
Vulnerability Report

Attacks bypassing the signature validation in PDF

Vladislav Mladenov, Christian Mainka, Karsten Meyer zu Sel-
hausen, Martin Grothe, Jörg Schwenk

November 08, 2018
Chair for Network and Data Security

1 The scope of the vulnerability report

Research Results

As part of our current research, we analyzed signature validation processing on PDF files.
In the following report, we present three novel attack classes: Universal Signature Forgery
(USF), Incremental Saving Attack (ISA), and Signature Wrapping Attack (SWA) which we
describe in chapter 3. Each attack allows an attacker to stealthily manipulate the content of
a signed PDF without invalidating the signature, thereby breaking the document integrity
protection.

We successfully applied the attacks on 22 different PDF viewers and found 21 of them to
be vulnerable, including prominent and widely used applications such as Adobe Reader DC
and Foxit. The results of our evaluation are described in chapter 4.

About us

The Chair of Network and Data Security (NDS) has been working since 2003 under the
direction of Prof. Dr.-Ing. Jörg Schwenk on the security analysis of cryptographic proto-
cols (especially in connection with browser-based protocols based on TLS) and the XML
format for signature generation and encryption. One focus of the department is to com-
prehensively explore the multitude of cryptographic techniques and standards used in these
fields.

1

2 PDF Basics

This section deals with the foundations of the Portable Document Format (PDF). We give
an overview of the file structure and explain how the PDF standard for signatures is imple-
mented.

2.1 Portable Document Format (PDF)

A PDF consists of four parts: header, body, xref table, and a trailer, as depicted in Fig-
ure 2.1.

PDF header The header is the first line within a PDF and defines the interpreter version
to be used. The provided example uses version PDF 1.7

PDF body The body defines the content of the PDF and contains text blocks, fonts, im-
ages, and metadata regarding the file itself. The main building block within the body are
objects, which have the following structure:

1 1 0 obj

2

3

4

5 ...

6 endobj

Listing 2.1: Example of an object declaration within the body.

Object Number
Generation Number
Constant String “obj”

Each object starts with an Object Number (№ob j) followed by a Generation Number (№gen).
The№gen should be incremented if additional changes are made to the object. An object can
be referenced by using the following scheme: |№ob j №gen R|, e.g., 1 0 R.

In the example depicted in Figure 2.1, the body contains four objects: Catalog, Pages, Page,
and stream. The Catalog object is the root object of the PDF file. It defines the document
structure and can additionally declare access permissions. The Catalog references to one
Pages object which defines the number of the pages and a reference to each Page object (e.g.,
text columns). The Page object contains information how to build a single page. In the given
example, it only contains a single string object “Hello World!”.

2

%PDF-1.7

0 5
0000000000 65535 f
0000000015 00000 n
0000000060 00000 n
0000000135 00000 n
0000000245 00000 n

/Root 1 0 R
startxref
300

Byte Offset

15 Byte

60 Byte

300 Byte

%%EOF

135 Byte

245 Byte

xref

trailer

1 0 obj Catalog

/Pages 2 0 R

2 0 obj Pages

/Kids [3 0 R]

3 0 obj Page

/Contents 4 0 R

4 0 obj stream

stream
Hello World!
endstream

Body

Header

Xref
Table

Trailer

Figure 2.1: A simplified example of a PDF file’s internal structure. We depict the object
names after the obj string for clarification.

Xref table The Xref table contains information about all PDF objects. An Xref table can
contain one or more sections.

• Each Xref table section starts with a line consisting of two integer entries a b (e.g., “0
5” as shown in Figure 2.1) which indicates that the following b = 5 lines in the Xref
table describe objects with ID a ∈ {0, . . . , b − 1} = {0, . . . , 4}.

• Lines with the three entries x y z describe an Xref table object entry, where x defines
the byte offset of the object number a; y defines its№gen, and z ∈ {′n′,′ f ′} describes
whether the object is in use (“n”) or not (“f”, say “free”). For example, the line
“0000000060 00000 n” is the third line after “0 5” and, thus, describes the in-use
object with№ob j 2 and№gen 0 at byte offset 60 (see “2 0 obj” in Figure 2.1).

Trailer The Trailer is the first processed content of a pdf file. It contains references to the
Catalog and the Xref table.

3

2.2 PDF Signatures

In this section, the integrity protection of a PDF file provided by a digital signature will be
explained further.

Incremental Saving. PDF Signatures rely on a feature of PDF files called incremental
saving (also known as incremental updates), allowing the modification of a PDF file without
changing the previous content.

In Figure 2.2, an original document (shown on a left side) is being modified via incremental
saving by attaching a new body, Xref table, and Trailer at the end of the file. Within the

Header

Body

Xref Table

Trailer

Header

Body

Xref Table

Trailer

 Body Updates

Xref Table Updates

Trailer

Header

Body

Xref Table

Trailer

 Body Updates

Xref Table Updates

Trailer

 Body Updates

Xref Table Updates

Trailer

Update 1

Update 2

Figure 2.2: Multiple incremental savings applied on a PDF file.

body, new objects can be defined. A new Pages object can be defined, containing two pages,
for example, /Kids [3 0 R 3 0 R]. For reasons of simplicity, the same content was used
here twice. The Xref table contains only a description of the newly defined objects. The
new Trailer contains a reference to the Catalog (it could be the old Catalog or an updated
one), the byte offset of the new Xref table, and the byte offset of the previously used Xref
table. This scheme is applied for each incremental saving.

Structure of a Signed PDF The creation of a digital signature on a PDF file relies on
incremental saving by extending the original document with objects containing the signature
information.

In Figure 2.3, an example of a signed PDF file is shown. The original document is the same
document as depicted in Figure 2.1. By signing the document, an incremental saving is ap-
plied and the following content is added: a new Catalog, a Signature object, a new Xref table
referencing the new object(s), and a Trailer. The new Catalog extends the old one by adding
a new parameter Perms, defining the restrictions with respect to changes within the docu-
ment. The Perms parameter references to the Signature object.

4

%PDF-1.7

%%EOF

Xref Table

Trailer

1 0 obj Catalog

2 0 obj Pages

3 0 obj Page

4 0 obj stream

Original
Document

1 0 obj Catalog

5 0 obj Signature

/Pages 2 0 R
/Perms 5 0 R

/Subfilter adbe.pkcs7
/Contents sig.value
/ByteRange [a b c d]

Xref Table

Trailer

New Xref
Table

New
Trailer

New
Body

%%EOF

U
p

da
te

 1

Figure 2.3: A simplified overview of a signed PDF file.

The Signature object (5 0 obj) contains information regarding the applied cryptographic
algorithms for hashing and signing the document. It additionally includes a Contents
parameter containing a hex-encoded PKCS7 blob, holding the certificates used to sign the
document as well as the signature value. The ByteRange parameter defines which bytes of
the PDF file are used as the hash input for the signature calculation and defines two integer
tuples:

(a, b) : Beginning at byte offset a, the following b bytes are used as input for the hash
calculation. Typically, a = 0 is used to indicate that the beginning of the file is used
while a + b is the byte offset where the PKCS#7 blob begins.

(c, d) : Typically, byte offset c is the end of the PKCS#7 blob, while c + d points to the last
byte off the PDF file.

According to the specification, it is recommended to sign the whole file except for the
PKCS#7 blob.

5

3 How To Break PDF Signatures

In this section, we present three novel attack classes on PDF signatures: Universal Signature
Forgery (USF), Incremental Saving Attack (ISA), and Signature Wrapping Attack (SWA).
All attack classes bypass the PDF’s signature integrity protection allowing the modification
of the content arbitrarily without the victim noticing.

The attacker’s goal is to place a malicious object into the protected PDF file, such that
the target viewer shows different content in comparison to the originally signed PDF file.
Nevertheless, the viewer indicates that the signature is valid and that no changes have been
made to the document after signing.

3.1 Universal Signature Forgery (USF)

The main idea of USF is to disable the verification by providing invalid content within the
signature object or removing the references to the signature object. Thus, despite the fact
that the signature object is provided, the validation logic is not able to apply the correct cryp-
tographic operations. Nevertheless, it could be possible that a viewer shows some signature
information although the verification is being skipped.

5 0 obj Signature

/Subfilter adbe.pkcs7
/Contents ____
/ByteRange [a b c d]

5 0 obj Signature

/Subfilter adbe.pkcs7
/Contents null
/ByteRange [a b c d]

5 0 obj Signature

/Subfilter adbe.pkcs7
/Contents 0x00
/ByteRange [a b c d]

5 0 obj Signature

/Subfilter adbe.pkcs7

/ByteRange [a b c d]

5 0 obj Signature

/Subfilter adbe.pkcs7
/Contents sig.value
/ByteRange ____

5 0 obj Signature

/Subfilter adbe.pkcs7
/Contents sig.value
/ByteRange null

5 0 obj Signature

/Subfilter adbe.pkcs7
/Contents sig.value
/ByteRange [a -b c d]

5 0 obj Signature

/Subfilter adbe.pkcs7
/Contents sig.value

(1) (2) (3) (4)

Figure 3.1: Different USF attack vectors manipulating the signature object entries within a
signed PDF to bypass the signature validation.

We defined 24 different attack vectors. Eight of them are depicted in Figure 3.1. In the given
example, the attack vectors target two values: (1) Contents containing the key material and
the signature value and (2) ByteRange defining the signed content. The manipulation of
these parameters is reasoned by the fact that we either remove the signature value or the

6

information which content is signed. In (1), either Contents or ByteRange are removed
from the signature object. Another possibility is defined in (2) by removing only the con-
tent of the entries. In (3) and (4), invalid values were specified and tested. Such values
are for instance null, a zero byte (0x00), and invalid ByteRange values like negative or
overlapping byte ranges.

3.2 Incremental Saving Attack (ISA)

This class of attack relies on the incremental saving feature. The idea of the attack is to
make an incremental saving on the document by redefining the document’s structure and
content using the Body Updates part. The digital signature within the PDF file protects
exactly the part of the file defined in the ByteRange. Since the incremental saving appends
the Body Updates to the end of the file, it is not part of the defined ByteRange and thus
not part of the signature’s integrity protection. The signature remains valid, while the Body
Updates changed the displayed content.

Header

Body

Xref Table

Trailer

 Body Updates

Xref Table

Trailer

 Body Updates

Xref Table

Trailer

Header

Body

Xref Table

Trailer

 Body Updates

Xref Table

Trailer

 Body Updates

Header

Body

Xref Table

Trailer

 Body Updates

Xref Table

Trailer

 Body Updates +
Signature Object

(1) (2) (4)

Header

Body

Xref Table

Trailer

 Body Updates

Xref Table

Trailer

 Body Updates

(3)

Trailer

Protected by the signature

Content Injection

Figure 3.2: Bypassing the signature protection by using incremental saving. In (1), the
main idea of the attack is depicted, while (2)-(4) are variants to obfuscate the
manipulations and prevent a viewer to display warnings.

Variant 1 Considering variant (1) in Figure 3.2, only two of the evaluated signature val-
idators was susceptible to the attack. This is not very surprising since this type of modifi-
cation is exactly what a legitimate PDF application would do when editing or updating a

7

PDF file. A PDF digital signature is designed to protect against this behavior; the signa-
ture validator recognizes that the document was updated after signing and shows a warning
respectively. To bypass this detection, we included an Xref table which: (1) is empty. An
empty Xref table can be interpreted as a sign that no objects are changed by the last in-
cremental update. Nevertheless, the included updates are processed and displayed by the
viewer; (2) contains entries for all manipulated objects and an entry with an incorrect refer-
ence to the transform parameters dictionary which is part of the signature object. The result
of these manipulations is that the last incremental saving is not detected and no warning is
shown, but the new objects are displayed by the PDF viewer.

Variant 2: ISA without Xref table and Trailer Some of the viewers detected the manip-
ulation by checking if a new Xref table and Trailer were defined within the new incremental
update. By removing the Xref table and the Trailer, a vulnerable validator does not recog-
nize that incremental saving has been applied and successfully verifies the signature without
showing a warning. The PDF file is still processed normally by displaying the modified doc-
ument structure. The cause for this behavior is that many of the viewers are error tolerant.
In the given case, the viewer completes the missing Xref table and Trailer, and processes
the manipulated body.

Variant 3: ISA with a Trailer Some of the PDF viewers do not open the PDF file if a
Trailer is missing. This led to the creation of this attack vector containing a manipulated
Trailer at the end of the file. Interestingly, the Trailer must not point to a Xref table, but
any other byte offset within the file. Otherwise, the verification logic detects the document
manipulation.

Variant 4: ISA with a copied signature and without a Xref table and Trailer The
previous manipulation technique was improved by copying the Signature object within the
last incremental update. This improvement was forced by some validators which require
any incremental update to contain a signature object, otherwise, they throw a warning that
the document was modified after the signing.

By copying the original Signature object into the latest incremental update, this require-
ment is fulfilled. The copied Signature object, however, covers the old document and not
the updated part. To summarize, a vulnerable validator does not verify whether each incre-
mental update is signed, but only if it contains a signature object. Such verification logic is
susceptible to ISA.

3.3 Signature Wrapping Attack (SWA)

The SWA introduces a novel technique to bypass the signature protection without using
incremental saving.

8

The main idea is to move the second part of the signed ByteRange to the end of the doc-
ument while reusing the xref pointer within the signed Trailer to an attacker manipu-
lated Xref table. To avoid any processing of the relocated second part, it can be option-
ally wrapped by using a stream object or a dictionary. In Figure 3.3, two documents are
depicted. On the left side, a validly signed PDF file is depicted. On the right side, a ma-
nipulated PDF file is generated by using SWA. During the SWA, the attacker proceeds as

%PDF-1.7

Original Document

1 0 obj Catalog

5 0 obj Signature

/Subfilter adbe.pkcs7
/Contents <324d3…
77000000000000000
000………………….0000
00000000000000000
00000000000000000
00000000000000000
00000000000000>
/ByteRange [a b c d]

Xref Table

Trailer

%%EOF

%PDF-1.7

Original Document

1 0 obj Catalog

5 0 obj Signature

/Subfilter adbe.pkcs7
/Contents <324d3… 77>
/ByteRange [a b c* d]

Xref Table

Trailer

666 0 obj stream

stream
/ByteRange [x y z w]

%%EOF
endstream

Malicious Objects

Malicious Xref Table

c*

d

a

b

Padding

c

d

a

b

Trailer (optional)

Same
byte offset

Figure 3.3: A comparison of the original document and the manipulated document by using
the Signature Wrapping Attack (SWA). Malicious objects are placed before the
malicious Xref table table by deleting unused zero Bytes in Contents.

follows:

Step 1 (optional): The attacker deletes the padded zero Bytes within the Contents param-
eter to increase the available space for injecting manipulated objects.1

Step 2: The attacker defines a new /ByteRange [a,b,c*,d] by manipulating the c value,
which now points to the second signed part placed on a different position within the
document.

Step 3: The attacker creates a new Xref table pointing to the new objects. It is essential
that the byte offset of the newly inserted Xref table has the same byte offset as the
previous Xref table. The position is not changeable since it is referenced by the

1During signing the size of the signature value (and the corresponding certificate) is not known and thus it is
roughly estimated. The unused bytes are later filled with zero Bytes.

9

signed Trailer. For this purpose, the attacker can add a padding block (e.g., using
whitespaces) before the new Xref table to fill the unused space.

Step 4: The attacker injects malicious objects which are not protected by the signature.
There are different injection points for these objects. They can be placed before or
after the malicious Xref table. If Step 1 is not executed, it is only possible to place
them after the malicious Xref table.

Step 5 (optional): Some PDF viewers need a Trailer after the manipulated Xref table, other-
wise they cannot open the PDF file or detect the manipulation and display a warning
message. Copying the last Trailer is sufficient to bypass this limitation.

Step 6: The attacker moves the signed content defined by c and d at byte offset c*. Option-
ally, the moved content can be encapsulated within a stream object.

Noteworthy is the fact that the manipulated PDF file does not end with %%EOF after the
endstream. The reason, why some validators throw a warning that the file was manip-
ulated after signing, is because of an %%EOF after the signed one. To bypass this re-
quirement, the PDF is not correctly closed. However, it will be still processed by any
viewer.

10

4 Evaluation

An attack is considered successful if the manipulated content is displayed by the viewer
application and no warnings or errors regarding a detected modification of the document
after the signature was applied is displayed.

The success of an attack can be classified depending on two UI-Layers we defined:

UI-Layer 1 represents the first UI information regarding the signature validation displayed
to the user after opening the PDF.

UI-Layer 2 represents the information accessible through different GUI options available
in the viewer. This includes both clicking on visible signature appearances and opening
signature panels or explicitly executing certain program functionalities like “validating all
signatures”. If the information presented on the UI-Layer 2 states that the signature is
invalid or the document has been modified after the application of the signature the attack
can still be classified as successful for UI-Layer 1.

online validation services In addition to the well known PDF viewer applications we
evaluated our attacks against 7 online validation services. In general online validation ser-
vices verify the signature, the certificates and the document integrity and show if the signa-
ture for this document is valid and warn the user about any modification of the document
after the signature was applied. Most of these services are not limited to the PDF and can
also handle other format. This is also true for the supported signature types (e.g. XAdES,
PAdES, CAdES). After validating a document every service shows a message or in addition
generates a report with the results of the validation process, which can be viewed or down-
loaded. See table Table 4.2 for the result of our evaluation.

11

PDF Viewer Version OS
PDF Signature Comments

USF ISA SWA

Adobe Acrobat Reader DC 2018.011 Win10,
macOS X X Error when the visible signature is clicked

Adobe Reader 9 9.5.5 Linux X X X
Adobe Reader XI 11.0.10 Win10,

macOS X X Error when the visible signature is clicked

eXpert PDF 12 Ultimate 12.0.20 Win10 X X
Expert PDF Reader 9.0.180 Win10 X X

Foxit Reader 9.1.0;
9.2.0

Win10,
Linux,
macOS

X No signature verification on Linux and ma-
cOS (latest version 2.4.1)

LibreOffice (Draw)
6.0.6.2;
6.0.3.2,
6.1.0.3

Win10,
Linux,
macOS

X H# X Detects ISA when certificate is trusted

Master PDF Editor 5.1.12/24
Linux,
Win10,
macOS

X X Attack only on Linux and Windows suc-
cessful

Nitro Pro
11.0.3.173 Win10 X H# Detects ISA when certificate is trusted

Nitro Reader 5.5.9.2 Win10 X H# Detects ISA when certificate is trusted

Nuance Power PDF Standard 3.0.0.17 Win10 X X
PDF Architect 6 6.0.37 Win10 X X

PDF Editor 6 Pro 6.4.2;
6.6.2

Win10,
macOS H# USF successful on UI-Layer 1;

ISA and SWA only on Windows successful

PDFelement 6 Pro 6.7.1;
6.8.0

Win10,
macOS H# USF successful on UI-Layer 1;

ISA and SWA only on Windows successful

PDF Studio Viewer 2018 2018.0.1
Win10,
Linux,
macOS

X

PDF Studio Pro 12.0.7
Win10,
Linux,
macOS

X

PDF-XChange Editor 7.0.326 Win10 X X
PDF-XChange Viewer 2.5 Win10 X X
Perfect PDF 10 Premium 10.0.0.1 Win10 X
Perfect PDF Reader 13.0.3 Win10 X
Soda PDF Desktop 10.2.09 Win10 X X
Soda PDF 9.3.17 Win10 X X
Total Successful
Attacks

4/22 11/22 17/22
Summary Signature Vulnerabilities: 21/22

X: Secure/Attack fails; : Insecure/Attack successful; H#: Limited attack success

Table 4.1: Evaluation results of 22 PDF viewer showing critical vulnerabilities in 21 of
them.

12

Signature Validation Service Version PDF Signature Comments
USF ISA SWA

DocuSign [1]
v1 REST API with

PDFKit.NET
18.3.200.9768

X

eRTR Validation Service [5] v 2.0.3 X
DSS Demonstration WebApp [3] WebApp 5.2 X X
DSS Demonstration WebApp [2] WebApp 5.3.1 X X X
Evrotrust (free) [7] 12.0.20 X X
Ellis [4] version 0.9.1, build

1526594400 X X
VEP.si [8] 2017-06-26 X X
SiVa Sample Application [6] release-2.0.1 – – – Not evaluated since valid documents were

shown invalid due to PKI issues

Total Successful Attacks 0/7 5/7 2/7
Summary Signature Vulnerabilities: 5/6

X: Secure/Attack fails; : Insecure/Attack successful; H#: Limited attack success

Table 4.2: Evaluation results of 7 online signature validation services.

13

5 Countermeasures

In this section, we propose concrete countermeasures fixing the previously introduced at-
tacks. We carefully studied the main reasons for the attacks on PDF signatures. We de-
termined two root causes: (1) The specification does not provide any information with
concrete procedure on how to validate signatures. There is no description of pitfalls and
any security considerations. Thus, developers must implement the validation on their own
without a best-common-practice information. (2) The error tolerance of the PDF viewer is
abused to create non-valid documents bypassing the validation, yet correctly displayed to
the user.

The Verification Algorithm. Considering a proper countermeasure, we defined an al-
gorithm which addresses USF, ISA, and SWA but does not negatively affect the error
tolerance of the PDF viewers. It describes a concrete approach on how to compute the
values necessary for the verification and how to detect manipulations after signing the
PDF file. The specified algorithm must be applied for each signature within the PDF
document. As an input, it requires the PDF file as a byte stream and the signature ob-
ject.

1 INPUT: PDFBytes, SigObj

2

3 // ByteRange is mandatory and must be well-formated

4 byteRange = SigObj.getByteRange

5

6 // Preventing USF:

7 if (byteRange == null OR byteRange.isEmpty) return false
8

9 // Parse byteRange

10 if (byteRange.length,4) return false
11 for each x in byteRange { if x , instanceof(int) return false}
12 a, b, c, d = byteRange

13 // BytRange must cover start of file

14 if (a , 0) return false;
15 // Ensure that more than zero bytes are protected in hashpart1

16 if (b ≤ 0) return false
17 // Ensure that sencond hashpart starts after first hashpart

18 if (c ≤ b) return false
19 // Ensure that more than zero bytes are protected in hashpart2

20 if (d ≤ 0) return false
21 // Preventing ISA. ByteRange must cover the entire file.

22 if ((c + d) , PDFBytes.length) return false;
23

14

24 // The pkcs7 blob starts at byte offset (a+b) and goes to offset c

25 pkcs7Blob = PDFBytes[(a+b):c]

26 // Preventing USF. Pkcs7Blob value is not allowed to be null or empty.

27 if (pkcs7Blob == null OR pkcs7Blob.isEmpty) return false
28 // pkcs7Blob must be a hexadecimal string [0-9,a-f,A-F]

29 if (pkcs7Blob contains other chars than [0-9,a-f,A-F]) return false
30

31 // Parse the PKCS\#7 Blob

32 sig, cert = pkcs7.parse(pkcs7Blob)

33

34 // Select (a+b) bytes from input PDF begining at byte a=0, i.e. 0 ... a+b-1

35 hashpart1=PDFBytes[a:(a+b)]

36

37 // Select (c+d) bytes from input PDF begining at byte c, i.e. c ... c+d-1

38 hashpart2=PDFBytes[c:(c+d)]

39

40 // Verify signature

41 return pkcs7.verify(sig, cert, hashpart1||hashpart2)

Listing 5.1: Pseudo-code preventing USF, ISA and SWA.

In Line 4, we first extracts the ByteRange from the signature object. For preventing USF,
we ensure that ByteRange is not null or empty in Line 7.

Lines 9-22 then validate the values a, b, c, d of the ByteRange. First, Line 10 ensures
that it contains exactly four values in order minimize an attacker’s attack surface. Line
11 additionally ensures that each ByteRange value is an integer. Lines 14 to 20 ensure
that ByteRange satisfies the following condition: 0 = a < b < c < (c + d), which is
equivalent to a = 0 and b > 0 and c > d and d > 0. Enforcing this condition ensures
that the signature always covers the beginning of the file (a = 0), prevents signed blocks
of length zero (b > 0, d > 0), and ensures that both signed blocks are non-overlapping
(c > b). Finally, we verify that ByteRange covers the entire file (Line 22) in order to detect
ISA.

Lines 24-29 parse the Contents parameter of the signature object, which is a PKCS#7 blob.
The important aspect is that we interpret everything that is not covered by the ByteRange
as the Contents parameter of the PDF signature. Theoretically, the check in Line 27
should never fail, because we previously verified (a + b) = b < c, thus it holds that
pkcs7Blob.length > 0. Nevertheless, we leave this line here due to its importance for
preventing SWA. Line 29 additionally ensures that only hex characters can be in the unpro-
tected part of the PDF file, preventing further unwanted modifications of the file.

Lines 31-32 parse the PKCS#7 blob and extract the information to be used for the signature
verification.

Lines 34-38 determine the bytes of the input PDF that are signed.

Finally, Line 41 calls the PKCS#7 verification function and returns the validity status of the
signature.

15

Drawback. Specifying the algorithm in Listing 5.1 requires a change in the PDF speci-
fication which defines ByteRange as an optional parameter[? , Section 8.7]. In this case,
the signature value will be computed only over the signature dictionary leaving the en-
tire document unprotected. Such a feature allows an even more powerful attack since the
attacker can create validly signed documents by only injecting the signed signature dictio-
nary without a /ByteRange. Currently, none of the evaluated viewers supports this fea-
ture.

Additionally, the algorithm leads to one usability issue if multiple signatures are provided.
Although these signatures are valid, only the one covering the entire document will be
displayed as valid. This problem can be addressed by providing additional information to
the user that some of the signatures are valid but cover only a specific revision and not the
entire document. Adobe uses a similar approach for the signature validation. All Adobe
viewers show information about the document revision protected by a signature and allow
only to open this revision. Thus, a user can easily verify which information is signed and
which is not.

16

Bibliography

[1] DocuSign validation service. URL https://validator.docusign.com/.

[2] DSS demonstration WebApp v5.3.1. URL https://ec.europa.eu/cefdigital/
wiki/display/CEFDIGITAL/DSS.

[3] DSS demonstration WebApp v5.2, . URL https://dss.agid.gov.it/validation.

[4] Ellis digital signature, . URL https://ellis.arhs-spikeseed.com/#/.

[5] RTR - signatur-prüfung, . URL https://www.signatur.rtr.at/de/vd/

Pruefung.html.

[6] SiVa demo application, . URL https://siva-arendus.eesti.ee/.

[7] Validate a signature, . URL https://www.evrotrust.com/landing/en/a/
validation.

[8] VEP e-obrazci, . URL https://www.vep.si/validator/forms/

document-verify.

17

