omit coupon objects
ob and the MC identifier mid .

In the Issue protocol, a user U obtains an MC from a vendor V with one signature
on each individual coupon, and one signature validating the freshness fid , signed by the
issuing vendor V . The signatures on the individual coupons (on id ) prevent U from
forging coupons, whereas the signature on the MC (on fid ) ensures its freshness, which
is used to prevent splitting.

In the Redeem protocol, the user U redeems a single coupon from an MC to a ven-
dor V ′. For this, he has to prove knowledge of a signature on the single coupon and that
the MC is fresh. Double redemption of coupons is prevented by the vendor V ′ through
a lookup in a central database DB of coupon identifiers. Similarly, V ′ queries the cen-
tral database DB ′ of freshness IDs to verify the freshness of the MC. If the current
coupon id and freshness ID fid have not already been used, then they are inserted into
the corresponding database. Afterwards, the database DB sends a signature certDB

to the vendor V ′ certifying that V ′ is responsible for the redemption of this coupon.
V ′ will need this signature as an evidence to charge the coupon issuer. At the end of
Redeem, a new fid is generated and signed by V ′, so that this protocol can be executed
repeatedly, as long as there are coupons left in the MC.

After redemption, the Claim algorithm can be executed by any party to verify that
a user redeemed a coupon originally issued by a vendor V to a vendor V ′, and thus, that
V ′ is entitled to charge V for the corresponding coupon. The input to this algorithm
is the coupon ID id , a (non-interactive) proof of knowledge of a signature on id , and
the certificate certDB given by DB to V ′ during Redeem. The certificate is used to
prevent double charging. Note that the databases do not participate in this algorithm.

2.2 Components of a General Federated MCS

Basic Notation. For a finite set S, s ∈R S denotes the assignment of an element sam-
pled uniformly from S to the variable s. Let AlgA be a probabilistic algorithm. By
outA ← AlgA(inA) we denote that the variable outA is assigned the output of AlgA’s
execution on input inA. We denote by (AlgA(inA), AlgB(inB)) a pair of interactive
algorithms with private inputs inA and inB , respectively, and write (outA, outB) ←
(AlgA(inA), AlgB(inB)) to denote the assignment of AlgA’s and AlgB’s private out-
puts after their interaction to the variables outA and outB , respectively.

Here, we adapt the basic framework from [11] to our scenario with a federation of
vendors. The involved parties are a set of vendors V and a set of users U , where nV =
|V| denotes the number of vendors in the federation. We will refer to any particular user
simply by U , and V ,V ′ will denote particular vendors. We assume that each vendor
V has a unique identity IDV which is publicly known. Common system parameters
for the cryptographic building blocks (like commitment and signature schemes) will be
omitted in the notation for better readability.

Definition 1 (Multi-Coupon Scheme). A multi-coupon scheme (MCS) for a feder-
ation of vendors V consists of a set of protocols and algorithms {Setup, Issue,
Redeem, Claim}:

Setup algorithm. (PK , {SKVi}1≤i≤nV ) ← Setup(1κ, nV) is the (in general,
distributed) initialization algorithm executed by the vendors once to generate one in-
stance of the MCS, where κ is the security parameter, nV is the number of vendors. It
outputs a public key PK (which includes 1κ and kmax, the maximum allowed number



of coupons per MC), and a set of secret keys {SKVi
}1≤i≤nV .The vendors’ states are

initialized to the empty string.
Issue protocol. In order to obtain an MC with k coupons, U performs the following

protocol with a vendor V : ((resu,M), resv)← (Issueu(k,V ,PK , ob0, . . . , obk−1),
Issuev(k,SKV , ob0, . . . , obk−1)) where, from now on, the subindices u and v denote
user and vendor algorithms, respectively. The common input ob0, . . . , obk−1 specifies
coupon objects (individual attributes) for the k individual coupons in the MC that is to
be issued. The output flags resu, resv ∈ {acc, rej} indicate success or failure. Issueu

outputs resu and a multi-coupon M , whereas Issuev only outputs resv .
Redeem protocol. A multi-coupon M (issued by V ) is redeemed to V ′ via the

protocol ((resu,M ′), (resv, crn, ob, π, s′)) ← (Redeemu(M , m,PK ), Redeemv(s,
SKV ′)). The parameters to Redeemu are the multi-coupon M from which the user
wants to redeem a coupon, a specification m of the coupon to be redeemed4, and the
public key PK of the MCS. The vendor algorithm takes the vendors’ state s and the
private key of the redeeming vendor SKV ′ as input. Redeemu outputs an updated
multi-coupon M ′ and a flag resu just like in Issue, and Redeemv outputs a new state
s′ of the vendors, a unique coupon reference number crn , an object ob, a proof π that
a user redeemed a coupon to V ′ (with reference number crn and object ob, issued by
V ), and a flag resv .

Claim algorithm. To verify that a coupon with reference number crn issued by
V has indeed be redeemed to vendor V ′, the (public) algorithm Claim can be run
to verify a proof π, i.e., res ← Claim(crn, ob, π,V ′,V ). The result res is true if π
proves that V issued a coupon with object ob that was redeemed to V ′ with reference
number crn; otherwise, res is false. crn is used to identify a redeemed coupon, i.e., it
can be noticed, when the same redeemed coupon is claimed twice.

Correctness (informal). Any MCS must fulfill the correctness requirement: if all partic-
ipants in the protocol are honest, each individual coupon from each MC that was issued
by any vendor can be redeemed successfully at any vendor (equal to or different from
the issuer), regardless of the order of redemption, i.e., a user can redeem any coupon
that she hasn’t spent yet at any time.

2.3 Building Blocks

Commitment Scheme (CS). We use the integer CS from [7], based on the scheme
in [12], with two bases g, h ∈ QRn (quadratic residues modulo n), and a special RSA
modulus n as a public key. A commitment to x has the form Cx = gx · hr, where r is a
random value.
Proofs of Knowledge (PoK). We use a number of honest-verifier statistical zero-know-
ledge PoKs. By PoK{(x̃1, . . . , x̃n) : R(x̃1, . . . , x̃n)} we denote an interactive PoK,
where a prover proves to a verifier that she knows a witness (x̃1, . . . , x̃n) (denoted by
tilded variables) such that relation R holds, and the verifier does not gain any useful
information beyond this assertion.
Proof of Equality of Representations. P proves that she is able to open two commit-
ments C1 and C2 (for two possibly different instances of the commitment scheme), such
that certain components of the openings are equal. For example, PoKEqRep{(x̃, r̃x,

4 Details depend on the scheme; e.g., m could be the index in a list of all coupons in a multi-
coupon or an ID.



ỹ, r̃y) : C1 = gx̃
1gr̃x

2 ∧ C2 = ĝỹ
1 ĝ

r̃y

2 ∧ x̃ = ỹ} denotes the proof that the exponents x̃ and
ỹ are equal.
Camenisch Lysyanskaya signature scheme (CLS ). The CLS [7] is a signature scheme
with efficient protocols based on the strong RSA assumption. The protocols for this
scheme allow signing committed values, and proving knowledge of a signature (see
below). The following description is done in the context of our scheme.

CLS .Setup(1κ). The signer S generates a special RSA modulus n = pq, such
that n has size `n := 2κ, where κ is a security parameter. Then he chooses numbers
a, b, c ∈R QRn, where a, b are called bases. The public key CLSPK is (a, b, c, n), and
the secret key CLSSK is the prime p.

CLS .Sign(x,CLSSK ). To sign a message x ∈ [0; 2`m), the signer chooses a ran-
dom prime e of size `e := `m +2, a random number s of size at most `s := `n +`m +`,
where ` is another security parameter, S computes v ← (axbsc)e−1

(mod n), and
outputs (e, s, v).

CLS .Verify(x, σ,CLSPK ). For (e, s, v) := σ, the algorithm tests if ve ≡ axbsc
(mod n), x ∈ [0; 2`m), s ∈ [0; 2`s), e is `e bits long, and outputs true or false.

The signature allows the following useful protocols:
Signature on a committed value and PoK of this signature [7]. Signature gener-
ation is a protocol from [7] between a user U and a signer S , who knows the se-
cret key CLSSK . Let CLSPK := (a, b, c, n) be the corresponding public key. The
common input to U and S is a commitment Cx, for which U (supposedly) knows
an opening (x, rx) : Cx = axbrx . At the end of the protocol U obtains a signature
σ := (e, s, v) on x, while x is statistically hidden from S . We denote this protocol as:
σ ← SigOnCommit{U (x, rx),S(CLSSK )}(Cx).

For a commitment C ′x, U can prove knowledge of (x, r′x, e, s, v) [7], such that
(x, r′x) is an opening of C ′x, and (e, s, v) is a valid signature on x, where x and σ
are hidden by the zero-knowledge property of the protocol. We denote this protocol as:
PoKSigOnCommit{(x̃, r̃′x, σ̃) : C ′x = ax̃br̃′x ∧ CLS.Verify(x̃, σ̃,CLSPK )}.

This signature scheme can be extended to sign message tuples (x1, . . . , xk) by in-
troducing k bases ai [7]. The extended scheme for k-tuples will be denoted by CLSk .
The protocols above can be extended to support multiple messages, and selective mes-
sage disclosure. E.g., abusing notation, we denote by SigOnCommit{ U (x̃1, r̃x1),
S(CLS3SK )}(Cx1 , x2, x3) a protocol to generate a signature on a 3-tuple (x1, x2, x3),
where the message x1 is blinded by a commitment Cx1 , and two messages x2 and
x3 are disclosed in clear. Similarly, by PoKSigOnCommit{(x̃3, r̃x3 , σ̃) : Cx3 =
ax̃3
3 br̃x3 ∧ CLS3 .Verify((x1, x2, x̃3), σ̃, CLS3PK )} we denote the corresponding

PoK that U knows a signature σ on a tuple (x1, x2, x3), where x1 and x2 are disclosed
to the verifier, but x3 is kept blinded. Again, the variables with˜are kept secret.

Non-interactive proofs and signatures of knowledge. Using a cryptographic hash
function, the PoKs described above can be turned into non-interactive PoKs by the
Fiat-Shamir heuristic [13]. We add the prefix NI- (“non-interactive”) to the PoKs to
indicate that a non-interactive proof is used instead of an interactive protocol, e.g.,
NI-PoKSigOnCommit to denote a non-interactive proof of knowledge of a signa-
ture on a commitment. If additional data (a “message”) is hashed, the NI-PoK becomes
a signature on this message (as in [19]) and is called a signature of knowledge (SoK).
Since the actual protocol remains the same, we use the same notation with simply ap-
pending the message (as in NI-PoKSigOnCommit{. . .}(m)). The security of SoKs
can be shown in the random oracle model. In practice, it is assumed that this heuristic



is secure, as long as the hash function which is used is cryptographically strong. For a
more general and formal treatment of SoKs, see [9].

2.4 Concrete Construction
Overview. A multi-coupon M of size k ≤ kmax consists of its identifier mid , a fresh-
ness identifier fid , a signature σ′ on the pair (fid ,mid), and a list of k individual
coupons, where kmax is the maximal number of coupons an MC can contain. Each
individual coupon (id , ob, σ) is specified by a coupon identifier id , a coupon’s object
ob (i.e., the good or service represented by the coupon5), and a signature σ on the tuple
(id , ob,mid). Depending on the business model, the object IDs in an MC could either
be chosen by the user, or they could be determined by the issuer. We model object IDs
as common input to the issue protocol, leaving this decision to the concrete application.

We require that all signatures and non-interactive proofs in the protocols are always
verified by the recipient. If the verification fails, the protocol is aborted, and the respec-
tive party outputs rej (subsequently, verification steps will be omitted). All public keys
and parameters for the underlying protocols are known to all participants in the scheme
(e.g., the federation of vendors could maintain a server with a directory of all public
keys). The coupon reference number crn from our formal definitions is implemented
by a unique ID id i for each individual coupon.

Setup. For the setup of the MCS, the vendors have to create keys6: one common CLS2
key pair (PKFed , SKFed) for the federation, where all vendors know the private key,
and one CLS3 key pair (PKV ,SKV ) for each individual vendor V . Moreover, the
vendors have to create two empty common databases DB (for coupon IDs) and DB ′

(for freshness IDs), where all vendors can create new entries (of course, this can be
implemented by two tables in one database). Every vendor is allowed to insert entries
into the databases, but no vendor is allowed to delete them. DB possesses a key pair
(PKDB ,SKDB ) of an arbitrary signature scheme, e.g., RSA, to issue certificates to
vendors which inserted coupon IDs.

Remark. In this instantiation, the public key mentioned in Def. 1 consists of PKFed

and PKVi ; the secret key from Def. 1 includes SKFed and SKVi .

Issue. The Issue protocol is shown in Fig. 1. In step 1, the multi-coupon identi-
fier mid is selected by the vendor, whereas the freshness ID fid0 and IDs for the in-
dividual coupons id i are chosen by the user. The vendor only obtains commitments
Cfid0

, Cid0 , . . . Cidk−1 to the values chosen by the user. In step 2, the user receives a
signature σ′0 on (mid ,fid0) with the secret key of the federation SKFed , and in step 3,
he obtains signatures σi on (Cidi ,mid , obi) with the signing key SKV of the issuer.

Redeem. The Redeem protocol for the (j + 1)-th redemption from a multi-coupon,
where 0 ≤ j ≤ k−1, is shown in Fig. 2. During the first Redeem from a multi-coupon
(i.e., j = 0), the freshness ID fid0 and corresponding signature σ′0 from Issue is
used and updated; in subsequent redemptions, the freshness ID and signature from the
previous execution of Redeem are used and updated. In step 1, the user blinds mid
by commitments (otherwise, the vendor could use mid to link transactions), and sends
the data of the coupon he wants to redeem (id i, obi, fid j), together with the ID of the
issuer IDV , to the vendor V ′. In step 2, U proves that the two commitments to mid are
actually commitments to the same number. In step 3, the user proves knowledge of the

5 The vendors must publish an encoding of coupon’s objects as integers.
6 We do not use group signatures, because coupon issuers should be identifiable.



Common input: public keys PKV = (a1, a2, a3, b, c, n), PKFed = (â1, â2, b̂, ĉ, n̂),

User’s input: −
number of single coupons k, object identifiers obi, i = 0, . . . , k − 1

Vendor’s input: private keys SKV = p, SKFed = p̂

User U Vendor V

mid ∈R (0; 2ℓm);

mid

for each i = 0, . . . , k − 1 do

end for;

idi ∈R (0; 2ℓm);

ridi
∈R (0; 2ℓn);

Cidi
← aidi

1
bridi ; Cfid

0
, Cid0

, . . . , Cidk−1

for each i = 0, . . . , k − 1 do

SigOnCommit{U (fid
0
, rfid

0
),V (SKFed)}(Cfid

0
,mid)σ′

0 ←

end for;

fid
0
∈R (0; 2ℓm); rfid

0
∈R (0; 2ℓn);

Cfid
0
← â

fid
0

1
b̂rfid0 ;

SigOnCommit{U (id i, ridi
),V (SKV )}(Cidi

,mid , obi)σi ←

Step 3:

Step 2:

Step 1:

return (mid ,fid
0
, σ′

0
, {(idi, σi)}0≤i<k); return accept ;

Fig. 1. Issue Protocol.

signature σi, and the vendor obtains a signature of knowledge π′ that allows him later to
prove that this coupon was redeemed to him. In step 4, the user proves knowledge of a
signature σ′j on (fid j ,mid). The vendor has to verify that both id i and fid j are fresh by
quering the databases (i.e., he checks that these values are not yet in DB and DB ′), and
inserts these entries. After insertion, the database DB signs id i and sends the signature
to V ′. To prevent races between vendors, which open the door to some attacks, only
one vendor at any time is allowed to “query and insert”, as an atomic operation.

In step 5, U chooses a new random freshness ID fid j+1 for this MC and sends a
commitment to fid j+1 to V ′. At the end of the protocol (in step 6), the user obtains a
new freshness signature σ′j+1 for this MC. The vendor sets π ← (π′, certDB , Cmid),
and returns (id i, obi, π).

A malicious user cannot abuse Cfidj+1
to obtain signatures with SKFed on arbi-

trary messages, because the second part of the signed message is proven to be a valid
commitment to mid . All signatures with SKFed on such messages will always be inter-
preted as freshness signatures, thus this protocol cannot be used as signature oracle. For
efficiency reasons, the NI-PoKs and NI-SoKs could all be combined into one NI-SoK.
Claim. The deterministic Claim algorithm verifies the SoK that a vendor V ′ obtained
during the Redeem protocol and the certificate given by DB to V ′. It uses only public
information and hence can be run by anyone, for example, by a judge in case of dispute.
Double charging is prevented because a vendor will only pay back once for each coupon
identifier. The vendor V ′ can always charge the issuing vendor unless DB generates
two certificates for the same coupon identifier. However, this misbehavior can always
be identified.



Common input: public keys PKV = (a1, a2, a3, b, c, n), PKFed = (â1, â2, b̂, ĉ, n̂)

User’s input: single coupon (id i,mid , obi,fid j , σi, σ
′

j) issued by vendor V , issuer’s ID IDV

bases g, h, ĝ, ĥ for internal use of PoKSigOnCommit protocols

Vendor’s input: private key SKFed = p̂, databases DB , DB ′

User U Vendor V ′

rmid , r′mid ∈R (0; 2ℓn);

Cmid ← amid
2 brmid ;

IDV , id i, Cmid , obi,fid j , C
′

mid

SigOnCommit{U (fid j+1, rfidj+1
,mid , r′mid),V ′(SKFed)}(Cfidj+1

, C ′

mid)σ′

j+1 ←

NI-PoKSigOnCommit{(m̃id , r̃mid , σ̃i) : Cmid = am̃id
2 br̃mid ∧ CLS3 .Verify((id i, m̃id , obi), σ̃i,PKV )}(IDV ′)

NI-PoKEqRep{(m̃id , m̃id
′

, r̃mid , r̃′mid) : Cmid = am̃id
2 br̃mid ∧ C′

mid = âm̃id
′

2 b̂r̃′

mid ∧ m̃id = m̃id
′

}

insert fid j into DB ′;

C ′

mid ← âmid
2 b̂r′

mid ;

NI-PoKSigOnCommit{(m̃id , r̃′mid , σ̃′

j) : C′

mid = âm̃id
2 b̂r̃′

mid ∧ CLS2 .Verify((fidj , m̃id), σ̃′

j ,PKFed)}

certDB ← insert id i into DB ;
fid j+1 ∈R (0; 2ℓm); rfidj+1

∈R (0; 2ℓn);

Cfidj+1
← â

fidj+1

1 b̂
rfidj+1 ; Cfidj+1

π ← (π′, certDB , Cmid); return (id i, obi, π);

Step 6:

Step 5:

Step 4:

Step 3:

Step 2:

Step 1:

return (fid j+1, σ
′

j+1);

π′ ← output of step 3;

Fig. 2. Redeem Protocol.

Claim(id , ob, π,V ′,V ) :
parse π as (π′, certDB , Cmid);
verify certDB w.r.t. id ,PKDB ;
verify π′ w.r.t. id , ob, Cmid ,PKV , IDV ′ ;

Fig. 3. Claim Algorithm.

Efficiency. The communication (and computation) complexity of the Issue protocol
is linear in the number k of individual coupons in the multi-coupon to be issued. Corre-
spondingly, the size of the MC data is also linear in k. The Redeem protocol is constant
w.r.t. to k. The operations performed by DB and DB ′ (search, insert and sign) do not
depend on the size k of the MCs (but, of course, on the security parameter κ), and they
should not impact the efficiency unless the communication between the vendors and
the databases is slow. If coupon objects are not necessary, ideas from [6] could be used
to obtain logarithmic complexity (in k) for Issue, and also logarithmic size of the
MC data. Compared to the MCS from [11], one additional SigOnCommit protocol
has to be run instead of a local signature generation during Issue. In the Redeem
protocol, two additional IDs (V and fid j) are sent to the vendor in the first step, and we
need an extra round to send a commitment to the vendor. Another difference is that we
use non-interactive versions of the protocols during Redeem, which slightly increases
efficiency – but this could also be done in the MCS from [11].



3 Security Framework and Analysis
Here, we generalize the adversarial model from [11] to a federation of vendors. The
security requirements are defined by games, and it can be shown that our scheme meets
these requirements. We only present some proof sketches and refer the reader to the
full version of this paper for more details. An adversary is a p.p.t. algorithm A, which
can play the role of either a collusion of vendors and users, or only of a group of users.
W.l.o.g., we let the adversary be specified by a sequence of algorithms (e.g., A :=
(A1, A2, A3)). Honest parties are assumed to communicate over secure channels.

We consider two types of users (resp. vendors): honest and corrupted users (resp.
vendors). Users (resp. vendors) belonging to the set of honest users (resp. vendors)
execute algorithms of the MCS if requested by A, but remain honest otherwise. A has
full control over the corrupted users and vendors, and he is provided with their previous
protocol views. Similar to [14], we allow A to interact with the system through a set of
queries7 handled by an interface, which partially simulates the MCS, executes protocols
with A, and records certain user’s or vendor’s activities. Note that the interfaces do not
restrict A in any way – they control the actions of the honest parties on behalf of A.
Correctness of the scheme can be easily verified (proof omitted).

Framing resistance and claimability. During the redemption protocol, the original is-
suer of the coupon must be identifiable (to allow the redeeming vendor to claim money
from the issuer), and other vendors must be protected from false claims. It must be en-
sured that a vendor who issued an MC can always be held responsible for all coupons
from this MC. We break down this property into two requirements: (1) framing resis-
tance: a collusion of vendors and users must never be able to claim that another vendor
issued a coupon with a specific object, when he didn’t; and (2) claimability: an honest
vendor who redeemed a coupon must always be able to claim money for it.

Interface I1. In the games defining “claimability” and “framing resistance”, the ad-
versary A plays the role of a coalition of all users and has the capability to corrupt
vendors.

Counters ctrCV ,ob (initially 0) for each coupon object ob are defined for each ven-
dor V , counting the coupons with object ob, that were issued by V . The following
queries are provided to A.

I1.Issuev(V , k, ob0, . . . , obk−1). If k ∈ [1; kmax] and V is an honest vendor, the
Issuev algorithm is executed. The counter for each coupon object ob is increased by
the number of times ob occurs in the MC issued by V , i.e., ∀λ ∈ [0; k−1]: ctrCV ,obλ

++.
I1.Redeemv(V ′,V ). If V ′ is an honest vendor, the Redeemv protocol is executed

for V ′, i.e., A wants to redeem a coupon (issued by V ) to V ′.
I1.Corrupt(V ). A receives all secrets of V (and V is removed from the set of

honest vendors).
In the FrameGame (see Fig. 4),A can interact with the system via the interface I1.

A outputs the identity V of the vendor he wants to “frame” (in order to win this game,
A has to choose an uncorrupted vendor), an object ob, and a set of coupon reference
numbers CRN with a corresponding set Π of pairs (π,V ′) of proofs that V ′ was
involved in the redemption of a coupon with object ob issued by V . If Claim succeeds
for all of these proofs and there are more elements in CRN than coupons (with object

7 Like in existing schemes, queries must not be executed concurrently, which simplifies model
and construction.



ob) issued by V (i.e., |CRN | > ctrCV ,ob), A wins the game, because then A must
be able to claim coupons V did not issue. (Of course, all elements of the set must be
distinct – i.e., A cannot “replay” the same crn multiple times).

FrameGame(A, κ, nV):
(PK , {SKVi}1≤i≤nV )←

Setup(1κ, nV);
(V , ob,CRN , Π)← AI1(1κ,PK );

if
“
V uncorrupted ∧ |CRN | > ctrCV ,ob ∧
(∀crn ∈ CRN :∃(π,V ′) ∈ Π:

Claim(crn, ob, π,V ′,V ) = true)
”

return broken;
else return unbroken;

ClaimGame(A, κ, nV):
(PK , {SKVi}1≤i≤nV )←

Setup(1κ, nV);
(V ′,V , sA)← AI1

1 (1κ,PK );
if V ′ corrupted

return unbroken;
(ResA, (resv, crn, ob, π, s′))←

(A2(sA), I1.Redeemv(V ′,V ));
if (resv = acc ∧
Claim(crn, ob, π,V ′,V ) = false)

return broken;
else return unbroken;

Fig. 4. The games FrameGame and ClaimGame.

Definition 2 (Framing resistance of an MCS). An MCS is resistant against framing
if there is no p.p.t adversary A that can win the FrameGame in Fig. 4 (i.e., Frame-
Game(A, κ, nV) = broken for some number of vendors nV ≥ 1) with non-negligible
probability (in κ).

Theorem 1 (Framing resistance). Assuming the security of CL signatures against ex-
istential forgery, the proposed MCS is resistant against framing, i.e., for all p.p.t adver-
sariesA and for all nV ≥ 1, Pr[FrameGame(A, κ, nV) = broken] is negligible (in κ)
in the random oracle model.

Proof (sketch). Assume a successful adversary A which breaks FrameGame with
non-negligible probability. From that, we construct an algorithm B that, given a sig-
nature oracle for an instance of the CLS3 signature scheme, produces an existential
forgery for this instance.
B has to simulate the FrameGame towards A in the random oracle model. To do

so, B has to guess which issuer V will be “attacked” by A. The CLS3 signature oracle
is used by B for V ’s signatures – the keys for the other vendors and for the federation
are generated honestly by the respective algorithms. If A corrupts a vendor different
from V , B delivers the corresponding secret key to A. If A corrupts V , the simulation
fails. Assuming that A corrupts all vendors but one, the probability to guess the right
vendor is 1/nV . In [7], it is shown how to simulate the building blocks for our protocols.

In the Issue and Redeem protocols, it can be assumed that B can extract all
secrets (by rewinding) for each PoK and SoK from A (it is shown in [7] that efficient
knowledge extractors exist for the sub-protocols we use). Since rewinding can be done
for all sub-protocols independently, B is still efficient.

WhenB executes Issue for V ,B stores σi together with the signed tuple (id i,mid ,
obi) (where id i is obtained by knowledge extraction). This information is used to iden-
tify a forged CL signature: B extracts the secrets from all SoKs that are returned by A
(in the set Π in the FrameGame). The condition |CRN | > ctrCV ,ob in the Frame-
Game ensures that there are more distinct coupon IDs id i than signatures for coupons
with object ob have been queried by V . Therefore, one of the NI-SoKs π does not



correspond to a coupon issued by V and A must have produced a forgery of a CL sig-
nature. B can identify the forgery using the data stored during Issue, and outputs it
as the required existential forgery of a CLS3 signature. Of course, this only works, if
the vendor challenged by the adversary is actually the vendor V guessed by B at the
beginning of the simulation.

Since the probability of an adversary to forge a CL signature is negligible, so is the
probability of A to win the FrameGame. ut

To break the ClaimGame (see Fig. 4), A successfully redeems a coupon to an
uncorrupted vendor V ′, but V ′ cannot claim money for it (i.e., the Claim algorithm
fails). In the first phase, A1 can interact arbitrarily with the honest vendors via I1. He
must output an issuer V of a coupon (possibly corrupted) and an uncorrupted vendor
V ′, and an arbitrary state sA for the second phase. To win the game, A2 must be able to
redeem a coupon, allegedly issued by V , to V ′, but Claim must fail for this coupon.
A2’s output ResA is discarded.

Definition 3 (Claimability of an MCS). An MCS is claimable if there is no p.p.t adver-
sary A := (A1, A2) that can win the ClaimGame in Fig. 4 (i.e., ClaimGame(A, κ,
nV) = broken for some number of vendors nV ≥ 1) with probability > 0.

Theorem 2 (Claimability). The proposed MCS provides claimability, i.e., for all p.p.t
adversaries A and for all nV ≥ 1, Pr[ClaimGame(A, κ, nV) = broken] = 0.

Proof (sketch). The checks in the Claim algorithm are a subset of the checks per-
formed in Redeem by the vendor. Therefore, the condition in the ClaimGame that V ′
accepts, but Redeem fails, is a contradiction (i.e., A can never win). ut

SplitGame(A, κ, nV):
(PK , {SKVi}1≤i≤nV )← Setup(1κ, nV);

(s,V ,V ′
j0 , . . . ,V ′

jK
)← A

I′1
1 (1κ,PK )

if K < ctrMV

return unbroken;
for λ← 0 to K do:

(resA, resv)←
(A2(s), I ′1.Redeemv(V ,V ′

jλ
));

if (resv 6= acc)
return unbroken;

return broken;

Fig. 5. The game defining unsplittability (Split-
Game), where I ′1 is the interface I1 without
Corrupt queries.

Unforgeability and unsplittability.
No coalition of users should be able
to redeem more coupons than have
been issued by the vendors. More-
over, multi-coupons should be un-
splittable (cf. [11]): We require that
if a user U0 shares an MC with a
user U1, as soon as one user redeems
a single coupon, the other one can-
not redeem any more without inter-
acting with the user who redeemed
first (note that sharing can always be
achieved by copying all the data).

In the games, we have to restrict
the queries that are available to A:
he is not allowed to corrupt vendors,
because a vendor could issue as many coupons as he likes – and hence “unforgeability
with corrupted vendors” would make no sense. Moreover, we consider unsplittability to
be a requirement of the entire federation. Therefore, we do not need to model corrup-
tions: We assume that in the games defining unforgeability and unsplittability, all users
but no vendors are corrupted.

Furthermore, we have to count the difference between the coupons (separately for
each object ob) a vendor V issued, and the number of coupons (issued by V , with ob)



that were already redeemed, i.e., the number of coupons issued by V with object ob
that are available to the adversary. Thus, a counter ctrDV ,ob (initially 0) is introduced
for each issuer V , which is increased during issue, and decreased after a successful
Redeem (possibly at a different vendor V ′). For the definition of unsplittability, it is
important to know how many MCs issued by V that still contain redeemable coupons
the users may have. In an unlinkable MCS, this cannot be done precisely; therefore, the
MC counter ctrMV (initially 0) is just an upper bound on the users’ MCs (with valid
redeemable coupons). To count the MCs the users might have, ctrMV is increased by
one whenever V issued a coupon. After successful redemption, the MC counter is ad-
justed if the number of coupons issued by V that are still available to A is smaller than
the number of MCs (issued by the same vendor): ctrMV ← min(ctrMV , ctrDV ).

Interface I ′1. The modified interface I1 without Corrupt queries, but with coun-
ters ctrMV and ctrDV ,ob is denoted by I ′1.

Intuitively, to win the splittability game (see Fig. 5), A has to create more (in the
game: K+1) “shares” than he has MCs (at most ctrMV ≤ K), which can be redeemed
independently from each other. The state of A2 is reset after each Redeem to the state
s that was output by A1; i.e., information gained in one execution of Redeem is not
available in the other executions.
Definition 4 (Unsplittability of an MCS). An MCS is unsplittable if there is no p.p.t
adversary A that can win the SplitGame in Fig. 5 (i.e., SplitGame(A, κ, nV) =
broken for some number of vendors nV ≥ 1) with non-negligible probability (in κ).

Theorem 3 (Unsplittability). Assuming the security of CL signatures against existen-
tial forgery, our MCS is unsplittable, i.e., for all p.p.t adversariesA and for all nV ≥ 1,
the probability Pr[SplitGame(A, κ, nV) = broken] is negligible (in κ) in the random
oracle model.

Proof (idea). We can show unsplittability by a reduction, similar to the one in the proof
of Theorem 1: Assuming an adversaryA against SplitGame, we construct an adversary
B against the security of the CL signature scheme (i.e., B will produce an existential
forgery of a CL signature). B has to simulate the interface I ′1, and play the SplitGame
with A. To do so, B has black-box access to signature oracles for the CLS2 and the
CLS3 signature schemes (these oracles can be used in the simulation because vendors
cannot be corrupted). If A wins the game, B has to come up with an existential forgery
of one of the signature schemes. The simulation proceeds like in the proof of Theorem 1,
and it can be proven that the counter ctrMV ensures that a forgery occurs, which can
be extracted from the adversary by rewinding. In this way, B produces an existential
forgery of one of the CL signature schemes. ut

In the unforgeability game, the adversaryA can interact with the system via I ′1, and
he has to output the identity of an arbitrary vendor, an object ob of his choice. If more
coupons (with object ob) issued by this vendor have been redeemed than the vendor
originally issued (i.e., ctrDV ,ob < 0), A wins. Due to space restrictions, we omit the
formal definition, theorem, and proof (which are analogous to unsplittability).

Unlinkability. To ensure privacy and anonymity of the customers, we require that the
vendors should not be able to link a Redeem procedure of a customer to the corre-
sponding Issue procedure, nor to another Redeem procedure where the customer
used the same MC. Unlinkability for one user has to be provided against a collusion of
vendors and other users.



Informally, unlinkability is achieved because the vendor’s knowledge about ele-
ments of a single coupon depends on the actual procedure. During Issue, id and fid0
are hidden, whereas mid , σ, σ′0 are known to the vendor. During Redeem, id and fid0
are disclosed to the vendor, but mid , σ, σ′0 are hidden. fid j (0 ≤ j < k) is hidden from
the vendor during the j-th run of Redeem, but disclosed during the (j + 1)-th run; σ′j
(0 ≤ j < k) is known to the vendor during the j-th run of Redeem, but hidden during
the (j + 1)-th run. The objects ob are known to the vendor during both Issue and
Redeem. If a certain coupon object is unique to a user, this could be used for linking.
Hence, the formal definition has to exclude “trivial linking” by objects. But if there are
more users with coupons of a given object, it cannot be used for linking. We assume
that in a system with many users, for each object there should be several users with a
corresponding coupon. Hence, privacy should be preserved, for practical purposes.

For a formal definition, theorem, and proof (which are quite similar to [11]), we
refer the reader to the extended version of this paper.

4 Related Work

Syverson et al. [20] introduced the concept of unsplittability in the context of unlinkable
serial transactions to discourage sharing, and suggested an extension of their scheme to
implement coupon books. Later, Chen et al. [10] described the properties that a privacy-
protecting MCS must provide, and proposed an unforgeable, unlinkable, and weakly
unsplittable scheme. However, their construction is less practical because redemption
complexity is linear in k (i.e., the number of coupons in the MC).

More recently, Nguyen [15] addressed some disadvantages of [10], and defined a
security model for MCSs, followed by an efficient construction based on a verifiable
pseudorandom function and bilinear groups. Its issue and redeem complexity is constant
w.r.t. k, it offers the same security properties as in [10], and adds a new feature to
revoke MCs. One drawback the schemes from [15, 10] is that every issued MC must
contain the same number of coupons, i.e., k is a system parameter fixed for all MCs.
This limitation, as pointed out in [15], can be overcome in both schemes at the cost of
efficiency, by extending the issue protocol in a way that MCs with fewer than k coupons
can be issued. Another drawback of these schemes is that they do not provide coupon
objects (or coupon types [8]), and they support only one vendor.

Finally, a privacy-protecting MCS scheme with strong protection against splitting
has been proposed in [11]. In this scheme, the number k of coupons in an MC can
vary with different MCs. Moreover, coupon objects are supported, and the proofs for
the security (unforgeability, unlinkability, and unsplittability) are sketched. However,
all coupons in an MC must be redeemed in a sequential order that has to be fixed during
the issue protocol, and only a single vendor is considered.

As explained in [10, 15], most related schemes (e.g., e-cash, digital credentials) can-
not be employed as privacy-protecting unsplittable MCSs because they have different
usage patterns [18, 4], are inefficient in this setup [16], or lack at least one of the re-
quired properties [5], in particular unsplittability. Some e-cash systems (e.g., [6]) can
be used as unlinkable or at least anonymous MCSs (cf. [8]). However, they are at most
weakly unsplittable. Although [6] provides logarithmic issue complexity (and size) in
k, it cannot support individual attributes per coupon. If coupon objects would be intro-
duced, the issue complexity (and multi-coupon size) would also be linear in k, as in our
scheme, but would not provide unsplittability.



5 Conclusion and Future Work
In this paper, we proposed a generic security model for multi-coupon schemes, suitable
for a federation of vendors. We designed an efficient scheme where coupons can be
redeemed in arbitrary order, and which is provably secure in this model. Future work
may focus on dynamic aspects of the scheme, considering the case where vendors join
and leave the federation, or on the design of more efficient schemes.
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