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Chapter 1

Attacker Model

This chapter is intended to outline the general concept of our security analysis of the Single
Sign-On protocol OpenID Connect, as well as reveal several custom designed attack-scenarios.

1.1 Security Model
This section will give a detailed description of the security model used in the proper analysis
of the protocol. To do so, we will at first outline the objectives of an attacker together with
mention-worth assumptions when analyzing a Single-Sign On protocol. Later on we will define
the capabilities of an attacker as well as the behavior of a victim.

1.1.1 Objectives of the Attacker
The essential goal of the attacker is to impersonate her victim when accessing a service of a
Relying Party (RP). This subsequently leads to an unauthorized access of protected resources
of the victim. Within the context of OpenID Connect, this could either mean acquiring an ID
Token issued for the victim and redeeming it at the proper RP or tricking a RP into accepting
a manipulated ID Token resulting in the impersonation of the victim.

1.1.2 Assumptions
As a huge proportion of the security of OpenID Connect is based on the utilization of Transport
Layer Security (TLS) to secure the communication between the involved parties, we consider,
if TLS is used, TLS to be secure. For instance, the implemented version of TLS is up-to-
date and not vulnerable to some known attack, for example, BEAST, which could decrypt or
manipulate data sent from one party to another. Deceiving an End-User, via for example, Cross-
Site Scripting, Phishing or false TLS certificates, is also considered out of scope. Basically all
software used by the End-User, for example, user agent, and furthermore her Operating System
is assumed to be not compromised. Thus the attacker has no way of exploiting vulnerabilities
within the user agent (UA) or the Operating System of the End-User. Furthermore, all tests on
live implementations of the protocol can be regarded as black-box tests, due to the lack of the
source code or any documentation of the implemented libraries. Beyond that, when solely acting
as the End-User, the attacker cannot see or influence any data which is directly sent from the
RP to the OpenID Provider (OP) or vice versa.
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1.1.3 Capabilities of the Attacker
The attacks to-be-introduced in this technical report have been strictly verified in the web attacker
model [2]. In contrast to the network-based attacker model (cryptographic attacker model), the
web attacker does not need full control over the network and thus is not able to eavesdrop or
manipulate network connections. She is however able to use an UA or a custom HTTP client
to send HTTP requests to every publicly available web application in the web and subsequently
receive its response. HTTP parameters (to-be-sent within a request) as well as headers can
be freely chosen or manipulated. Requests of the attacker can also be delayed or aborted and
responses do not need to be handled in a standard-compliant way, for example, HTTP redirect
responses do not need to be followed. For tests within live implementations the attacker is able
to register as many accounts on a specific RP or OP as she wishes. Furthermore, links (e.g. sent
via email) or web-blog commentaries can be used to lure the victim into opening a (manipulated)
Uniform Resource Identifier (URI) to, for example, conduct Cross-Site Request Forgery attacks.
Other attacks on the web application part not directly handling OpenID Connect, like SQL
Injections or Cross-Site Scripting attacks, are considered out of scope. In addition to that, an
attacker may set up her own web application(s) extending her role from End-User only to RP
and OP as well. With that capability the attacker is also able to influence data which is directly
sent from the RP to the OP or vice versa.

1.1.4 Behavior of the Victim
Within our security model, the victim is assumed to visit every publicly available web application
she wants to or is directed to (e.g. by sending the victim a link to a web application controlled
by the attacker). HTTP parameters within such requests, made by the victim, are not checked
for sanity or validity. Phishing attempts, like reconstructing a known website for example, are
however discovered by the victim and thus not leading to exposure of sensitive information of
the latter.
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Chapter 2

Specification Flaws

2.1 Malicious Endpoints Attacks
This section describes four different attacks, which belong to the class of Malicious Endpoints
attacks. All attacks use the malicious Discovery service and influence the OpenID Connect flow.
Since each attack pursues different goals, we describe for each attack the main goal, the setup
including the attacker model and the attack itself. Please note that all following attacks are based
on the fact that an attacker can enforce the Client to use a malicious endpoint. A developer or
customer should thus be aware of these security issues, although the concrete attack impact may
depend on the service deployment (see Sections 2.1.2, 2.1.3, 2.1.4 for details). The impact of the
attack presented in Section 2.1.1 is independent of its deployment.

2.1.1 Broken End-User Authentication
This attack has been reported by to the authors of OpenID Connect in October 2014, and was
adopted to OAuth in 2015 by Fett et. al (known as Mixup Attack). The idea behind the attack
is to influence the information flow in the Discovery and Dynamic Registration Phase in such
a way that the attacker gains access to sensitive information1. The attacker pursues the theft
of sensitive information like the Authorization Code (code), Access Token (token), ID Token
and/or Client credentials used for authentication.

Setup. The basic setup for the attack is as follows:
I The End-User (victim) has an active account on the genuine honest Client. We assume

that the End-User trusts this Client and the Client follows the OpenID Connect protocol
rules.

I The End-User is registered at the Honest OP on the domain https: // honestOP. com .
The End-User trusts this OP and the OP also follows the OpenID Connect protocol rules.

I To perform the attack, the attacker has to set up his own Discovery service running on the
domain http: // malicious. com . This Discovery Service acts maliciously, which means,
that it deviates from the normal OpenID Connect protocol flow. Note that there is no
need to disguise http: // malicious. com as the regular Discovery service belonging to
the Honest OP in any way.

1Please note that the attack is also possible if the Client does not support Discovery and Dynamic registration,
but allows to register a custom OP manually.

4

https://honestOP.com
http://malicious.com
http://malicious.com


Discovery

Client
(https://honestClient.com)

  Phase 1.1: Discovery
Steps 1.1.1 – 1.1.3

1.1.4.  Response: OP Metadata 
{issuer, registration_endp, authorization_endp, token_endp, userinfo_endp, jwks_endp}

tokenEndp/
userInfoEndp/

jwksEndp

Attacker‘s Webserver
(http://malicious.com)

Honest OP
(https://honestOP.com)

regEndp authEndp

End-User

Phase 1.2: Dynamic Registration 

Phase 2: User Authentication on OP

3.1. Code Flow: {Authorization Code}, Client Authentication: {client_id/client_secret}

3.3. (Optional) Access Token

Figure 2.1: Malicious Endpoints attack: Attacker’s Discovery service sets the endpoint variables
in a specific way, such that the secret tokens sent in the third phase are seamlessly distributed
to the attacker’s server.

I According to the attacker model, the attacker does not have any control over the honest
Client, the End-User, the Honest OP or the network traffic between these instances. The
attacker is able to send an HTTP request through End-User’s browser, for example, by
embedding an image in a benign HTML website that causes the browser to automatically
issue a request when the website is viewed.

Attack description. In the following, we describe the attack protocol flow, which we depicted
in Figure 2.1.

Phase 1.1 - Injecting malicious endpoints The attacker’s intention in the first phase is to force
a valid Client to use the attacker’s malicious Discovery service. For this purpose, he constructs
a malicious link and stores it on a benign website, e.g. in a web forum. For example, this can
be a link to the valid Client containing an identity alice@malicious.com.

By visiting the website containing the malicious link, an HTTP request will be sent to the
Client through the End-User’s (victim’s) browser. Consequentially, the Client starts a Discovery
Phase with the malicious Discovery service http://malicious.com. The Client sends a request
to determine the corresponding endpoints. The attacker’s Discovery service responds with the
following values, initiating the actual attack:

1 issuer: http://malicious.com
2 regEndp: https://honestOP.com/register
3 authEndp: https://login.honestOP.com/
4 tokenEndp: http://malicious.com
5 userInfoEndp: http://malicious.com

Listing 2.1: Endpoints returned by the malicious Discovery service

Phase 1.2 – Dynamic Registration In the next step, the Client accesses regEndp for the
Dynamic Registration. It sends a registration request to https://honestOP.com/register and
receives a client_id and client_secret in the response.

Note: The Client automatically starts the Dynamic Registration, even if it is already reg-
istered on the Honest OP. The reason for this behavior is that the Client believes that http:

5

http://malicious.com
https://honestOP.com/register
http://malicious.com
http://malicious.com


//malicious.com is the responsible OP, since it is not known from previous authentication pro-
cedures. Thus, http://malicious.com is a new OP for the Client and it starts the registration
procedure.

Phase 2 – End-User Authentication and Authorization In the next phase, the Client redirects
the End-User to authEndp, https://login.honestOP.com/, where the End-User has to authen-
ticate himself and authorize the Client. The End-User is not able to detect any abnormalities in
the protocol flow: Phase 1.1 and Phase 1.2 cannot be observed by the End-User, and in Phase
2 the End-User will be prompted to authenticate to the Honest OP and authorize the honest
Client, both of which he knows and trusts. Thus, the End-User authorizes the Client and the
OP generates the code, which is sent to the Client.

Note: Phase 2 exactly follows the original OpenID Connect protocol flow – there are no
parameter manipulations, no redirects to malicious websites and no observation of the network
traffic between the End-User, the Honest OP and the Client. Thus, the attack started at the
beginning of the protocol flow can be neither detected nor prevented by any of the participants
at this point.

Phase 3 – The Theft In dependence of the protocol flow, Code or Implicit, the messages sent
to the attacker differ.

Within the Code flow the Client redeems the received code from the previous phase: It
sends the code together with the corresponding Client’s credentials received during the Dynamic
Registration (client_id/ client_secret) to the tokenEndp originally specified by the malicious
Discovery service – in this example http://malicious.com, see Listing 2.1.

Since the Implicit flow does not use the tokenEndp, the attacker is not able to receive the
information send in Phase 2. However, he can use another malicious endpoint – userInfoEndp
used in Step 3.3 in Figure 2.1 to retrieve further information about the authenticated user. In
the request, the Client sends a freshly generated Access Token. As a result, the attacker receives
this Access Token and is able to access the authorized resources on the OP.

2.1.2 Server Side Request Forgery (SSRF)
A Server Side Request Forgery (SSRF) attack describes the ability of an attacker to create
requests from a vulnerable web application to the application’s Intranet and the Internet. Usually,
SSRF is used to attack internal services placed behind a firewall and not accessible from Internet.
According to Acunetix, SSRF is a severity level 3 vulnerability (classification: high).2.

In context of OpenID Connect, the malicious Discovery service can be used to start such
attacks in order to (1.) gather information about the Intranet infrastructure of the Client, and
(2.) disseminate attack vectors.

Setup. The attacker sets up a malicious Discovery service returning endpoints called by the
Client during the protocol flow. The endpoints are URLs specifying protocol (http(s), ftp, smb
etc.), port, path, and parameters. Since there are no restrictions regarding the URLs, these can
point to the Intranet infrastructure of the Client. The Client will use these URLs and performs
HTTP GET requests on them. In this manner, the Client can, for example, be enforced to
invoke internal REST-based web services. This capability of the attacker is considered by the
attacker model, since the attacker is able to use his UA and send arbitrary HTTP requests to
every publicly available domain. Thus, he can cause the Client to establish connection with the
malicious Discovery service.

Attack description. In comparison to the Malicious Endpoint attack, now the attacker
initiates the OpenID Connect authentication on the Client by entering his identity (e.g. os-

2https://acunetix.com/vulnerabilities/web/server-side-request-forgery
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Figure 2.2: Abstract overview of Server-Side Request Forgery

kar@malicious.com). Thus, no CSRF attack is needed. In the end of the Discovery phase, the
malicious Discovery service returns the malicious endpoints called during the different phases of
the protocol. Previous researches reveal how the execution of URLs can be used to (1.) connect
and execute commands on different services like Memcached, (2.) Port scanning and (3.) data
retrieving [1, 3].

2.1.3 Code Injection Attacks
User’s input sent through the web interface of the Client is usually treated as untrusted and thus
filtered to prevent attacks like Cross-Site-Scripting (XSS) and SQL-Injection. In order to bypass
the existing filter an attacker can use other channels to inject the attacks vectors – for instance
within the server-to-server communication in Phase 3.

Setup. The attacker configures his server to inject malicious content in the messages returned in
Step 3.2 (e.g. in the ID Token) or in Step 3.4 (informations about the authenticated user), which
are sent to Client within the ID Token and Access Token. Please note that the ID Token and Ac-
cess Token returned by the malicious server are valid according to the specification, since there are
no restrictions regarding the values of parameters like “sub”, “name” or “preferred_username”.

Attack description. Initially, the attacker starts the OpenID Connect authentication on the
Client by entering his identity (e.g. oskar@malicious.com). He proceeds with the protocol
execution until Steps 3.1 and 3.3. The malicious server then responds with valid tokens (ID
Token and Access Token) containing the attack vectors. A toy example of such attack vector is
shown in Listing 2.2 where an XSS attack vector is injected into the field presenting the name
of an authenticated user in Step 3.4.

1 {
2 "sub":"90342.ASDFJWFA",
3 "name":"<script>alert(1)</script>",
4 "preferred_username":"admin",
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5 "email":"bob@malicious.com",
6 "email_verified":true
7 }

Listing 2.2: An example of an XSS attack vector hidden in the "name" filed within an Access
Token.

Now, the placed XSS attack vector is stored in the web application (persistent XSS). Other
webpages on the client will use it, for example on a guestbook page, and embed the code, so that
other page visitors get harmed. The same schema can be used to place SQL-Injection attack
vectors.

2.1.4 Denial-of-Service (DoS) Attacks
By applying Denial-of-Service (DoS) attacks the attacker allocates resources on a Client and
negatively affects its workflow. Such resources are CPU usage, network traffic or memory. The
attack can target one or multiple of these resources during the execution of DoS attack.

(a) Memory usage on the Client within 5 parallel
OpenID Connect authentication flows to an Hon-
est OP.

(b) Memory usage on the Client within 5 parallel
OpenID Connect authentication flows to a mali-
cious Discovery service pointing to a large file (in
this case, we used a Debian Linux image file with
3.7GB).

Figure 2.3: Direct comparison between the memory usage on the Client using (a) an Honest OP
and a (b) malicious Discovery service.

Setup. The setup is similar to the SSRF attack – the attacker sets up a malicious Discovery
service returning endpoints called by the Client during the protocol flow. The attacker is able
to use his UA and send HTTP request to the Client causing the Client to establish connection
with the malicious Discovery service.

Attack description. An attack can be started by using a malicious endpoint pointing to a
large data file, which will be downloaded. The Client calls later on the malicious endpoint URL,
allocates network resources as well as large amount of the memory, which will be unnecessarily
used.

We provide a measurement shown in Figure 2.3 on an Apache Tomcat server with 1280 MB
memory and 4x2.4 Ghz CPU. In Figure 2.3a we first measured the memory usage on the Client
within five parallel OpenID Connect protocol runs with an Honest OP. Once can say that almost
imperceptible changes in the memory consumption occur. In Figure 2.3b we repeated the same
tests, but this time we used our malicious Discovery service pointing to a large file. After few
seconds, the memory usage increased almost threefold. After 60 seconds, the Client was not
accessible for any incoming requests.
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regEndp authEndp tokenEndp/
userInfoEndp

Client
(https://honestClient.com)

Attacker‘s Webserver
(http://malicious.com)

End-User
victim

Honest OP
(https://honestOP.com)

Discovery

   Phase 1.1: Discovery regEndp authEndp tokenEndp/userInfoEndpissuer

2.2. Consent/authorization

2.1. Authorization Request

Discovery

   Phase 1.1: Discovery authEndp´ tokenEndp´issuer´

2.3. Code Flow: {Authorization Code}; Implicit Flow: {Access Token and ID Token}

tokenEndp/
userInfoEndp

  Phase 3: User Authentication on the Client; Access to resources

3.1. Code Flow: {Authorization Code}, Client Authentication: {client_id/client_secret}

3.2. Code Flow: {Access Token and ID Token}

3.4. (Optional) UserInfo Response

3.3. (Optional) Access Token

Store Metadata in the current 
session: {MetadataHonestOP}

Overwrite Metadata in the 
current session: {MetadataEvilOP}

Use metadata from the 
current session:  
{MetadataEvilOP}

Figure 2.4: Malicious Endpoints attack: Attacker’s Discovery service sets the endpoint variables
in a specific way, such that the secret tokens sent in the third phase are seamlessly distributed
to the attacker’s server.

2.2 Session Overwriting
Almost all web applications need to save some objects between different requests. In this manner
the web application preserves certain data across subsequent accesses. A End-User accessing the
web application is assigned a unique session ID, which is usually stored in a cookie.

This section describes a novel attack, which leads to Broken End-User Authentication. The
idea of the attack is to overwrite objects stored in the session leading to security issues.

Setup. The basic setup for the attack is as follows:
I The End-User (victim) has an active account on the genuine honest Client. We assume

that the End-User trusts this Client and the Client follows the OpenID Connect protocol
rules.

I The End-User is registered at the Honest OP on the domain https: // honestOP. com .
The End-User trusts this OP and the OP also follows the OpenID Connect protocol rules.

I To perform the attack, the attacker has to set up his own Discovery service running on the
domain http: // malicious. com . This Discovery Service acts does not deviate from the
normal OpenID Connect protocol flow.

I According to the attacker model, the attacker does not have any control over the honest
Client, the End-User, the Honest OP or the network traffic between these instances. The
attacker is able to send an HTTP request through End-User’s browser, for example, by
embedding an image in a benign HTML website that causes the browser to automatically
issue a request when the website is viewed.
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Attack description. In the following, we describe the attack protocol flow, which we depicted
in Figure 2.4.

Storing MetadataHonest in the Session The attacker’s intention in the first phase is to force
a valid Client to use the Honest OP. For this purpose, he constructs a malicious link and stores
it on a benign website, e.g. in a web forum. For example, this can be a link to the valid Client
containing an identity alice@honestOP.com.

By visiting the website containing the malicious link, an HTTP request will be sent to the
Client through the End-User’s (victim’s) browser. Consequentially, the Client starts a Discovery
Phase with the malicious Discovery service http://honestOP.com. The Client sends a request,
determines the corresponding endpoints and stores them in the current session –MetadataHonest.

End-User Authentication and Authorization In the next phase, the Client redirects the End-
User to authEndp, https://login.honestOP.com/, where the End-User has to authenticate
himself and authorize the Client. Phase 2 exactly follows the original OpenID Connect pro-
tocol flow – there are no parameter manipulations, no redirects to malicious websites and no
observation of the network traffic between the End-User, the Honest OP and the Client.

Overwrite the Metadata stored in the Session The attacker’s intention is to force the Client
to use the attacker’s malicious Discovery service. For this purpose, he initiates a second HTTP
request to the Client containing now the identity alice@malicious.com. Note: The attacker
enforces the browser of the End-User to send two HTTP requests. This can be done by loading
two HTML IFrames time-shifted.

As result, the Client discovers the malicious Discovery service, determines the corresponding
endpoints and overwrites the old metadata with the new one – MetadataEvilOP .

Broken End-User Authentication In dependence of the protocol flow, Code or Implicit, the
messages sent to the attacker differ.

Within the Code flow the Client redeems the received code from the previous phase: It sends
the code together with the corresponding Client’s credentials (client_id/ client_secret) to the
tokenEndp stored in the metadata within the session – in this example http://malicious.com.

Since the Implicit flow does not use the tokenEndp, the attacker is not able to receive the
information send in Phase 2. However, he can use another malicious endpoint – userInfoEndp
used in Step 3.3 in Figure 2.1 to retrieve further information about the authenticated user. In
the request, the Client sends a freshly generated Access Token. As a result, the attacker receives
this Access Token and is able to access the authorized resources on the OP.

2.3 IdP Confusion

Setup. We assume that the Service Provider (SP) allows the usage of custom OPs. Additionally,
we assume that during the registration the SP receives the same client_id from the Attacker OP
as on the Honest OP. In other words, the SP has the same client_id on two different OPs.

Attack description.
Attack preparation
I In step 0.1.1 the SP registers at the Honest OP, and

I in step 0.1.2 it receives an unique client_id and client_password combination.

I In step 0.1.3 the SP registers at the Attacker OP, and

I in step 0.1.4 it receives the same client_id and new client_password’ combination.
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Stolen Token Redemption

Attack Preparation

Attack Exectuion

Victim Service Provider
(https://sp.com)

Attacker IdP
(https://attackerIdP.com)

Honest IdP
(https://honestIdP.com)

Use Phase 2 and enforce the 
authenticaiton on the 

honest OP

1.1 bob@attackerIdP.com

2.1. HTTP Redirect to Attacker IdP
Authentication Request: client_id, redirect_uri, state, nonce

2.2. HTTP Redirect to Honest OP
Authentication Request: client_id, redirect_uri, state, nonce‘

Attack 2.3. Authentication

Phase 3: send the token to 
the Attacker IdP

2.4. Authentication Response: code, state

3. Token Request: code, client_id, client_secret‘

Attacker

0.1.1. Client Registration

0.1.2. client_id, client_secret

0.2.1. Client Registration

0.2.2. client_id, client_secret‘

Trust establishment:
SP <-> HonestIdP

SP <-> Attacker IdP 

0.3.1. bob@honestIdP.com

0.3.2.HTTP Redirect to Honest IdP

Authentication Request: client_id, redirect_uri, state‘, nonce‘
Attacker starts 

authentication on the 
Honest IdP and gets fresh

nonce‘ and state‘

Use Phase 1 and enforce the 
Client to use the Attacker 

IdP

4.2. Authentication Response: code, state‘

4.3. Token Request: 
code, client_id, client_secret

4.4. Token Response: 
ID_token: {iss, sub, aud, nonce‘}

4.1. Copy the stolen code to the attacker’s browser

Figure 2.5: OP Confusion abuses a logical flaw in the current OpenID Connect specification
resulting into token theft and consequentially broken authentication. The attack consists of three
parts: (1) the attack preparation, (2) the attack execution, and (3) the stolen token redemption.

I In step 0.3.1 the attacker initiates an authentication on the SP with his identity on the
Honest OP.

I In step 0.3.2 the attacker will be redirected to the Honest OP. Now, the attacker possess
valid state and nonce values.

Attack execution

(1.) In the first step of the attack the victim clicks on a malicious link or visits an attacker
controlled website. Unintentionally an identity managed by the Attacker OP is sent to the
SP – bob@attackerIdP.com.

(2.) Optionally the SP retrieves in step 1.2 the metadata of the OP from the database or via
Discovery and uses it during the protocol flow.

(3.) In step 2.1 the SP redirects the End-User to the authorization endpoint of the Attacker
OP responsible for authentication.

(4.) In step 2.2 however the Attacker OP redirects the End-User to the Honest OP. Additionally,
it replaces the nonce parameter. This manipulation is needed in order to successfully
impersonate the victim on the SP. Please note that all steps till now does not require any
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interaction of the End-User and are transparent for him. Thus, he is not able to detect the
attack.

(5.) In step 2.3 the End-User has to authenticate on the OP. In case that he is already au-
thenticated, this step will be skipped. Only during this step it is possible to detect the
attack. However, since the SP is already trusted on the Honest OP and the user is already
authenticated, usually this step is transparent for the End-User.

(6.) The OP generates a valid code and returns it together with the state parameter back to
the SP.

(7.) The SP still believes that it is communicating with the Attacker OP due to step 1.2. For
this reason, it redeems the received code on the Attacker OP and additionally sends its
client_id and client_secret.

(8.) As a result, the attacker now has a valid code, which can he now redeem through his browser
on the SP.

Token redemption
I The attacker retrieves in step 4.1. the stolen code from his server (Attacker OP) and

I proceeds with his authentication on the SP by sending the stolen code together with the
previously generated state’.

I Since the state’ value is correct, the SP redeems the received code on the Honest OP in
step 4.3 and

I receives the corresponding ID Token in step 4.4.
The received ID Token has the following information:

1 Header: { "alg": "HS256" }
2 Body: {
3 "iss": "https://honestIdP.com/",
4 "sub": "victim",
5 "exp": 1444148908,
6 "iat": 1444148308,
7 "nonce": "{nonce’}",
8 "aud": "{client_id}",
9 }

10 Signature: AF45JF93LKD76D....

Listing 2.3: Received ID Token by the SP within the IdP Confusion attack

A correctly implemented SP will first verify the iss parameter, which is correct (the SP commu-
nicates with the Honest OP). The timestamps are freshly generated and still valid. The nonce
parameter contains the value of nonce’ and will be verified successfully. Since the aud contains
the client_id and is valid too. Finally, the signature will be verified successfully since it is
properly signed by the Honest OP.
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Chapter 3

Implementation Flaws

This chapter enumerates several attack-scenarios corresponding to our security model (cf. sec-
tion 1.1).

The following security issues are caused by implementation flaws, but exist in numerous
OpenID Connect implementations. The OpenID Connect specification [4] states how to prevent
these attacks, but lacks of details why these validation steps are necessary. We address this and
give detailed descriptions on the impact of the attacks, and how to counter them by pointing to
the OpenID Connect specification.

3.1 Client Flaws
This section addresses flaws that are caused due to improper implementations of OpenID Connect
Clients (Service Providers). For OP flaws, the section 3.2

3.1.1 Replay Attacks

1 Header: { "alg": "HS256" }
2 Body: {
3 "iss": "http://openidConnectProvider.com/",
4 "sub": "user1",
5 "exp": 1444148908,
6 "iat": 1444148308,
7 "nonce": "40c6b33b9a2e",
8 "aud": "http://client.com/",
9 }

10 Signature: AF45JF93LKD76D....

Listing 3.1: Relevant parameters within the ID Token preventing Replay Attacks.

Attack Scenario & Impact. Replay attacks allow to reuse an ID token in order to authenticate
the attacker as a victim. As a prerequisite, the attacker needs to get in possession of an old token
and submit it to the Client. One example of retrieving old tokens is by crawling support forums
or using a web search engine like Google.

Attack Defense. Listing 3.1 highlights three parameters that are used to prevent replay attacks.
The parameter iat (issued at) indicates the time on which the ID token is created. The parameter
exp (expires) indicates the latest time on which the ID token is valid. A Client implementation
must if the current time is after iat but before exp.

13



Attack Defense: Code Flow. The parameters iat and exp MUST be checked according
to [4, Section 3.1.3.7, Steps 9-10]. The specification also advices to check the nonce parameter
to prevent replay attacks [4, Section 3.1.3.7, Step 11], but lacks in giving details how to do this
properly.

Attack Defense: Implicit Flow. The parameters iat and exp do not directly prevent replay
attacks, since the token can be submitted multiple times during the valid time frame. To get
real reply protection, the OpenID Connect specification offers the use of the nonce parameter [4,
Section 3.2.2.11]. Unfortunately, the specification states checking the nonce as a SHOULD
(although the parameter MUST be present [4, Section 3.2.2.10]).

Checking nonces is a non-trivial problem. A very short hint on implementing nonce validation
is given in [4, Section 15.5.2].

Summary: Replay Attacks. Although the specification gives clear instructions to prevent
replay attacks, checking nonces and token expiration parameters is still a problem due to our
research in investigating OpenID Connect implementations. Detailed evaluation results will be
provided soon.

3.1.2 Signature Manipulation
Signature Manipulation (SM) is an attack which targets the ID Token verification part of a
Client. If the signature verification by a Client is not handled correctly, an attacker may be able
to login as an arbitrary End-User of this application: To perform a SM attack an attacker has
to act as an End-User only.

Let the ID Token of the victim be represented by tV = IDV ||σV where IDV = subV : issV

and σV is the signature or HMAC of IDV . In theory, an attacker should not be able to alter
the content of her ID Token tA = IDA||σA to, for example, t∗ = IDV ||σ. If the attacker uses an
Authentication Flow (e.g. Implicit) where she has direct access to the issued ID Token and alters
the intercepted token as described above and if the Client accepts t∗, the attack is successful
(and the attacker should be logged in with IDV ).

There are different possibilities to achieve this goal.

No Signature Validation at all. If the Client does not to validate the signature at all, the
attacker can inject arbitrary content in the ID token. The signature validation is enforced in [4,
Section 3.2.2.11, Step 1].

The “none” algorithm. It is possible to create a valid JWT token by setting the alg parameter
in the JWT header to none. The algorithm is not allowed in the implicit flow [4, Section 2], but if
the implementation just uses a validateToken() method without checking if the none algorithm
is used (and allowed!), this leads to serious security problems – the attacker can impersonate any
End-User on the Client.

From a developer perspective, using the same code for validating a token is very useful.
However, in OpenID Connect, there must be a clear distinction between the implicit and the
code flow.

3.1.3 Token Recipient Confusion
Each ID token is intended to be used for a specific Client. This is indicated by the aud (audience)
parameters as shown in Listing 3.2. The aud parameter contains the client_id of the recipient
Client and must be checked according to [4, Section 3.1.3.7, Step 3].

1 Header: { "alg": "HS256" }
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2 Body: {
3 "iss": "http://openidConnectProvider.com/",
4 "sub": "user1",
5 "exp": 1444148908,
6 "iat": 1444148308,
7 "nonce": "40c6b33b9a2e",
8 "aud": "theClientId",
9 }

10 Signature: AF45JF93LKD76D....

Listing 3.2: Relevant parameters within the ID Token preventing Token Recipient Confusion.

Attack Scenario & Impact. If this check is missing, an attacker can reuse tokens that are
intended to be used on a different Client. He can set up his own malicious Client, for example,
a harmless weather forecast service and lure the victim to login. The attacker then receives the
ID token that is intended to be used on that weather forecast service, but reuse it on a different
Client. As a result, the attacker will get access on the targeted Client in context of the victim.

3.1.4 ID Spoofing
ID Spoofing in the ID Token

ID Spoofing (IDS) is an attack which targets the ID Token verification part of a Client. If the
issuer claim verification by a Client is not handled correctly, an attacker is able to login as an
arbitrary End-User of this application.

Attack Scenario & Impact. To perform an IDS attack an attacker has to act as an End-User
and an OP simultaneously. The attacker’s OP however, issues tokens in the name of other Honest
OP like Google.

Let the identity of the victim be represented by IDV = subV : issV and the identity of the
attacker by IDA = subA : issA with issV belonging to OPV and issA belonging to OPA. In
theory, OPA should not be able to issue a valid ID Token t∗ containing issV . In the attack
however, the attacker uses her Attacker OP OPA to send exactly t∗ to a Client with which her
victim is registered. If the Client accepts t∗ the attack is successful (and the attacker should be
logged in with IDV ).

=

Issuer
http://google.com

Subject
Alice=

Malicious Token created by OP: http://malicious.com

3

=

Issuer
http://malicious.com

Subject
Alice=

Valid Token created by OP: http://malicious.com

2

Issuer
http://google.com

Subject
Alice=

Valid Token created by OP: http://google.com

1

Figure 3.1: ID Spoofing: (1) Valid Token created by an Honest OP http://google.com about the
End-User Alice. (2) Valid Token created by the Attacker OP about the End-User Alice. Please
note that both tokens represent different End-User identities. (3) Malicious ID Token issued by
the Attacker OP containing the End-User identity controlled by the Honest OP.
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Attack Defense. Listing 3.1 highlights two parameters that are used to prevent the attack.
The Client MUST verify that the URL specified by the iss parameter in ID Token is equal with
the URL of the corresponding OP controlling the identity of the End-User. For instance, the iss
parameter in the ID Token MUST exactly match the issuer discovered during the Discovery
phase.

1 Header: { "alg": "HS256" }
2 Body: {
3 "iss": "http://openidConnectProvider.com/",
4 "sub": "user1",
5 "exp": 1444148908,
6 "iat": 1444148308,
7 "nonce": "40c6b33b9a2e",
8 "aud": "http://client.com/",
9 }

10 Signature: AF45JF93LKD76D....

Listing 3.3: Relevant parameters within the ID Token preventing ID Spoofing.

The specification states that “The Issuer Identifier for the OpenID Provider (which is typically
obtained during Discovery) MUST exactly match the value of the iss (issuer) Claim." However
is unclear how this verification has to be done in case that no Discovery is provided.

ID Spoofing in the ID Token with E-Mail

1 Header: { "alg": "HS256" }
2 Body: {
3 "iss": "http://openidConnectProvider.com/",
4 "sub": "user1",
5 "exp": 1444148908,
6 "iat": 1444148308,
7 "nonce": "40c6b33b9a2e",
8 "aud": "http://client.com/",
9

10 "name": "Jane Doe",
11 "given_name": "Jane",
12 "family_name": "Doe",
13 "gender": "female",
14 "birthdate": "0000-10-31",
15 "email": "janedoe@google.com",
16 }
17 Signature: AF45JF93LKD76D....

Listing 3.4: An ID Token containing further information (sub-claims) about the authenticated
user.

The OpenID Connect specification states that the combination of sub and iss are the only
claims that the Client can rely upon as a stable identifier [4, Section 5.7]. It is however possible
to add additional info into the ID token. One of this is adding an email address.

It is of essential importance that the Client MUST NOT use the email parameter to identify
the End-user, because the Client does not know if the email address contained in the token is
under the control of the End-User.

Attack Scenario & Impact. To perform an IDS attack an attacker has to act as an End-User
and an simultaneously. The Attacker OP however, issues tokens containing the email address of
the victim in order to log in his/her account on the Client.

Attack Defense. It must be stressed, that the email parameter MUST NOT for anything
related to identify the End-user. This is contra-intuitive, since most websites use an email
address to identify the End-user. This is not possible in OpenID Connect.
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The same problem appeared, for example, in OpenID1 – it must be taken seriously and
developers must be warned not to do the same in OpenID Connect.

Issuer Confusion

Issuer Confusion (IC) is an attack which targets the Discovery phase of the protocol and bypasses
the verification check specified in [4, Section 3.1.3.7.] – ”The Issuer Identifier for the OpenID
Provider (which is typically obtained during Discovery) MUST exactly match the value of the
iss (issuer) Claim.“.

Attack Scenario & Impact. To perform an IDS attack an attacker has to act as an End-User
and an OP simultaneously. The Attacker OP however, issues tokens containing the email address
of the victim in order to log in his/her account on the Client.

=

Issuer
http://google.com

Subject
Alice=

Malicious Token created by OP: http://malicious.com

Attacker Client Attacker’s OP

Phase 1.2; Phase 2; Phase 3 

   Phase 1.1: Discovery regEndp authEndp tokenEndp

Discovery

issuer

http://google.com Endpoints

Figure 3.2: Issuer Confusion: The Attacker OP sets the issuer parameter to an Honest OP during
the Discovery phase. As a result the Client can be confused that the Attacker OP controls the
identities of the Honest OP.

If the issuer claim verification by a Client is not handled correctly, an attacker may be able
to login as an arbitrary End-User of this application: To perform an IC attack an attacker has
to act as an End-User and an OP simultaneously. Let the identity of the victim be represented
by IDV = subV : issV and the identity of the attacker by IDA = subA : issA with issV and
issuerV (being the issuer claim of the Provider’s Configuration Discovery Response) belonging
to OPV and issA and issuerA belonging to OPA. In theory, OPA should not be able to send
a valid Configuration Discovery Response cdr∗ containing issuerV . In the attack however, the
attacker uses her Attacker OP OPA to send exactly cdr∗ to a Client with which her victim is
registered. If the Client accepts cdr∗ and later on compares the issuer claim of the ID Token
(which also contains issV ) to issuerV from cdr∗ the attack is successful (and the attacker should
be logged in with IDV ).

Attack Defense. [5, Section 3] clearly states that “If Issuer discovery is supported (see Section
2), this value MUST be identical to the issuer value returned by WebFinger. This also MUST
be identical to the iss Claim value in ID Tokens issued from this Issuer.”

1http://wiki.oxidforge.org/index.php?title=Security_bulletins/2015-001
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3.1.5 Key Confusion
KC introduces a class of attacks forcing the Client to use a key of the attacker’s choice for the
verification of tokens. The enforced key is a legit key that is shared between the target Client
and the Attacker OP. However, during the KC attack, the Client is convinced to believe, that
the key belongs to the Honest OP (instead of the Attacker OP) .

To execute KC, the attacker may follow one of two strategies to succeed.

Key Confusion with wrong references

Since the ID Token is a JWT, it can contain in the Header a reference to the key material used
for verification. This information can be stored in one of the following fields: x5u, x5c, jku, or
jwk. However, the Client must verify that the referenced key belongs to the corresponding OP
and is trusted.

Attack Scenario & Impact. In case that the Client does not verify the trustiness of the key
used to sign ID Token, the attacker can manipulate it within the implicit flow and inject wrong
identities. This attack results in broken End-User authentication.

Attack Defense. The specification states clearly that “ID Tokens SHOULD NOT use the JWS
or JWE x5u, x5c, jku, or jwk Header Parameter fields. Instead, references to keys used are
communicated in advance using Discovery and Registration parameters, per Section 10.”

Key Confusion with Session Overwriting

During this attack, the Client is convinced to believe, that the ID Token is issued by the Honest
OP, but it is issued by the Attacker OP and signed with its key.

regEndp authEndp tokenEndp/
userInfoEndp

Client
(https://honestClient.com)

Attacker

Honest OP
(https://honestOP.com)

Discovery

   Phase 1.1: Discovery regEndp authEndp tokenEndp/userInfoEndpissuer

2.2. Consent/authorization

2.1. Authorization Request

Discovery

   Phase 1.1: Discovery authEndp´ tokenEndp´issuer´

2.3. Implicit Flow: {Access Token and ID Token}

Attacker‘s Webserver
(http://malicious.com)

Evil OP{
    client_id: AAA;
    client_secret: yyyy;
}

Honest OP{
    client_id: AAA;
    client_secret: xxxx;
}

iss=“http://honestOP.com sub=“victim“

Aud=“AAA“

timestamp expired

HMAC_Key=yyyy

=

==

= nonce

Store Metadata in the current 
session: {MetadataEvilOP}

Overwrite Metadata in the current 
session: {MetadataHonestOP}

Use metadata from the current 
session:  {MetadataHonestOP} and 

verify ID Token 

Figure 3.3: Key Confusion with Session overwriting

Attack Scenario & Impact. To perform the attack an attacker has to act as an End-User
and an simultaneously. The attacker’s however, issues tokens in the name of other honest like
Google.
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In the following, we describe the attack protocol flow, which we depicted in Figure 3.3.
Authentication on the Attacker OP The attacker’s intention in the first phase is to force a valid

Client to use the Attacker OP. The attacker enters his identity alice@malicious.com and enforces
the Client to Discover the Attacker OP, if needed to register on it, and redirects the End-User
in order to authenticate. Please note that the End-User is the attacker using his browser.

During the Discovery phase the Client determines the corresponding endpoints and stores
them in the current session – MetadataEvilOP .

End-User Authentication and Authorization In the next phase, the Client redirects the End-
User to the Attacker OP, where the End-User has to authenticate himself and authorize the
Client. Now, the attacker waits with the next step – the redirect back to the Client together
with the ID Token and Access Token.

Overwrite the Metadata stored in the Session The attacker’s intention is to force the Client
to load the metadata of the honest , by entering an identity controlled by the Honest OP. As a
result, the Honest OP will be discovered and its metadata will be stored in the current session
– MetadataHonest. Now, the Client believes to communicate with the Honest OP.

Broken End-User Authentication Now the Attacker OP generates the ID Token and sends
it back to the Client via an HTTP redirect- Consequentially, the Client verifies the ID Token
according the specification.

I (X) The Issuer Identifier for the OpenID Provider (which is typically obtained during
Discovery) MUST exactly match the value of the iss (issuer) Claim.

I (X) The Client MUST validate that the aud (audience) Claim contains its client_id value
registered at the Issuer identified by the iss (issuer) Claim as an audience.

I (X) ... further checks like timestamps, nonces etc.

I (?!?)If the JWT alg Header Parameter uses a MAC based algorithm such as HS256, HS384,
or HS512, the octets of the UTF-8 representation of the client_secret corresponding to
the client_id contained in the aud (audience) Claim are used as the key to validate the
signature.

According to the specification the Client should use its client_id to find the corresponding
key. Unfortunately the Client has two identical client_ids on both OPs, see Figure 3.3. Now, it
is unclear which key will be used for verification. In case that the client uses the key “yyyy” the
attack is successful an the attacker can impersonate any End-User on the Client.

Attack Defense. The specification should clearly state how the correct verification key has to
be fetched – via the client_id and the corresponding issuer. We propose a minimal change of
the validation check in order to address the attack:“ If the JWT alg Header Parameter uses a
MAC based algorithm such as HS256, HS384, or HS512, the octets of the UTF-8 representation
of the client_secret corresponding to the client_id and issuer contained in the ID Token
are used as the key to validate the signature.”

3.1.6 Subclaim Spoofing within the Access Token
According to the specification “... the UserInfo Response is not guaranteed to be about the End-
User identified by the sub (subject) element of the ID Token. The sub Claim in the UserInfo
Response MUST be verified to exactly match the sub Claim in the ID Token; if they do not
match, the UserInfo Response values MUST NOT be used.” [4, Section 16.11].
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3.2 Identity Provider Flaws
3.2.1 Sub Claim Spoofing
Sub Claim Spoofing (SCS) is an attack which targets the Authentication Request verification
part of an OP. If the subject claim verification by an OP is not handled correctly, an attacker
may be able to login as any End-User registered with this OP at a Client of her choice: Within the
Authentication Request of OpenID Connect, the Client has the possibility to request individual
claims about the End-User either by using the claims parameter or by using an additional JSON
Web Token (JWT) containing a whole OpenID Connect request via the request or request_uri
parameter. An example of a decoded claims parameter value can be seen in Listing 3.5.

1 {
2 "userinfo":
3 {
4 "given_name": {"essential": true},
5 "nickname": null,
6 "email": {"essential": true},
7 "email_verified": {"essential": true},
8 "picture": null
9 },

10 "id_token":
11 {
12 "auth_time": {"essential": true},
13 "acr": {"values": ["urn:mace:incommon:iap:silver"]}
14 }
15 }

Listing 3.5: Non-Normative Example Claims Request [4]

Within our example the Client requests the additional claims auth_time and acr (with the value
”urn:mace:incommon:iap:silver”) to be added to the default claims in the ID Token.

Attack Scenario & Impact. To perform the attack an attacker has to act as an End-User
manipulating the Authentication Request. Since the Authentication Request is sent trough the
attacker’s browser, it can be modified.

As in the example (for the acr claim) a Client has the possibility to request that an individual
claim is returned with a particular value. Thus, the Client can make statements, which has to
be verified by the OP. For instance the decoded claims parameter value can be used to specify
that the request applies to the End-User with Subject Identifier “subOfTheVictim”.

Let the identity of the victim be represented by IDV = subV : iss∗ and the identity of the
attacker by IDA = subA : iss∗. In theory, if the subject claim is requested with a specific value
for the ID Token, the OP must only send a positive response if the End-User identified by that
subject value has an active session with the OP or has been authenticated as a result of the
request. In the attack however, the attacker appends a claims parameter valuing {”id_token” :
{”sub” : {”value” : subV }}} to the Authentication Request to the OP identified by iss∗, see
Listing 3.6.

1 {
2 "id_token":
3 {
4 "sub": {"value": "subOfTheVictim"}
5 }
6 }

Listing 3.6: Sub Claim Request

If the subsequently issues an ID Token t∗ containing IDV , although the attacker did not
authenticate with the credentials resulting in subV , the attack is successful (and the attacker
should be logged in with IDV ).
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Attack Defense. Statements made within the Authentication Request MUST be considered
untrusted and MUST be verified. Unverified statements MUST NOT be included in the ID
Token and Access Token issued by the OP.

3.2.2 Redirect URI Manipulation
Redirect URI Manipulation (RUM) is an attack which targets the Authentication Request ver-
ification part of an OP. If the redirect_uri verification [4, Section 3.1.2.1.] by an OP is not
handled correctly, an attacker may be able to login as any End-User registered with this OP at
a Client of her choice. RUM is applicable to Authentication using the Authorization Code Flow
and Authentication using the Implicit Flow.

Attack Scenario & Impact. Within this attack-scenario the Authentication Response of a
victim is redirected to a website controlled by the attacker. The thereby obtained authorization
code or the ID Token is then used within a separate protocol flow, initiated by the attacker, to
redeem it for an ID Token of the victim. Figure 3.4 depicts the attack-procedure of the attacker
using the Authorization Code Flow (all manipulated request parameters are highlighted in red).

End-User User Agent
Relying 

Party/Client

OpenID 

Provider

1. Manipulated Authentication Request Link
response_type=code, scope, redirect_uri, client_id, [state], ...

3. GET/POST: Authentication Request

response_type=code, scope, redirect_uri, client_id, [state], ...

4. HTTP 200: Authentication & Authorization UI5. Display A & A UI

7. POST: Auth & Consent

8. HTTP 302 to redirect_uri: Authentication Response

code, [state]

10*. POST: Token Request
grant_type=authorization_code, code,

redirect_uri, [client_id], [client_secret]

11*. HTTP 200: Token Response
access_token, token_type, expires_in,

id_token, [refresh_token]
12*. HTTP 200: OIDC Login Response

6. Auth & Consent

9. GET: Redirection Endpoint redirect_uri

code,  [state]

Attacker

2. Follow Link

3*. GET/POST: Authentication Request

response_type=code, scope, redirect_uri, client_id, [state], ...

4*. - 7*. Authentication & Authorization

8*. HTTP 302 to redirect_uri: Authentication Response

code, [state]

9*. GET: Redirection Endpoint redirect_uri

code,  [state]

Figure 3.4: RUM using Authorization Code Flow

1. The attacker sends her victim a manipulated Authentication Request (e.g. via a link)
containing a Redirect URI pointing to a website controlled by the attacker.

2. - 7. The victim follows the link and thus starts the Authorization Code Flow of OpenID Con-
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nect. In the following steps she authenticates to the OP and consents the Authentication
Request of the Client.

8. - 9. When the UA of the victim receives the Authentication Response, it is redirected to the
server of the attacker, thus sending her the authorization code.

3∗. - 7∗. The attacker initiates her own protocol flow with the same Client. The Redirect URI
in this case is however not manipulated.

8∗. - 9∗. When receiving the Authentication Response via her UA, the attacker at first substitutes
the received authorization code with the one received in Step 9. and then follows the
redirect.

10∗. - 11∗. The Client redeems the received authorization code of the attacker for an ID Token.

12∗. The attacker is notified that she is now logged in with the identity of the victim.

Attack Defense. It is essential that the OP provides the following verification step: “This
URI MUST exactly match one of the Redirection URI values for the Client pre-registered at the
OpenID Provider” [4, Section 3.1.2.1.].
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