
Security Analysis of eIDAS – The Cross-Country
Authentication Scheme in Europe

Nils Engelbertz, Nurullah Erinola, David Herring,
Juraj Somorovsky, Vladislav Mladenov, Jörg Schwenk

Chair for Network and Data Security,
Horst Görtz Institute for IT-Security, Ruhr University Bochum

Abstract

In 2014, the European Commission released the eIDAS
regulation to target the compatibility of cross-country
electronic services within the European Union. eIDAS
(electronic IDentification, Authentication, and Trust Ser-
vices) defines implementation standards and technolo-
gies for electronic signatures, digital certificates, Single
Sign-On (SSO), and trust services. It is based on well-
established standards, such as SAML, to achieve high
security and compatibility between EU countries.

In this paper, we present the first security study of au-
thentication schemes used in eID services. Our secu-
rity analysis shows that 7 of the 15 European eID ser-
vices were vulnerable to XML-based attacks which en-
abled efficient Denial-of-Service (DoS) and Server Side
Request Forgery (SSRF) attacks. On 5 of the 15 eID
services, we were even able to exfiltrate locally stored
files and send these files to an arbitrary domain. To sup-
port the developers and security teams of eID services,
we implemented a Burp Suite extension to execute fully-
automated or semi-automated tests. Additionally, we
summarize best practices related to eID-based authenti-
cation and SSO in general.

1 Introduction
In the last few years, European countries have worked
on developing strong authentication schemes based on
electronic identification (eID) cards. The main goal
of these authentication schemes is to provide access to
different services, called eID services. For these ser-
vices, access should be provided for citizens and orga-
nizations by using information already available on eID
cards, for example, on the personal ID card which was
issued by a government institution. Many countries de-
veloped their own authentication schemes based on well-
established technologies that provide functionalities for
secure browsing, login mechanisms, SSO, or exchang-
ing confidential data over untrusted networks. In order

Figure 1: Overview of the eID/eIDAS ecosystem de-
picting the End-User, Service Provider (SP), Identity
Provider (IdP), and both eIDAS Nodes.

to meet national requirements and regulations, countries
chose differing technologies and implemented specific
extensions and functionalities. This caused incompatibil-
ities between eID services and European cross-country
authentication became impossible.

eIDAS. In 2014, the European Commission addressed
these cross-country incompatibilities for eID authenti-
cation by releasing the eIDAS regulation and defining
different communication profiles used for authentication
and trust establishment. Throughout this paper, we refer
to this authentication scheme as eID/eIDAS ecosystem.
The scheme uses SAML [12] as an authentication proto-
col.

Figure 1 gives a high level overview of cross-country
eIDAS authentication. In our example, a German End-
User wishes to use services provided by a French ser-
vice provider (SP). The End-User cannot simply use the
German IdP directly to authenticate at the French SP
since the SP could not process the authentication token
issued by the IdP. Therefore, eIDAS Nodes are used to
translate the tokens and make them compatible between
eID schemes. The SP first forwards the request to the
French eIDAS Node, which translates the request for

the German eIDAS Node. The German eIDAS Node
then forwards the compatible request to the authoritative
IdP, which can issue authentication tokens for the End-
User. The authentication token is finally translated for
the French SP using eIDAS Nodes.
Security of eIDAS. In recent years, it has been shown
how to break SAML-based SSO systems and login as
an arbitrary user [62, 64, 37], read arbitrary files from
SAML servers [37], or how to break XML Encryption
and decrypt the exchanged SAML assertions [29, 26, 27,
62]. Because eIDAS makes use of these technologies,
such attacks present a serious threat to the eID users and
their prevention is, therefore, of high importance.
Automated Security Analysis. In order to support
eID developers in their development process, we ex-
tended the tool EsPReSSO (Extension for Processing and
Recognition of Single Sign-On Protocols), which facili-
tates in analyzing different SSO protocols and their used
information flow. We implemented a prototype of the at-
tacks described in Section 3 into EsPReSSO so that eID
developers are able to search for known vulnerabilities.
Discovered Vulnerabilities. The relevance of these vul-
nerabilities is proven in our evaluation, as we revealed
security flaws in 7 of 15 eID services which enabled at-
tacks such as DoS, SSRF, and on 5 of 15 systems, even
unauthorized file exfiltration. We reported the discov-
ered vulnerabilities to the affected providers and national
CERTs. We also cooperated with the system develop-
ers on implementing the countermeasures and provided
a second test to verify the implemented fixes.
Contributions. The contributions of this paper can be
summarized as follows:

I We present the first security evaluation of existing eID
services and reveal security gaps in 7 of the 15 eID
services.

I We provide a comprehensive overview of the attacks
relevant to eID scenarios. These attacks target the
underlying TLS protocol [14], XML parser (XXE at-
tacks) [70], and cryptographic standards like XML
Signature [25] and XML Encryption [15].

I We provide a tool to facilitate the security analysis of
eID services, supporting developers and security ex-
perts to discover security flaws.

I We summarize the lessons learned in security guide-
lines and a Best Current Practices section for the de-
ployment of secure eID infrastructures.

2 Foundations

This section summarizes relevant foundations regarding
SSO, SAML, and the utilization of SAML in eIDAS.

2.1 Single Sign-On (SSO)
Single Sign-On (SSO) is a concept to log a user into a
Service Provider (SP) without storing any credentials on
that SP. For this purpose, SSO uses a trusted third party
called Identity Provider (IdP). An abstract overview of
SSO is depicted in Figure 2.

Service Provider
https://sp.com

Identity Provider
https://idp.com

authenticates,
grants access

accesses
services

issues tokens & claims

delegates authentication,
requests tokens & claims

End-User UAEnd-User UA

Figure 2: An abstract overview of the entities in SSO and
their relation to each other.

The IdP manages user identities and provides at least
one authentication mechanism, e.g., username/password.
The IdP issues authentication tokens containing informa-
tion about the authenticated End-User. The End-User is
a human being navigating a user agent (UA), e.g., a web
browser. The SP is a publicly available service offer-
ing access to resources for registered End-Users. If the
End-User visits the SP and requests access to restricted
resources, authentication is required. The SP delegates
authentication of End-Users by issuing an Authentica-
tion Request to an IdP. Afterwards, the SP verifies the
authentication tokens generated by an IdP to authenticate
the End-User.

SAML. SAML is an XML [9] standard for exchanging
authentication and authorization statements about sub-
jects [12],and uses XML-based assertions to transmit
these statements. A SAML assertion contains several
essential components: The Issuer element specifies the
SAML authority that is making the claim(s) in the asser-
tion – the IdP. The assertion’s Subject defines the prin-
cipal about whom all statements within the assertion are
made. Further elements are included to specify message
validity or user-defined statements relevant for the mes-
sage context.

To protect the integrity of the security claims made by
the Issuer, the whole Assertion element must be pro-
tected with a digital signature following the XML Signa-
ture specification [16]. Usage of the SAML assertions in
various XML messages is described in the SAML Bind-
ings specification [60].

2.2 eIDAS Services
Many EU countries defined and implemented their own
singular eID scheme. Differences between the schemes

prevent member states from seamlessly exchanging elec-
tronic identification data and trust services.

In order to achieve compatibility in cross-boarder eID
communication, eIDAS was defined [54]. eIDAS does
not provide a standalone SSO solution, but rather speci-
fies a SAML 2.0 based compatibility layer between dif-
ferent eID implementations [19, 12]. The components
facilitating this cross-border information exchange are
called eIDAS-Nodes [19]. As depicted in Figure 1, eI-
DAS Nodes “translate” incoming SAML requests from
the SP into authentication requests compliant with the
eID scheme of the end user’s country of origin. On the
other side of this process, the eIDAS-Nodes also convert
the authentication tokens generated by one country into
tokens which can be processed by the SP.

3 XML Attacks on eIDAS Services

eIDAS is based on SAML, which is, in turn, based on
eXtended Markup Language (XML). Consequentially,
eIDAS services may be susceptible to XML-based at-
tacks. In this section, we focus on Document Type Def-
inition (DTD) attacks. After sketching out our attacker
model, we provide an overview of common goals for
DTD attacks and appropriate attack vectors.

3.1 Attacker Model and Prerequisites

We consider a Web-Attacker that is capable of generating
XML messages, crafting and sending requests, and se-
lecting the appropriate encoding for each part of the sub-
mitted request. Furthermore, the attacker controls a pub-
licly available server (henceforth attacker-listener) and
can observe requests made to this server with arbitrary
protocols. As we focus on DTD and XML External En-
tity attacks, no third party is involved. The goals of the
attacker can roughly be categorized into DoS, SSRF, and
File Exfiltration, and are further described in the follow-
ing sections.

3.2 Denial-of-Service (DoS)

DoS attacks aim at decreasing the availability of the ser-
vice under attack. This is primarily achieved by mak-
ing the target consume large amounts of computational
resources such as memory, bandwidth, or processing
power while only investing a fraction of the resources
by the attacker [69].

Billion Laughs Attack. A well-known DTD-based DoS
attack is the so-called Billion Laughs Attack [32, 66].
This attack employs recursively defined Internal General
Entities, forcing the XML parser to expand a relatively
small input document into a document which can reach

several gigabytes in size [69, 66]. An example is given
in Listing 1. First, an entity ent0 is declared, referencing
the string DoS. Next, an entity ent1 references a con-
catenation of several times ent0. This back-referencing
to multiple instances of entities, which is defined in the
preceding step, is repeated and results in an exponential
expansion of the document size.

1 <!DOCTYPE data [
2 <!ENTITY ent0 "DoS">
3 <!ENTITY ent1 "&ent0;&ent0;&ent0;&ent0;">
4 <!ENTITY ent2 "&ent1;&ent1;&ent1;&ent1;">
5 ...
6 <!ENTITY ent13 "&ent12;&ent12;&ent12;&ent12;">
7]>
8 <data>&ent13;</data>

Listing 1: The Billion Laughs Attack abuses limited
recursion of General Entities to exponentially expand the
document size.

DoS Using External Entities. If the XML parser re-
solves External Entities, a plethora of DoS attack-vectors
may be available. For example, an adversary might be
able to induce network requests for large remote files,
thereby exhausting network or memory capacity of the
system under attack. By inducing a large number of
outgoing requests, resources of both the targeted XML
parser and the destination of the forged requests may
quickly become exhausted [70]. An overview regarding
how such requests can be forged is given in the next sec-
tions.
Other Techniques. Several variants of the above attacks
exist. The Quadratic Blowup attack declares a single
XML Entity that expands into a large string of several
megabytes, greatly exceeding the size of the document.
The Recursive Entity attack exploits XML parsers by re-
cursively resolving nested entities [66].

3.3 SSRF
One considerable area of attack exposed by many XML
parsers is their capability to deal with various URL han-
dlers. The following paragraphs explore some meth-
ods on how this can be abused for Server Side Request
Forgery (SSRF).
SSRF Using External DTD. A simple way to force a
vulnerable XML parser to perform an outgoing request is
to reference an external DTD. The example in Listing 2
shows how the XML parser can be induced to query a
service in its local network, which would otherwise be
unreachable for an external adversary.

1 <!DOCTYPE data SYSTEM "http://192.168.178.2/shutdown">
2 <data>arbitrary content</data>

Listing 2: Using external DTDs to induce server side
requests [66].

An alternative for the SYSTEM keyword is PUBLIC "id" as
shown Listing 3.

1 <!DOCTYPE data PUBLIC "id" "http://192.168.178.2/shutdown">
2 <data>arbitrary content</data>

Listing 3: The PUBLIC keyword references an external
DTD associated with an identifier id.

SSRF Using External (Parameter) Entities. In addi-
tion to external DTDs, External Entities can be used to
cause server side requests, as shown in Listing 4. Be-
cause some parsers are able to restrict the allowed proto-
col handlers, it may be beneficial to try a number of dif-
ferent protocols besides http. Examples include, but are
not limited to, ftp://, smb://, http://, https://,

file://, and the short UNC path form //.

1 <!DOCTYPE data [
2 <!ENTITY extEnt SYSTEM "http://192.168.178.2/shutdown">
3]>
4 <data>&extEnt;</data>

Listing 4: Causing Server Side Requests using External
Entities

Another way to force the parser to perform outgoing re-
quests is to use Parameter Entities [66].

Other Techniques. The XML specification provides
additional methods that can be abused to forge Server
Side Requests from the XML parser. Most prominently,
schemaLocation and noNamespaceSchemaLocation can
cause insecurely configured parsers to issue network re-
quests [66]. The xInclude extension [38] provides the
opportunity for an additional attack.

3.4 File Exfiltration
Exfiltration of file content from the parser’s local file sys-
tem can be feasible if a direct feedback channel at the ap-
plication level exists. Exfiltration is also possible if file
content can be included in forged requests to a destina-
tion under the adversary’s control.

File Exfiltration Using Direct Feedback. In contrast to
the External Entity’s intended purpose of including ad-
ditional DTDs from external sources, an adversary can
abuse the functionality of External Entities to include
files that are otherwise inaccessible. In Listing 5, we as-
sume a direct feedback channel, e.g., the application re-
turns the contents of the <data> element in its response.

1 <!DOCTYPE data [
2 <!ENTITY extEnt SYSTEM "file:///etc/passwd">
3]>
4 <data>&extEnt;</data>

Listing 5: Using a Direct Feedback channel of the <data>

element to read out /etc/passwd

If the content of a referenced file is not well-formed ac-
cording to the XML specification, well-behaved parsers
will abort entity expansion with an exception. Several
techniques are known to circumvent this restriction using
Parameter Entities to wrap file contents in a <![CDATA

[]]> block [70, 66].
File Exfiltration Using SSRF. Even if no direct feed-
back channel is available, file contents can sometimes
still be extracted. If the parser can establish network
connections, an adversary can proceed as follows: an ex-
ternal DTD can be used to declare Parameter Entities,
which can then be included in URLs of forged parser re-
quests. An example is given below [66].

1 <!DOCTYPE data [
2 <!ENTITY % ext SYSTEM "http://attacker.org/ext.dtd">
3 %ext;
4]>
5 <data>&send;</data>

Listing 6: An external document defines an additional
XML Entity send which is used for request forgery (see
Listing 7)

If the Parameter Entity reads a local file, as illustrated
in Listing 7, its content may then be sent to the attacker
as a part of the URL’s path or query-string.

1 <!ENTITY % file SYSTEM "file:///etc/hostname">
2 <!ENTITY % tmp "<!ENTITY send SYSTEM
3 'http://attacker.org?f=%file;'>" >
4 %tmp;

Listing 7: The file hosted at attacker.org/ext.dtd

concatenates the file content with a request URL using
Parameter Entities.

The example above is a slight variation of a similar tech-
nique presented by Morgan and Ibrahim in 2014 [70].

4 Automated Analysis

The security evaluation of eID services shares many sim-
ilarities with the analysis of SSO services, since both
technologies are based on the same authentication pro-
tocols. This allows for already existing penetration test-
ing tools to be used in the security evaluation. We de-
cided to utilize Burp Suite (Burp),1 which is a widely
used penetration testing tool for web applications. Burp
acts as an intercepting proxy and can be used to log, in-
tercept, display, and modify HTTP traffic. To facilitate
more complex scenarios, Burp offers extension points
which allow developers to extend its existing functional-
ity. One relevant extension we utilized was the Extension
for Processing and Recognition of Single Sign-On Pro-
tocols (EsPReSSO).2 This extension is open-source and

1https://portswigger.net/
2https://github.com/RUB-NDS/BurpSSOExtension

https://portswigger.net/
https://github.com/RUB-NDS/BurpSSOExtension

is able to automatically identify and classify SSO mes-
sages, allowing penetration testers to easily analyze and
manipulate SSO flows.

In this section, we first describe the basic functional-
ities of EsPReSSO which were available at the start of
our project. Subsequently, the extensions we added to
the tool to improve its usability for eID analyses are pre-
sented.

4.1 EsPReSSO – Basic Functionalities

EsPReSSO was designed and implemented to recognize
and distinguish SSO protocols. It has an automatic scan-
ning function that passively inspects the browser’s traf-
fic by scanning HTTP parameters and keywords. In
the event that an SSO protocol is recognized, the re-
quest/response is highlighted and a note referencing to
the protocol is shown. Furthermore, specifically for the
SAML protocol, EsPReSSO provides a SAML-Editor
and SAML-Attacker.

SAML-Editor. The SAML-Editor searches each inter-
cepted HTTP request/response for SAML relevant pa-
rameters and automatically decodes the SAML mes-
sage before displaying the SAML AuthnReq or Authn-
Response, respectively. Furthermore, the SAML-Editor
provides the means to carry out modifications of the in-
tercepted messages in a user-friendly way.

SAML-Attacker. EsPReSSO also provided a user in-
terface with a small predefined set of attacks; for exam-
ple, specific attacks targeting XML Signature processing.
However, not all known attack vectors were covered by
EsPReSSO.

4.2 Extending EsPReSSO

The shortcomings of the previous EsPReSSO version
and the missing attacks were the motivating factors for
the improvement of this extension.

SAML-Editor. SAML messages are transmitted in an
encoded form. To alter an intercepted SAML message,
a penetration tester needed to first decode the message,
then manipulate it, and finally re-encode it before relay-
ing the modified message. During security evaluations,
this process can be time consuming and bothersome. We
therefore addressed this issue by extending the SAML-
Editor in EsPReSSO to achieve more fine-grained con-
trol over each aspect of the intercepted message. As an
example, it is now possible to easily change the HTTP
method (HTTP-GET or HTTP-POST) with the message
being automatically re-encoded.

We additionally implemented a Certificate Viewer to
make certificate properties and key material provided
within the SAML messages easily accessible. The Cer-

tificate Viewer greatly eases a quick quality inspection of
the included certificates.

DTD-Attacker. To facilitate penetration tests, we imple-
mented a new feature in EsPReSSO – the DTD-Attacker.
Based on the attacks summarized in Section 3, we cre-
ated a set of 18 attack vectors and implemented these
into the DTD-Attacker. During testing, the penetration
tester can tweak the selected attack vector within the
DTD-Attacker. All modifications are automatically ap-
plied to the original message. An abstract overview of
the DTD-Attackers UI is presented in Appendix C.

The DTD-Attacker allows for easy, vector-
independent pre-configurations that are automatically
applied to the selected vectors. For example, the
complexity of the DoS attack vectors can be optimized
by specifying a number of recursive entities and entity
references. This allows testers to precisely measure the
impact of the DoS attack.

Furthermore, for those attack vectors which cause
URL invocation, the DTD-Attacker allows for the con-
figuration of arbitrary URLs, which may be needed in
order to evaluate the success of the attack. It is also pos-
sible to apply a specific encoding to the vector. This may
allow penetration testers to bypass simple filter mech-
anisms that only work when encountering the standard
XML character set, i.e., UTF-8.

For a comprehensive vulnerability analysis, a large
number of attack vectors must be tested. For this rea-
son, the DTD-Attacker can be used in a fully automated
mode. Before starting the evaluation, the penetration
tester only needs to configure a single parameter: the
attacker-listener URL where the HTTP requests are sent.
The provided URL is then automatically inserted into all
attack vectors and sent to the target. If the target is vul-
nerable, the attacker-listener will receive a correspond-
ing request from the target. This automated approach al-
lows penetration testers to quickly determine vulnerable
targets and what specific attack vectors the target may be
vulnerable to.

SAML-Attacker. We also extended the EsPReSSO
functionality for targeted SAML attacks. EsPReSSO
supported the execution of basic Certificate Faking
(CF) [37] and XML Signature Wrapping (XSW) at-
tacks [64]; however, the implementations of these attacks
contained several bugs. We resolved these bugs and ad-
ditionally implemented a new user interface for the Sig-
nature Exclusion (/0Sig) attack [37].

During execution of the /0Sig or CF attack, the auditor
can now select the specific signature element on which
the attack will be applied. During the CF attack, the
original certificate is copied, the key is replaced, and the
certificate is re-signed. Next, the original certificate is
replaced and the target message is also re-signed.

R
ec

ur
siv

e
En

tit
ie

s

Ex
te

rn
al

(P
ar

am
et

er
)

En
tit

ie
s

Ex
te

rn
al

(P
ar

am
et

er
)

En
tit

ie
s

Sc
he

m
aL

oc
at

io
n

/
X

In
cl

ud
e

Ex
te

rn
al

D
TD

eIDAS Provider DoS SSRF File Exfiltration

eIDAS Pilot Sweden – 71 7 3 7 7
eIDAS Pilot Belgium – 3 3 3 3 3
eIDAS Pilot Czech Republic – 3 3 3 3 3

eIDAS Pilot Denmark – 71 7 3 7 7
eIDAS Pilot Estonia – 3 3 3 3 3
eIDAS Pilot France – 3 3 3 3 3
eIDAS Pilot Norway – 3 3 3 3 3
ArubaPEC S.p.A – 3 3 3 3 3

Intesa S.p.A. – 71 72 3 72 3

InfoCert S.p.A. – 71 7 3 7 7

Namirial – 71 7 3 7 7

Poste Italiane SpA – 71 72 3 72 3

Register.it S.p.A – 71 7 3 7 7
Sielte S.p.A – 3 3 3 3 3
TI Trust Technologies srl (TIM) – 3 3 3 3 3

Vulnerable in Total – 7 7 0 7 5
1 To avoid harm, we did not test the full impact of the attacks.
2 Only DNS requests were observed.

3= Not vulnerable, 7= Vulnerable, – = Not evaluated

Table 1: XML parsing vulnerabilities are still an effective attack technique to which 7 of the 15 tested
SAML endpoints were found to be vulnerable.

5 Evaluation of XML Attacks

In our evaluation, we concentrated on the security anal-
ysis of general XML-based parsing attacks and their ap-
plication to eIDAS services. This is because XML-based
attacks do not necessarily demand the usage of valid ac-
counts since only XML parsers are targeted. For their
evaluation, only correct endpoint URLs of the analyzed
service are necessary in order to gain access to the SAML
parsing functionality. No valid eID cards, accounts, or
configurations are necessary. This allowed us to test a
large number of eIDAS services.

Table 1 shows the results of our evaluation for the 15
tested eIDAS services. It confirms that XML parsing at-
tacks are still a prevalent attack technique. We cooper-
ated with the affected providers who were able to suc-
cessfully apply countermeasures to these attacks. Sev-
eral providers which have not yet rolled out fixes or have
not responded to our emails have been anonymized in
Table 1. In case of unresponsive providers, we contacted
the responsible CERT team regarding the security issues
and are currently awaiting further information regarding
the status of the fixes.

DoS Attacks. We were able to confirm the existence of
DoS vulnerabilities in seven services. This can be con-

cluded from the fact that DoS attacks based on Exter-
nal (Parameter) Entities are always possible if the XML
parser can be tricked into loading external files. We did
not evaluate whether DoS attacks with nested or recur-
sive entities were applicable. When testing SAML end-
points, there is usually no direct server feedback and
one cannot observe whether nested entities are resolved.
Therefore, all test vectors with a real DoS potential were
omitted to avoid damaging the tested service endpoints.

SSRF Attacks. Of the tested servers, seven were vulner-
able to SSRF attacks. These could be executed using
External (Parameter) Entities and by loading external
DTDs. None of the servers resolved SchemaLocation or
XInclude elements.

File Access. Of the fifteen eID services, five were vul-
nerable to attacks where the parsers were forced to read
external or local files. Although two additional servers
were vulnerable to SSRF attacks, we were only able to
force these servers to issue DNS queries. Reading re-
mote external files was not possible.

Lessons Learned. Although DTD vulnerabilities have
been known since 2005 and multiple security studies ex-
ist, it is surprising that such a large number of vulnera-
bilities were found.

The user agent identifiers included in forged server-
side requests indicate that all implementations vul-
nerable against SSRF and DoS are programmed in
Java. As found in a comprehensive evaluation of XML
parsers [66] provided in 2016, all Java XML parsers
are vulnerable against XML External Entity Attacks
(XXEAs) in their default configuration. Consequently,
services remain vulnerable if the responsible developers
and administrators do not explicitly disable these inse-
cure features.

We employed the blackbox approach for testing and
do not know whether the vulnerable services share the
same XML stack. Nevertheless, we believe that Java’s
insecure defaults are the underlying reason for the abun-
dance of similar vulnerability patterns.

6 Comprehensive Evaluation of the eIDAS
Swedish Pilot

This section summarizes the security test suite that can
guide both developers and security auditors alike during
their work with SAML based SSO environments. A con-
densed overview is given below and in Table 3.

6.1 Testing Methodology
We define a number of tests relevant for the eID ser-
vices, summarize known attacks, and categorize these
into three different classes. Since many of the targeted
eID services are potentially closed-source web applica-
tions, the chosen testing methodology is a black-box ap-
proach. This allows us to define a generic test suite irre-
spective of a programming language, framework, or sim-
ilar restrictions that might otherwise be imposed by the
test-target.
Limitations. During this survey we encountered the fol-
lowing problems:

I National eID schemes generally require a valid eID
card to complete the entire authentication process.
Due to the fact that no test eID card was available, we
limited our targets to demo services which allowed au-
thentication without an eID card. For this reason, the
actual eID based End-User authentication is not part
of our evaluation. Please note that communication be-
tween eIDAS compliant parties is not affected by this
limitation.

I We focused on SAML because it constructs the com-
patibility layer of eIDAS. National eID schemes may
of course be based on different technologies which are
not considered in this work.

I There is no public list of existing eID services. Find-
ing such services can, therefore, be a challenging task.

I To avoid harm on the evaluated systems, we only veri-
fied the possibility to carry out DoS attacks and we did
not actually carry out these attacks.

I During the course of the project, some of the systems
were updated with newer versions of the applications.
Therefore, some previously discovered security issues
were fixed before reporting these to the developers.

Selected Test Target. We were not able to perform com-
prehensive penetration tests for all the eIDAS providers
listed in Table 1. The reason is that we did not pos-
sess valid identity cards or other credentials for these
providers which are necessary to gain authentication
tokens for further SAML evaluations. Therefore, for
our penetration test, we chose the eIDAS Pilot of the
Swedish E-identification Board.3 It provides a demo SP
as well as a fictional sending member state Test Coun-
try XX to simulate eIDAS authentication at a compliant
IdP without requiring a valid eID card. This test environ-
ment, available from http://eidasweb.se, allowed us
to simulate an end-to-end eIDAS authentication involv-
ing six SAML endpoints (see Appendix B), inspect all
the messages exchanged through the user agent between
participating services, and above all, to employ our test-
suite in the field.

6.2 eIDAS Test-Suite
Our tests can be roughly divided into three categories:
(1) Transport Layer Security, (2) Web Application Secu-
rity, and (3) Message-Level Security. We provide a digest
of the main components that compose the test suite in the
following sections.

6.2.1 Transport Layer Security

TLS [14] is a complex protocol used to protect message
integrity and confidentiality on the underlying transport
protocol, and plays an important role in secure com-
munications. Several critical vulnerabilities have been
found in Transport Layer Security (TLS) libraries in
the past, ranging from implementation faults to crypto-
graphic weaknesses (cf. [61, 42, 3, 7, 8]). These prob-
lems can largely be mitigated by simply deploying the
latest version of the used TLS libraries where the secu-
rity updates have been applied. However, care must still
be taken to securely configure the library’s properties.

We evaluated the security of the TLS endpoints using
TLS-Attacker,4 which is currently the most advanced
and freely available tool to discover security issues in
TLS. We tested the deployed TLS protocol versions

3https://www.elegnamnden.se
4https://github.com/RUB-NDS/TLS-Attacker

http://eidasweb.se
https://www.elegnamnden.se
https://github.com/RUB-NDS/TLS-Attacker

and cipher suites, properties of the used certificates,
and specific TLS attacks. In particular, this included:
DROWN [3], POODLE [43], Heartbleed [57], Bleichen-
bacher’s attack [6, 7], the invalid curve attack [28], and
the padding oracle attack [71]. No host of the Swedish
eIDAS test infrastructure was found to be vulnerable to
any of these attacks, nor did we detect insecure configu-
rations.

6.2.2 Message Level Security

SSO protocols usually involve multi-party communica-
tion. Therefore, it is not sufficient to simply secure the
underlying transport; the message itself must be pro-
tected against tampering and, if necessary, provide ap-
propriate guarantees for confidentiality of its contents.
SAML makes use of XML Signatures [25] and XML En-
cryption [17] to fulfill these requirements.

Signature Exclusion (/0Sig). Each recipient of a mes-
sage must only accept a message if a valid signature is
provided. If the application accepts messages which do
not include a signature, the message could be altered and
the authentication is broken.

None of the six SAML services participating in the
Swedish eIDAS pilot accepted a SAML message without
a signature.

Certificate Faking (CF). The process of replacing the
<Signature> element of an XML message with a self-
generated signature and key is termed Certificate Fak-
ing [37]. Each recipient of a message, where the in-
tegrity is protected by an XML signature, must ensure
to exclusively use trusted keys for signature verification.
In particular, keys included in the message must not be
considered as trustworthy without further verification. If
a single SAML service is vulnerable to Signature Faking,
the authentication scheme is broken because a malicious
user is able to forge arbitrary messages and identities.

The Swedish eIDAS test environment was found to be
resistant against Signature Faking; no involved entity ac-
cepted self-generated or faked signatures.

XML Signature Wrapping (XSW). The XSW attack
against the XML Signature specification was first pub-
lished in 2005 [40]. The main idea behind this attack is
to change the structure of the XML element tree in such a
way that the application’s business logic processes a dif-
ferent element than the signature verification logic. This
allows an adversary to submit arbitrary content to the
vulnerable service. Several high-profile sites and SAML
libraries have been found to be vulnerable to XSW in the
past [64].

We tested a number of XSW techniques against the ex-
amined SAML services and were not able to successfully
execute an XSW attack.

XSLT Attack (XSLTA). XML Signatures rely on certain
preprocessing routines called transformations. These
are used to derive a canonical form of the XML docu-
ment before computing or verifying the associated signa-
ture. Because the transformations are applied before the
document’s signature can be verified, an adversary can
alter the signature’s <transformation> elements. The
XSLT Attack (XSLTA) makes use of this fact and, in
the worst case, can lead to arbitrary code execution.
The XML processor should, therefore, disable support
for the Extensible Stylesheet Language Transformation
(XSLT) and terminate validation upon receiving invalid
<transformation> elements.

We examined all services of the Swedish eIDAS pilot
for XSLTAs and none was found to be vulnerable.

XML Encryption Attack (XEA). Several vulnerabil-
ities in XML Encryption implementations have been
found in the past, such as attacks against CBC mode in
symmetric ciphers and attacks against asymmetric RSA-
PKCS1.5 encryption [29]. Backwards compatibility at-
tacks against secure algorithms must also be taken into
consideration. Successful attacks against XML Encryp-
tion would undermine the confidentiality goals of eI-
DAS’ encrypted SAML assertions [18].

We could not successfully execute or even test the un-
derlying XML Encryption implementation used by the
Swedish eIDAS pilot. This is because we were unable
to find a signature bypass against any of the participating
SAML services and, therefore, could not alter the cipher-
text of encrypted assertions. One endpoint was found to
encrypt SAML Assertions using unauthenticated CBC
mode, potentially enabling attacks on encrypted XML
ciphertexts [29]. However, the enveloped XML signa-
ture applied to the document’s root element mitigated
any XML Encryption Attacks.

Replay Attack. In an SSO context, replay attacks tar-
get the multiple redemption of an authentication token,
regardless of any existing freshness and lifetime restric-
tions. SSO tokens contain at least one parameter guaran-
teeing freshness and one defining the expiration time. It
is up to the SP to implement this verification correctly.
A special case of Replay Attacks exists in SAML, where
the AuthnReq can contain parameters restricting the life-
time and guaranteeing freshness. The IdP should verify
all relevant parameters.

Five out of the six tested SAML endpoints accepted
each token exactly once. Freshness of the token is en-
sured by the IssueInstant attribute and the unique token
ID. The demo SP allowed multiple successful redemp-
tions of the same AuthnResponse, as long as the token is
submitted within the correct valid session and within the
assertion’s validity period. We were not able to circum-
vent the freshness or lifetime validation of any SAML

endpoint participating in the authentication flow.

Token Recipient Confusion (TRC). As a multitude of
SPs may exist, an authentication token must clearly in-
dicate its intended destination; a token should only be
valid for a single SP to ensure that a malicious SP can
not redeem captured user tokens at other benign SPs.

Our tests were restricted to a single SP and no signa-
ture bypasses were found; therefore, we could not evalu-
ate the TRC attack.

6.2.3 Web Application Security

In SSO and eID authentication schemes, the SP, IdP, and
the eIDAS nodes are web applications. End-User authen-
tication involves loading multiple sites such as the SP,
several redirect pages, and sites specific to the eIDAS
Nodes, e.g., the consent page. Thus, attacks which tar-
get the web application, such as Clickjacking, XSS, and
CSRF, must be considered for all sites loaded during the
authentication.

Clickjacking. The goal of a Clickjacking or User-
Interface Redressing attack is to trick the user into un-
knowingly execute actions of the attacker’s choice. To
accomplish this, UA features like transparent iFrames

and Drag'n'Drop mechanisms are employed, and are
often combined with some pretended incentive for the
end-user to induce the intended action [67, 68]. Success-
ful Clickjacking attacks can bypass Same-Origin-Policy
checks and circumvent CSRF protection mechanisms,
resulting in data exposure or an account to become com-
promised. In SSO scenarios, Clickjacking vulnerabilities
can be used to lure the victim into unknowingly authen-
ticating at the IdP and authorizing the access to restrict-
ed/sensitive resources.

On this note, an early version of the Swedish eIDAS
pilot was vulnerable to Clickjacking attacks due to miss-
ing HTTP Security-Headers. Any stage of the authenti-
cation process could be framed in a transparent iFrame.
This vulnerability was mitigated before we could reach
out to the developers by adding the appropriate X-Frame

-Options header to relevant pages.

XSS. As one of the most common attacks in the mod-
ern web, according to [75], XSS has been studied exten-
sively and yet, XSS vulnerabilities and circumventions
of XSS protection mechanisms are still frequently found
in complex web applications [41, 5, 23, 24, 33, 59]. A
XSS vulnerability enables a malicious actor to inject ar-
bitrary script code into a website’s DOM. The script is
subsequently executed by the victim’s UA. Attacker con-
trolled code running in the origin of the attacked page is
a critical vulnerability which can bypass the security of
the authentication scheme.

We carefully inspected the eIDAS test deployment of

the Swedish E-Legitimation Board and did not find a
XSS vulnerability on any of the sites involved in the sim-
ulated eIDAS authentication.
CSRF. In a Cross-Site Request Forgery (CSRF) attack
a victim is tricked into unknowingly performing state-
changing actions on a vulnerable site. To this end, an ad-
versary injects malicious requests into the victim’s UA
which has an authenticated session with the vulnerable
application. A CSRF attack abuses the fact that the UA
automatically includes session credentials, more particu-
larly cookies, in each request [75, 4]. In the past, CSRF
was found to be exploitable in widely deployed SSO so-
lutions [34, 35]. eIDAS mandates manual user authenti-
cation for each authentication request [20, Section 2.4.1].
This constraint must be implemented by every IdP. If this
is not implemented, a victim can be unknowingly logged
in at arbitrary services or be tricked into authorizing ac-
cess to restricted resources.

We did not find any exploitable CSRF vulnerabilities
in the Swedish eIDAS pilot. All critical components
appeared to follow best current practices and AuthnRe-
sponses were bound to session-specific random tokens.
Covert Redirect (CR). Some web applications store the
URL navigated by the End-User before starting the SSO
authentication and include this parameter as part of the
AuthnReq, for example, as a GET parameter next_url

or RelayState. After receiving the authentication to-
ken, the SP then forwards the user to the resources ini-
tially requested by the End-User. Unfortunately, during
this forwarding, sensitive information can be leaked. As
an example, in some SSO protocols, the Referer header
can contain the authentication token. This can potentially
lead to information leakage and broken authentication.

The Swedish eIDAS pilot and, in particular, the demo
SP do not make use of parameter based redirects, and are
not vulnerable to Covert Redirect attacks.
HTTP Security Headers. A number of security related
HTTP headers have been defined. These mechanisms al-
low communicating entities to share security related in-
formation and influence security related behavior or de-
cisions of each other. In this manner, HTTP security
headers play an integral role in safeguarding today’s web
application security.

In our tests, we ascertained the presence and sound
configuration of the HTTP headers listed below.

X-Frame-Options

Content-Security-Policy

Strict-Transport-Security

Content-Type

X-Content-Type-Options

X-Xss-Protection

Public-Key-Pins

Furthermore, the directives of the Set-Cookie header
were checked. In particular, the httpOnly and the secure
flags must be set if a cookie contains sensitive informa-
tion such as session IDs. To prevent CSRF attacks, the
SAMESITE directive may be added.

In Appendix A, we summarize best current practices
regarding the security headers.

7 Related Work

In 2003 and 2006 Gross et al. [21, 22], and in 2008
and 2011 Armando et al. [2, 1], a formal model for
the SAML Browser/Artifact profile was analyzed which
identified several generic flaws allowing for connection
hijacking/replay, Man-in-the-Middle (MitM), and HTTP
referrer attacks. In 2012, Somorovsky et al. [64, 63]
investigated the XML Signature validation of several
SAML frameworks and web services, discovering crit-
ical flaws based on XSW. In 2014, Mainka et al. [37]
analyzed 22 Cloud SPs and found vulnerabilities on 17
of them. We used the described attack techniques in
this survey as a basis to set up our catalog for the se-
curity tests. Mayer et al. [39] discovered, in 2014, criti-
cal vulnerabilities in SAML IdPs by exploiting XSS vul-
nerabilities and flaws in the SAML implementation. In
2016, Späth et. al [66] provided a comprehensive se-
curity analysis of XML parsers regarding their security
against XML-based attacks such as XML External En-
tity. This survey provides a comprehensive summary of
attack vectors which we used during our evaluation. In
2016 and 2017, Kakavas et al. and Sanso et al. dis-
covered critical vulnerabilities in prominent web appli-
cations like Office365 [30], GitHub [31], and Slack [58]
by using already known attack vectors. In 2018, two
novel attack vectors were discovered by RedTeam [56]
and Duo [36]. Both vectors used a truncation technique
to insert malicious identities within the authentication to-
kens without invalidating the digital signature. However,
none of the previous security researches covered eID ser-
vices and evaluated the security of the used authentica-
tion protocols and the web interfaces.

The document published by the European Commis-
sion on eIDAS-Node Security Considerations [13] de-
scribes the security best practices for eIDAS infrastruc-
tures. However, this document mostly concentrates on
best practices for typical web attacks, and summarizes
secure usage of HTTP headers and key storage. In our
paper, we also provide an overview of SAML and XML-
relevant attacks, and summarize best practices for these
technologies. Our study is based on many relevant rec-
ommendations issued by OWASP [50, 49, 53, 45, 46] and
the BSI [11, 10].

8 Conclusion

To the best of our knowledge, we provided the first se-
curity analysis of the eIDAS infrastructure and trust ser-
vices. We find it impressive that many known attacks
from previous works were not applicable to the exam-
ined eIDAS services. We consider this to be a positive
result of applying proper countermeasures and following
the current security best practices.

Nevertheless, we were able to exploit XML parsing
vulnerabilities on about half of the tested services. The
fact that most of the vulnerable services appear to be im-
plemented in Java highlights the importance of secure
defaults as well as the consequences this poses to pro-
duction systems.

Our survey reveals the complexity of current authen-
tication systems, which is a natural consequence of
the complex technology stack in use. Peculiarities of
TLS, XML, SAML, and HTML/JavaScript/AJAX must
be considered, and each of these technologies must be
strengthened against potential attacks. Additionally, in-
teractions of the various layers and potential security rel-
evant consequences must be taken into account. In our
paper, we show again how the insecurity of one compo-
nent can bypass the security of the entire system, even if
all other components are secure.

Furthermore, our study made clear that a demand still
exists for tools which facilitate automatic security analy-
ses. Similarly, carefully compiled documents specifying
security best practices appear to be lacking. We hope that
our tool and the Best Current Practices document can be
used as a foundation for future security researchers to fill
this documentational gap.

Aside from the technical issues we resolved during
this evaluation, one major obstacle was in obtaining valid
credentials for testing purposes. We could apply the full
test suite to only the Swedish eIDAS Pilot because it pro-
vided a simulation of the eID based End-User authenti-
cation. In order to execute a more widespread evaluation,
obtaining valid credentials may be necessary.

We recognize and appreciate that an increasing num-
ber of eIDAS related projects are publishing their work
as open-source. This openness enables future researchers
to use techniques like white-box testing and static code
analysis to complement our black-box approach and fur-
ther increase the security of eID services.

Acknowledgements

The research was supported by the European Com-
mission through the FutureTrust project (grant 700542-
Future-Trust-H2020-DS-2015-1). The authors want to
thank the FutureTrust consortium for the valuable input
and helpful discussions provided.

References

[1] ARMANDO, A., CARBONE, R., COMPAGNA,
L., CUELLAR, J., PELLEGRINO, G., AND
SORNIOTTI, A. From multiple credentials to
browser-based single sign-on: Are we more secure?
In IFIP International Information Security Confer-
ence (2011), Springer Berlin Heidelberg, pp. 68–
79.

[2] ARMANDO, A., CARBONE, R., COMPAGNA, L.,
CUELLAR, J., AND TOBARRA, L. Formal analysis
of saml 2.0 web browser single sign-on: Breaking
the saml-based single sign-on for google apps. In
Proceedings of the 6th ACM Workshop on Formal
Methods in Security Engineering (New York, NY,
USA, 2008), FMSE ’08, ACM, pp. 1–10.

[3] AVIRAM, N., SCHINZEL, S., SOMOROVSKY, J.,
HENINGER, N., DANKEL, M., STEUBE, J., VA-
LENTA, L., ADRIAN, D., HALDERMAN, J. A.,
DUKHOVNI, V., KÄSPER, E., COHNEY, S., EN-
GELS, S., PAAR, C., AND SHAVITT, Y. DROWN:
Breaking TLS Using SSLv2. In 25th USENIX Se-
curity Symposium (USENIX Security 16) (Austin,
TX, Aug. 2016), pp. 689–706.

[4] BARTH, A., JACKSON, C., AND MITCHELL, J. C.
Robust defenses for cross-site request forgery. In
Proceedings of the 15th ACM conference on Com-
puter and communications security (2008), ACM,
pp. 75–88.

[5] BATES, D., BARTH, A., AND JACKSON, C. Reg-
ular expressions considered harmful in client-side
XSS filters. In Proceedings of the 19th interna-
tional conference on World wide web (New York,
NY, USA, 2010), WWW ’10, ACM, pp. 91–100.

[6] BLEICHENBACHER, D. Chosen ciphertext attacks
against protocols based on the RSA encryption
standard PKCS #1. In Advances in Cryptology –
CRYPTO ’98, vol. 1462 of Lecture Notes in Com-
puter Science. Springer Berlin / Heidelberg, 1998.

[7] BÖCK, H., SOMOROVSKY, J., AND YOUNG, C.
Return of bleichenbacher?s oracle threat (robot).

[8] BÖCK, H., ZAUNER, A., DEVLIN, S., SO-
MOROVSKY, J., AND JOVANOVIC, P. Nonce-
disrespecting adversaries: Practical forgery attacks
on gcm in tls. IACR Cryptology ePrint Archive
2016 (2016), 475.

[9] BRAY, T., PAOLI, J., SPERBERG-MCQUEEN,
C. M., MALER, E., AND YERGEAU, F. Exten-
sible Markup Language (XML) 1.0 (Fifth Edition).
W3C Recommendation (2008).

[10] BSI. Technical guideline tr-03130 eid-server. part
1: Functional specification, Oct. 2017.

[11] BSI. Technische richtlinie tr-02102-1: Kryp-
tographische verfahren: Empfehlungen und schlüs-
sellängen, Jan. 2018.

[12] CANTOR, S., KEMP, J., PHILPOTT, R., AND
MALER, E. Assertions and protocols for the oa-
sis security assertion markup language (saml) v2.0,
Mar. 2005.

[13] COMMISSION, E. eidas-node security considera-
tions, version 1.0, 2018.

[14] DIERKS, T., AND RESCORLA, E. The Transport
Layer Security (TLS) Protocol Version 1.2. RFC
5246 (Proposed Standard), Aug. 2008. Updated by
RFCs 5746, 5878, 6176, 7465, 7507, 7568, 7627,
7685, 7905, 7919.

[15] EASTLAKE, D., REAGLE, J., HIRSCH, F.,
ROESSLER, T., IMAMURA, T., DILLAWAY, B.,
SIMON, E., YIU, K., AND NYSTRÖM, M. XML
Encryption Syntax and Processing 1.1. W3C Can-
didate Recommendation (2012). http://www.w3.
org/TR/2012/WD-xmlenc-core1-20121018.

[16] EASTLAKE, D., REAGLE, J., SOLO, D., HIRSCH,
F., AND ROESSLER, T. XML Signature Syntax
and Processing (Second Edition). W3C Recom-
mendation, June 2008. http://www.w3.org/TR/
xmldsig-core/.

[17] EASTLAKE, D., REAGLE, J., SOLO, D., HIRSCH,
F., AND ROESSLER, T. XML Signature Syntax and
Processing (Second Edition). W3C Recommenda-
tion (2008).

[18] (EU), C. C. E. eidas - cryptographic requirements
for the interoperability framework - tls and saml.
https://ec.europa.eu/cefdigital/wiki/

download/attachments/46992719/eidas_-

_crypto_requirements_for_the_eidas_

interoperability_framework_v1.0.pdf,
2015. Last accessed: 24.5.2018.

[19] (EU), C. C. E. eidas - interoperability archi-
tecture version 1.00. https://ec.europa.eu/

cefdigital/wiki/download/attachments/

46992719/eidas_interoperability_

architecture_v1.00.pdf, 2015. Last ac-
cessed: 24.5.2018.

[20] (EU), C. C. E. F. eidas saml message for-
mat - version 1.0. https://ec.europa.eu/

cefdigital/wiki/download/attachments/

46992719/eidas_message_format_v1.0.pdf,
2015. Last accessed: 24.5.2018.

http://www.w3.org/TR/2012/WD-xmlenc-core1-20121018
http://www.w3.org/TR/2012/WD-xmlenc-core1-20121018
http://www.w3.org/TR/xmldsig-core/
http://www.w3.org/TR/xmldsig-core/
 https://ec.europa.eu/cefdigital/wiki/download/attachments/46992719/eidas_-_crypto_requirements_for_the_eidas_interoperability_framework_v1.0.pdf
 https://ec.europa.eu/cefdigital/wiki/download/attachments/46992719/eidas_-_crypto_requirements_for_the_eidas_interoperability_framework_v1.0.pdf
 https://ec.europa.eu/cefdigital/wiki/download/attachments/46992719/eidas_-_crypto_requirements_for_the_eidas_interoperability_framework_v1.0.pdf
 https://ec.europa.eu/cefdigital/wiki/download/attachments/46992719/eidas_-_crypto_requirements_for_the_eidas_interoperability_framework_v1.0.pdf
 https://ec.europa.eu/cefdigital/wiki/download/attachments/46992719/eidas_interoperability_architecture_v1.00.pdf
 https://ec.europa.eu/cefdigital/wiki/download/attachments/46992719/eidas_interoperability_architecture_v1.00.pdf
 https://ec.europa.eu/cefdigital/wiki/download/attachments/46992719/eidas_interoperability_architecture_v1.00.pdf
 https://ec.europa.eu/cefdigital/wiki/download/attachments/46992719/eidas_interoperability_architecture_v1.00.pdf
https://ec.europa.eu/cefdigital/wiki/download/attachments/46992719/eidas_message_format_v1.0.pdf
https://ec.europa.eu/cefdigital/wiki/download/attachments/46992719/eidas_message_format_v1.0.pdf
https://ec.europa.eu/cefdigital/wiki/download/attachments/46992719/eidas_message_format_v1.0.pdf

[21] GROSS, T. Security analysis of the saml single
sign-on browser/artifact profile. In Computer Secu-
rity Applications Conference, 2003. Proceedings.
19th Annual (2003), IEEE, pp. 298–307.

[22] GROSS, T., AND PFITZMANN, B. Saml artifact
information flow revisited. In In IEEE Workshop
on Web Services Security (WSSS) (2006), pp. 84–
100.

[23] GUPTA, S., AND GUPTA, B. B. Cross-site script-
ing (xss) attacks and defense mechanisms: classifi-
cation and state-of-the-art. International Journal of
System Assurance Engineering and Management 8,
1 (Jan 2017), 512–530.

[24] HEIDERICH, M., SCHWENK, J., FROSCH, T.,
MAGAZINIUS, J., AND YANG, E. Z. mxss attacks:
Attacking well-secured web-applications by using
innerhtml mutations. In Proceedings of the 2013
ACM SIGSAC Conference on Computer & Com-
munications Security (New York, NY, USA, 2013),
CCS ’13, ACM, pp. 777–788.

[25] HIRSCH, F., SOLO, D., REAGLE, J., EASTLAKE,
D., AND ROESSLER, T. XML Signature Syntax
and Processing (Second Edition). W3C recommen-
dation, W3C, June 2008.

[26] JAGER, T., PATERSON, K. G., AND SO-
MOROVSKY, J. One Bad Apple: Backwards Com-
patibility Attacks on State-of-the-Art Cryptogra-
phy. In Network and Distributed System Security
Symposium (NDSS) (February 2013).

[27] JAGER, T., SCHINZEL, S., AND SOMOROVSKY,
J. Bleichenbacher’s attack strikes again: Break-
ing pkcs#1 v1.5 in xml encryption. In ESORICS
(2012), pp. 752–769.

[28] JAGER, T., SCHWENK, J., AND SOMOROVSKY,
J. Practical Invalid Curve Attacks on TLS-ECDH.
20th European Symposium on Research in Com-
puter Security (ESORICS) (2015).

[29] JAGER, T., AND SOMOROVSKY, J. How To Break
XML Encryption. In The 18th ACM Conference
on Computer and Communications Security (CCS)
(Oct. 2011).

[30] KAKAVAS, I. The road to hell is paved with saml
assertions, 2016.

[31] KAKAVAS, I. The road to your codebase is paved
with forged assertions, 2017.

[32] KLEIN, A. Klein: Multiple vendors xml parser
(and soap/web- services server) denial of service at-
tack using dtd., 2002.

[33] LEKIES, S., KOTOWICZ, K., GROSS, S.,
VELA NAVA, E. A., AND JOHNS, M. Code-reuse
attacks for the web: Breaking cross-site scripting
mitigations via script gadgets. In Proceedings of the
2017 ACM SIGSAC Conference on Computer and
Communications Security (2017), ACM, pp. 1709–
1723.

[34] LI, W., AND MITCHELL, C. J. Security issues
in oauth 2.0 sso implementations. In Interna-
tional Conference on Information Security (2014),
Springer, pp. 529–541.

[35] LI, W., AND MITCHELL, C. J. Analysing the se-
curity of google’s implementation of openid con-
nect. In Proceedings of the 13th International Con-
ference on Detection of Intrusions and Malware,
and Vulnerability Assessment - Volume 9721 (New
York, NY, USA, 2016), DIMVA 2016, Springer-
Verlag New York, Inc., pp. 357–376.

[36] LUDWIG, K. Duo finds saml vulnerabilities affect-
ing multiple implementations, February 2018.

[37] MAINKA, C., MLADENOV, V., FELDMANN, F.,
KRAUTWALD, J., AND SCHWENK, J. Your soft-
ware at my service: Security analysis of SaaS sin-
gle sign-on solutions in the cloud. In Proceedings
of the 6th Edition of the ACM Workshop on Cloud
Computing Security (2014), CCSW ’14.

[38] MARSH, J., ORCHARD, D., AND VEILLARD, D.
Xml inclusions (xinclude). W3C, version 1 (2006).

[39] MAYER, A., NIEMIETZ, M., MLADENOV, V.,
AND SCHWENK, J. Guardians of the clouds: When
identity providers fail. In Proceedings of the 6th
Edition of the ACM Workshop on Cloud Computing
Security (New York, NY, USA, 2014), CCSW ’14,
ACM, pp. 105–116.

[40] MCINTOSH, M., AND AUSTEL, P. XML Signature
Element Wrapping Attacks and Countermeasures.
In SWS ’05: Proceedings of the 2005 workshop on
Secure web services (New York, NY, USA, 2005),
ACM Press, pp. 20–27.

[41] MELICHER, W., DAS, A., SHARIF, M., BAUER,
L., AND JIA, L. Riding out domsday: Towards
detecting and preventing dom cross-site scripting.
Network and Distributed Systems Security (NDSS)
Symposium 2018 (2018).

[42] MEYER, C. 20 Years of SSL/TLS Research : An
Analysis of the Internet’s Security Foundation. PhD
thesis, Ruhr-University Bochum, Feb. 2014.

[43] MÖLLER, B., DUONG, T., AND KOTOWICZ, K.
This poodle bites: exploiting the ssl 3.0 fallback.
Security Advisory (2014).

[44] MOZILLA. Content-security-policy - http | mdn,
2018.

[45] OWASP. Content security policy cheat sheet,
2015.

[46] OWASP. Saml security cheat sheet, 2017.

[47] OWASP. Clickjacking defense cheat sheet, April
2018.

[48] OWASP. Content security policy scanner, April
2018.

[49] OWASP. Owasp secure headers project, April
2018.

[50] OWASP. Samesite, 2018.

[51] OWASP. Session management cheat sheet, April
2018.

[52] OWASP. Tls cheat sheet, April 2018.

[53] OWASP. Xml external entity (xxe) prevention
cheat sheet, 2018.

[54] PARLIAMENT, E., AND UNION, T. C.
O. T. E. Regulation (eu) no 910/2014 of
the european parliament and of the coun-
cil. http://eur-lex.europa.eu/legal-

content/EN/TXT/PDF/?uri=CELEX:

32014R0910&from=EN, 2014.

[55] PORTSWIGGER. Burpsuite, April 2018.

[56] REDTEAM. Truncation of saml attributes in shib-
boleth 2, January 2018.

[57] RIKU, ANTTI, MATTI, AND MEHTA. Heartbleed,
cve-2014-0160, 2015. http://heartbleed.

com/.

[58] SANSO, A. Slack saml authentication bypass, Oc-
tober 2017.

[59] SCALZI, G. Content-security-policy: Misconfigu-
ration and bypasses, 2016.

[60] SCOTT CANTOR, FREDERICK HIRSCH, J. K. R.
P. E. M. Bindings for the oasis security assertion
markup language (saml) v2.0, March 2005.

[61] SHEFFER, Y., HOLZ, R., AND SAINT-ANDRE, P.
Summarizing Known Attacks on Transport Layer
Security (TLS) and Datagram TLS (DTLS). RFC
7457 (Informational), Feb. 2015.

[62] SOMOROVSKY, J. On the Insecurity of XML
Security (Doctoral dissertation). Ruhr University
Bochum, Germany, July 2013.

[63] SOMOROVSKY, J., HEIDERICH, M., JENSEN, M.,
SCHWENK, J., GRUSCHKA, N., AND IACONO,
L. L. All your clouds are belong to us – se-
curity analysis of cloud management interfaces.
In The ACM Cloud Computing Security Workshop
(CCSW) (Oct. 2011).

[64] SOMOROVSKY, J., MAYER, A., SCHWENK, J.,
KAMPMANN, M., AND JENSEN, M. On breaking
saml: Be whoever you want to be. In In Proceed-
ings of the 21. USENIX Security Symposium (Belle-
vue, WA, Aug. 2012).

[65] SPÄTH, C. Security implications of dtd attacks
against a wide range of XML parsers. Master,
Ruhr-University Bochum, Oktober 2015.

[66] SPÄTH, C., MAINKA, C., MLADENOV, V., AND
SCHWENK, J. Sok: Xml parser vulnerabilities. In
10th USENIX Workshop on Offensive Technologies
(WOOT 16), Austin, TX (2016).

[67] STONE, P. Next generation clickjacking, April
2010.

[68] STUTTARD, D., AND PINTO, M. The web appli-
cation hacker’s handbook: Finding and exploiting
security flaws. John Wiley & Sons, 2011.

[69] SULLIVAN, B. Security briefs - xml
denial of service attacks and defenses.
https://msdn.microsoft.com/en-

us/magazine/ee335713.aspx, November
2009. Last accessed: 20.5.2018.

[70] TIMOTHY D. MORGAN, O. A. I. Xml schema,
dtd, and entity attacks. Tech. rep., VSR, May 2014.

[71] VAUDENAY, S. Security Flaws Induced by CBC
Padding – Applications to SSL, IPSEC, WTLS...
In Advances in Cryptology – EUROCRYPT 2002,
vol. 2332 of Lecture Notes in Computer Science.
Springer Berlin / Heidelberg, Apr. 2002.

[72] W3AF. Web application attack and audit framework
(w3af), April 2018.

[73] WEICHSELBAUM, L. Csp evaluator, 2016.

[74] WEICHSELBAUM, L., SPAGNUOLO, M., LEKIES,
S., AND JANC, A. Csp is dead, long live csp! on
the insecurity of whitelists and the future of content
security policy. In Proceedings of the 23rd ACM
Conference on Computer and Communications Se-
curity (Vienna, Austria, 2016).

http://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32014R0910&from=EN
http://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32014R0910&from=EN
http://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32014R0910&from=EN
http://heartbleed.com/
http://heartbleed.com/
https://msdn.microsoft.com/en-us/magazine/ee335713.aspx
https://msdn.microsoft.com/en-us/magazine/ee335713.aspx

[75] WICHERS, D. Owasp top ten project. Tech. rep.,
OWASP, Sept. 2015.

[76] ZALEWSKI, M. The tangled Web: A guide to se-
curing modern web applications. No Starch Press,
2012.

Appendices
A Best Current Practices

In this section, we give an overview of the best current
practices which should be considered during the imple-
mentation of SSO services. We provide existing BCP
documents on this topic and an overview on existing pen-
etration testing tools.

A.1 Transport Layer Security

When enabling TLS, the following security checks need
to be considered:
I Only secure TLS versions must be used – TLS 1.2

and 1.3. TLS 1.0 and 1.1 may be used; however, they
are not recommended.

I Only secure cipher suites must be activated. Detailed
recommendations are provided by OWASP [52].

I Disabling TLS compression: Activating TLS com-
pression could make the running service implementa-
tion vulnerable to the CRIME attack [52].
There are different online services and tools for evalu-

ating the security of TLS configurations, such as: SSL
Labs,5 testssl.sh,6 or a TLS scanner based on TLS-
Attacker.7 We recommend their usage after successful
TLS deployment.

Cryptographic Key Lengths and Algorithms. The fol-
lowing cryptographic algorithms and key lengths are rel-
evant for the deployment of SAML and TLS:
I Key lengths: RSA – 2048 bit; DH/DSS – 2048 bit;

ECDH/ECDSA – 256 bit

I Eliptic curves: secp256r1, secp384r1, secp521r1,
brainpoolP256r1, brainpoolP384r1, brainpoolP512r1

I Hash algorithms: SHA-256, SHA-384, SHA-512,
SHA3-256, SHA3-384, SHA3-512
More details regarding the restrictions are published

in [11].

5https://www.ssllabs.com/ssltest/
6https://testssl.sh/
7https://github.com/RUB-NDS/TLS-Scanner

X.509 Certificates. X.509 certificates are used in TLS as
well as in SAML. The best practices for processing and
issuing X.509 certificates can be summarized as follows:
I Trust establishment: X.509 certificates must be issued

by trusted authorities located in the truststore. Trust
validation must be enforced.

I Updating certificates: A process of updating certifi-
cates before their expiration must be established.

I Avoiding wildcard certificates: Certificates with wild-
cards in the subject, common name or alternative
names should be avoided.

A.2 Message Level Security

XML Parser. We strongly recommend disabling the fol-
lowing features within the parser:
I DTD processing. This feature should be only acti-

vated if it is needed.

I Disabling the network access to the parser. Aside
from processing DTDs, there are further possibilities
to call arbitrary URLs. By disabling network access,
calling these URLs can no longer occur.

I If DTDs cannot be disabled, imposing restrictions on
processing entities must be done by: (1.) Limiting the
memory capacity that a parser can allocate (2.) Dis-
abling the SYSTEM and PUBLIC usage for all types
of entities (internal and external parameter/general en-
tities).
A comprehensive description of countermeasures and

parser configurations is discussed by Späth et al. [65, 66].

XML Signatures. The best practices for processing
XML Signatures in SAML messages can be depicted as
follows:
I Signature Exclusion Attacks: It must be ensured that

the data is signed and that the signature has not been
removed.

I XML Signature Wrapping (XSW) Attack: During
verification, it must be verified that the signature has
been constructed over the processed data. More con-
crete countermeasures are discussed by Somorovsky
et al. [62, 64, 46]. The XML Signature specification
also provides additional recommended security con-
siderations [17].

I Certificate Validation: The certificate used for signa-
ture generation must be issued by a trusted IdP.

I XSLT: It is not allowed to trigger the XSLT processor
during any XML Signature transformation.

XML Encryption. The newest XML Encryption stan-

https://www.ssllabs.com/ssltest/
https://testssl.sh/
https://github.com/RUB-NDS/TLS-Scanner

dard provides best practices for a secure standard deploy-
ment. These can be summarized as follows [15]:
I A SAML server implementing XML Encryption and

XML Signature should use at least two distinct certifi-
cates. It is good cryptographic practice to use different
keys for different purposes; in this case, for decryption
of encrypted XML contents and for signing SAML
messages. If not implemented, backwards compati-
bility attacks could be executed [26].

I To protect against adaptive chosen-ciphertext attacks
on symmetric encryption schemes [29], authenticated
encryption schemes should be used. XML Encryp-
tion 1.1 provides the AES-GCM algorithms. Other
algorithms should not be supported. If they are sup-
ported, it must be ensured the attacker cannot enforce
processing of unauthenticated XML ciphertexts by the
server [62].

I To protect against adaptive chosen-ciphertext attacks
on asymmetric encryption schemes [27], secure en-
cryption schemes must be used: RSA-OAEP and ellip-
tic curve Diffie-Hellman. Other algorithms should not
be supported. If they are supported, specific counter-
measures must be applied, most importantly, against
Bleichenbacher’s attack [62].

Further security best practices are located in the XML
Encryption specification [15].

SAML Validation. The following aspects must be con-
sidered by validating the SAMLRequest:
I AssertionConsumerServiceURL: The URL must be

checked against a whitelist with pre-defined URLs.
Usually, this whitelist is provided by the metadata of
the provider.

I Freshness validation: All timestamps located in the
message must be valid.
The following security aspects are relevant to the

SAMLResponse:
I Issuer validation: The SAML issuer (IdP) must be

validated against a whitelist of trusted IdPs allowed
to authenticate the users.

I Recipient validation: The SAML recipient must be
validated by comparing the value with the expected
recipient of this message. In case of deviations, the
message must be rejected.

I Freshness validation: To prevent replay attacks, the
signed timestamps must be validated.

I InResponseTo validation: It must be checked whether
the content of the InResponseTo element is identical to
the content of the ID sent in the AuthnReq. Otherwise,
CSRF attacks can be applied.

Further security considerations can be found in [46].

A.3 Web Application Security

In this section, we provide a summary of the security
relevant HTTP headers which should be configured to
strengthen the communication between the provider and
the End-User’s UA. A comprehensive summary is pro-
vided by OWASP in [49].

HTTP Session Cookies. The security of session cook-
ies is essential for the correct End-User authentication.
In the event of misconfiguration, an attacker could hi-
jack the authenticated HTTP session of an End-User and
impersonate them. We consider the following cookie
flags as required: secure and HttpOnly [51]. In addi-
tion, samesite cookies can be applied to reduce the risk
against CSRF attacks.

A common pitfall lies within the header’s domain di-
rective, which broadens the cookie’s scope to include the
originating host’s sub-domains and may lead to unin-
tended data exposure. The other cookie-scoping direc-
tive, path, should not be used for security relevant scop-
ing [76].

Clickjacking/UI-Redressing. The main goal of the pro-
posed countermeasures is to prevent framing a website
within another one. By this means, attacks such as Click-
jacking and UI-redressing can be mitigated. They can
be prevented by using one of the following techniques:
X-Frame-Options HTTP header, the Content-Security-
Policy, or JavaScript code [47].

HTTP Strict Transport Security. Securing the com-
munication between the UA and the server is essential
with respect to eavesdropping attacks. For this purpose,
the use of TLS is imperative. By using the Strict-

Transport-Security header the server can force the UA
to always use TLS. In this way, the risk against man-in-
middle attacks can be reduced.

Content Security Policy (CSP). The Content Security
Policy is a powerful construct. The specified directives
and configuration possibilities provide the means to mit-
igate XSS vulnerabilities, protect against Clickjacking,
Mixed-Content inclusion, and generally restrict client-
side resource inclusion [45, 44, 74]. However, the CSP is
a defense-in-depth approach that requires additional ef-
fort from web-developers. As an example, neither in-line
scripts nor event handlers can be used without additional
measures.

Specific configuration of a web application’s CSP de-
pends on multiple factors. These factors include: the
current version of the CSP, design and architecture of
the website, required external resources from different
domains, and the general complexity of the web appli-
cation. Therefore, it is not possible to give a general-

SAML Endpoints

URL Tag

eunode.qa.sveidas.se/idp/profile/SAML2/POST/SSO H1
nonode.eidastest.se/EidasNode/ColleagueRequest H2
nonode.eidastest.se/PS-IdP/AuthenticateCitizen H3
nonode.eidastest.se/EidasNode/IdpResponse H4
eunode.qa.sveidas.se/idp/extauth/saml2/post H5
eunode.eidastest.se/con-sp/assertionconsumer H6

Table 2: Mapping of SAML endpoint URLs to tags used
in Table 3.

purpose recommendation of a good policy.
Tool Support. Several software products can support de-
velopers in evaluating their applications. The ZAP Con-
tent Security Policy Scanner extension is able to provide
an automated analysis of the security headers, evaluate
the applied Content Security Policy [48], and find poten-
tial XSS, CSRF, and Clickjacking attacks. Similar ex-
tensions exist for Burp-Suite and w3af [55] [72]. The
authors of [74] provide an online tool for CSP evaluation
[73].

B Swedish eIDAS Pilot - Message Flow

The authentication scenario depicted in Figure 3 assumes
that a Swedish SP eunode.eidastes.se/con-sp requests
authentication from a user in Test Country XX by reach-
ing out to the eIDAS Connector (eunode.qa.sveidas.se
). The AuthnReq is relayed to the eIDAS Proxy-Service
at nonode.eidastest.se/EidasNode and eventually for-
warded to Test Country XX’s IdP. After successful user
authentication, as simulated in the test-pilot, the Authn-
Response is delivered backwards through the same chan-
nel. Explicit user consent is required before the Authn-
Response is released by the Proxy-Service.

C DTD-Attacker in EsPReSSO

Figure 4 presents the manual interface to the novel DTD-
Attacker. The user can choose from a variety of different
attack vectors and easily modify the provided templates
as required.

D Security Evaluation - Summary

A summary of our results is given in Table 3 and Table 2
for the security analysis performed on the Swedish eI-
DAS demo service.

Tr
an

sp
or

tL
ay

er
Se

cu
ri

ty
M

es
sa

ge
L

ev
el

Se
cu

ri
ty

W
eb

A
pp

lic
at

io
n

Se
cu

ri
ty

SA
M

L
E

nd
po

in
t

TLSVersion

CipherSuites

Certificate

DROWN

POODLE

Bleichenbacher

PaddingOracles

InvalidCurves

Heartbleed

/0Sig

CF

XSW

XEA

ReplayAttack

TRC

XSLT

ExternalEntityAttack

XSS

CSRF

Clickjacking

CovertRedirect

Headers

H
1

3
3

3
3

3
3

3
3

3
3

3
3

3
3

3
3

3
3

3
3

3
3

H
2*

3
3

3
3

3
3

3
3

3
3

3
3

3
3

3
3

3
3

3
7

1
3

3
2

H
3*

3
3

3
3

3
3

3
3

3
3

3
3

3
3

3
3

3
3

3
7

1
3

3
2

H
4*

3
3

3
3

3
3

3
3

3
3

3
3

3
3

3
3

3
3

3
7

1
3

3
2

H
5

3
3

3
3

3
3

3
3

3
3

3
3

3
4

3
3

3
3

3
3

3
3

3

H
6*

3
3

3
3

3
3

3
3

3
3

3
3

3
3

3
3

7
3

3
3

3
3

3

*
Sh

ar
ed

T
L

S
E

nd
po

in
to

fe
u
n
o
d
e
.
e
i
d
a
s
t
e
s
t
.
s
e

an
d
n
o
n
o
d
e
.
e
i
d
a
s
t
e
s
t
.
s
e

(v
ir

tu
al

ho
st

in
g

w
ith

sh
ar

ed
ce

rt
ifi

ca
te

)
1

A
tta

ck
m

iti
ga

te
d

in
ne

w
er

ve
rs

io
ns

2
M

is
si

ng
X
-
F
r
a
m
e
-
O
p
t
i
o
n
s

he
ad

er
an

d
f
r
a
m
e
-
a
n
c
e
s
t
o
r

di
re

ct
iv

e
in
C
S
P

3
R
e
l
a
y
S
t
a
t
e

pa
ra

m
et

er
no

tp
ro

pe
rl

y
bo

un
d

to
se

ss
io

n
4

E
nc

ry
pt

s
A

ss
er

tio
n

us
in

g
A

E
S1

28
-C

B
C

(n
o

ci
ph

er
te

xt
au

th
en

tic
at

io
n)

3
=

N
ot

vu
ln

er
ab

le
,7

=
V

ul
ne

ra
bl

e,
3

=
W

ea
k

co
nfi

gu
ra

tio
n,

7
=

V
ul

ne
ra

bi
lit

y
m

iti
ga

te
d

H
1-

H
6:

Se
e

Ta
bl

e
2

fo
rs

pe
ci

fic
SA

M
L

en
dp

oi
nt

U
R

L
s.

Ta
bl

e
3:

R
es

ul
ts

of
th

e
se

cu
ri

ty
ev

al
ua

tio
n

of
th

e
Sw

ed
is

h
eI

D
A

S
pi

lo
t.

U
se

ra
ut

he
nt

ic
at

io
n

w
as

si
m

ul
at

ed
us

in
g

th
e

pr
ov

id
ed

Id
P

of
fic

tit
io

us
Te

st
C

ou
nt

ry
X

X
.

User UA
SP

eunode.eidastest.se

eIDAS Connector
eunode.qa.sveidas.se

eIDAS Proxy & IdP
nonode.eidastest.se

(1.) Login request
/con-sp/login

(2.) AuthnRequest (i)
/idp/profile/SAML2/POST/SSO

(3.) AuthnReq (ii)
/EidasNode/ColleagueRequest

(4.) AuthnReq (iii)

/PS-IdP/AuthenticateCitizen

(5.) Authentication

(6.) SAMLResponse (i)

/EidasNode/IdPResponse

(7.) Consent

(8.) SAMLResponse (ii)

/idp/extauth/saml2/post

(9.) SAMLResponse (iii)

/con-sp/assertionconsumer

Figure 3: Message flow of an authentication process at the Swedish eIDAS pilot. The eIDAS connector represents the
receiving member-state (Sweden) while the Proxy-Service and IdP represent the sending member-state (Test Country
XX).

Figure 4: DTD-Attacker is a novel enhancement of the Burp plugin EsPReSSO. The manual mode provides predefined
attack vectors which can easily be configured in every detail.

	Introduction
	Foundations
	sso
	eidas Services

	XML Attacks on eIDAS Services
	Attacker Model and Prerequisites
	dos
	ssrf
	fa

	Automated Analysis
	espresso – Basic Functionalities
	Extending espresso

	Evaluation of XML Attacks
	Comprehensive Evaluation of the eidas Swedish Pilot
	Testing Methodology
	eIDAS Test-Suite
	Transport Layer Security
	Message Level Security
	Web Application Security

	Related Work
	Conclusion
	Appendices
	Best Current Practices
	tls
	Message Level Security
	Web Application Security

	Swedish eIDAS Pilot - Message Flow
	dtdattacker in espresso
	Security Evaluation - Summary

