
Crouching Tiger – Hidden Payload:
Security Risks of Scalable Vectors Graphics

Mario Heiderich
Chair for Network and Data

Security
Ruhr-University Bochum,

Germany
mario.heiderich@rub.de

Tilman Frosch
Chair for Network and Data

Security
Ruhr-University Bochum,

Germany
tilman.frosch@rub.de

Meiko Jensen
Chair for Network and Data

Security
Ruhr-University Bochum,

Germany
meiko.jensen@rub.de

Thorsten Holz
Chair for System Security
Ruhr-University Bochum,

Germany
thorsten.holz@rub.de

ABSTRACT

Scalable Vector Graphics (SVG) images so far played a rather
small role on the Internet, mainly due to the lack of proper
browser support. Recently, things have changed: the W3C
andWHATWG draft specifications for HTML5 require mod-
ern web browsers to support SVG images to be embedded
in a multitude of ways. Now SVG images can be embed-
ded through the classical method via specific tags such as
<embed> or <object>, or in novel ways, such as with

tags, CSS or inline in any HTML5 document.
SVG files are generally considered to be plain images or

animations, and security-wise, they are being treated as such
(e.g., when an embedment of local or remote SVG images
into websites or uploading these files into rich web appli-
cations takes place). Unfortunately, this procedure poses
great risks for the web applications and the users utilizing
them, as it has been proven that SVG files must be consid-
ered fully functional, one-file web applications potentially
containing HTML, JavaScript, Flash, and other interactive
code structures. We found that even more severe problems
have resulted from the often improper handling of complex
and maliciously prepared SVG files by the browsers.
In this paper, we introduce several novel attack techniques

targeted at major websites, as well as modern browsers,
email clients and other comparable tools. In particular, we
illustrate that SVG images embedded via tag and CSS
can execute arbitrary JavaScript code. We examine and
present how current filtering techniques are circumventable
by using SVG files and subsequently propose an approach to
mitigate these risks. The paper showcases our research into
the usage of SVG images as attack tools, and determines its

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CCS’11 October 17–21, 2011, Chicago, Illinois, USA.
Copyright 2011 ACM 978-1-4503-0948-6/11/10 ...$10.00.

impact on state-of-the-art web browsers such as Firefox 4,
Internet Explorer 9, and Opera 11.

Categories and Subject Descriptors

K.6.5 [Security and Protection]: Unauthorized access

General Terms

Security

Keywords

Scalable Vector Graphics; Web Security; Browser Security;
Cross Site Scripting; Active Image Injections

1. INTRODUCTION
One of the factors behind the huge success of the World

Wide Web is its ability and capacity for viewing image files
within a web browser. Compared to the text-only formats,
an image can convey considerably more information. A typi-
cal browser supports many different image file formats, such
as JPEG, PNG and GIF files, whilst the vast majority of
websites on the Web contain at least one graphic in either
one form or another. Since image files are complex and need
to be parsed and rendered before they can be displayed by
a browser, it comes as no surprise that the images have se-
curity implications. To give an example, there were sev-
eral cases in the past where the validation routine of im-
age libraries contained security flaws leading to vulnerabili-
ties [1, 2, 4]. For this reason, we need to consider the risk of
images as the attack vectors.

One image format that has up till now received very lim-
ited scrutiny and little attention from the web development
community is Scalable Vector Graphics (SVG [5]). This fam-
ily of file formats comprises several specifications and spec-
ification drafts for composition and rendering of the vector
based images and graphics. SVG is based on XML and was
first published by the W3C in 1999. SVG images have not
gained much traction from the web developers, as the sup-
port provided by major browsers was not consistent and only

Figure 1: A classic GhostScript/SVG example

a small subset of SVG features had been known to work reli-
ably on a sufficiently large base of the web browsers. Brow-
sers, like Firefox 1.5, already supported a decent subset of
SVG features in November 2005, showcasing SVGs such as
the famous GhostScript Tiger shown in Figure 1. This par-
ticular image is often used to illustrate the abilities of the
vector based graphics to display complex structures. Other
browsers, namely Internet Explorer, did not support SVG,
unless a user installed an external plug-in.
All this has significantly changed with the recent appear-

ance of HTML5: the W3C and WHATWG draft specifica-
tions for HTML5 require modern web browsers to support
SVG images’ embedment in a multitude of ways [25]. SVG
images can now for example be engrafted in a given doc-
ument either in the classical way via specific tags such as
<embed> or <object> tags, or in the novel ways such as with
 tags or inline in any HTML5 document. Internet Ex-
plorer 9 currently supports a large subset of SVG features
as tests with the tech previews and available beta versions
show. Furthermore, both Firefox and Webkit-based brow-
sers, such as Chrome and Safari, as well as Opera, provide
thorough SVG support.
Hitherto, SVG is mainly used in the context of screen

and print design, as well as in the cartography and medical
imagery, which all can be attributed to the lack of proper
browser support [35]. This is however expected to change,
owing to the SVG support being implemented in all modern
web browsers, consequently lifting SVG files from being a
niche format for W3C compliant and plug-in-equipped brow-
sers only, to a widely used toolkit for enhancing images, dia-
grams and rich-text documents across the board. Depending
on the rendering client’s capabilities, an SVG file can con-
tain interactive and animated elements. Processing events
and raster images, embedding videos, and rich-text are also
feasible. Contrary to popular belief, SVG files should thus
not be considered to be plain images or animations, and it
is necessary to treat them as fully functional, one-file web
applications capable of potentially containing HTML, Java-
Script, Flash and other interactive code structures.
In this paper, we elaborate on the security risks of im-

proper SVG handling. We introduce several novel attack
techniques of using SVG images to target modern, real life
web applications (such as MediaWiki installations like Wiki-
pedia, DeviantArt, and other high profile websites), as well
as their unsuspecting users. Specifically, in Section 3 we
present an Active Image Injection (AII) attack, in which
arbitrary JavaScript code can be delivered via SVG files.

Several other attacks such as SVG-based cross site scripting
attacks or SVG chameleons (i.e., files that are interpreted
differently depending on how they are opened) are also de-
livered. AII attacks are particularly important, since they
are caused by faulty SVG implementations in modern brow-
sers, thus affect all websites allowing users to embed exter-
nal images – thereby our research significantly extends and
partly falsifies the information available in the Browser Se-
curity Handbook, so far only covering risks connected to
browser-deployed SVG in plugin containers. Furthermore,
we discuss how current state-of-the-art filtering techniques
are deceivable via using SVG files.

The basic idea behind all of our attacks is the fact that
SVG files can accommodate active content, whereby brow-
sers actually interpret this content due to its being standard-
compliant. This idea is related to similar attacks that take
advantage of code embedded in document formats [8,13,32]
and we show that SVG images can be turned into an attack
vector. In addition, we demonstrate the damaging potential
of SVG files embedding arbitrary data formats and show
how this property can be used to carry out attacks using
Adobe Reader, Java Runtime Engine and Flash Player vul-
nerabilities. We discuss the impact of our attack on modern
browsers such as Firefox 4, Internet Explorer 9, and Opera
11, showing that especially inline SVG grants new possibil-
ities for bypassing website- and browser based XSS filters.

To mitigate the risks introduced by SVG-based attacks,
we debate and evaluate several defense strategies. We show-
case a filtering solution that is capable of removing potential
malicious content from a given SVG file. Our approach does
not break the functionality of the core features of fully in-
teractive and descriptive SVG images. Instead, we extend
an existing and widespread filtering software to support fil-
tering of illegitimate and malicious content from SVG files,
without damaging the benign file structure and contents.
We have formerly implemented a prototype of the system
and tested it with 105,509 SVG images obtained from Wiki-
pedia. We found that we can filter 98.5% of the files without
causing any difference in the visual appearance of the im-
age, and for the remaining 1.5% we determined the visual
deviation to be negligible in more than half of the cases.

In summary, we make the following contributions:

• We are the first ones to demonstrate the security risks
tied to SVG files in the context of the World Wide Web
and comparable client-server environments. Further-
more, we argue that SVG files must not be perceived
as images, but rather full stack applications, provided
the cases of them being rendered by a web browser
or similar client software. This holds for SVG images
rendered via <embed> and similar tags, as well as dis-
played as standalone file in modern web browsers.

• We show several innovative attack techniques illus-
trating the potential of maliciously crafted SVG files,
which we call Active Image Injection (AII). We exhibit
how SVG files can cause damage to major websites,
and discuss the damage potential of SVG files embed-
ding arbitrary data formats. The hereby discussed AII
attacks affect a whole browser family, rendering any
website leaving user submitted images vulnerable if the
users visit it with the affected web browsers. Moreover,
we show how inline SVG can be used to facilitate XSS
filter bypasses on current web browsers.

• We introduce a defense solution to prevent SVG-based
attacks by filtering potentially malicious content from
a given SVG file. The large-scale evaluation results
suggest that this approach can successfully defeat AII
attacks on a practical level.

2. SVG BASICS AND SPECIFICS
This section provides a brief overview of the SVG file for-

mat and discusses the attack surface enabled by this image
format, i.e., we illustrate the different ways available for an
attacker to send arbitrary SVG files to a victim.

2.1 Overview and Benefits
The Scalable Vector Graphics (SVG) file format was intro-

duced in 1999 when it was published by the W3C in an at-
tempt to combine the best of both the specification drafts for
Precision Graphics Markup Language (PGML) developed
and published by Adobe, and the Vector Markup Language
(VML) developed and published by Microsoft, Autodesk,
Hewlett Packard, and others, all in 1998. SVG is a vec-
tor graphics format, i.e., it uses geometrical primitives such
as points, lines and curves to describe an image, while it
supports both static and dynamic content. The above men-
tioned static content and dynamic behavior are described in
an XML-based format, which implies that SVG files are in
fact text files.
The impact of SVG on the Internet can be described with

the following characteristics:

• Scalability: SVG files are, as the name indicates, scal-
able based on their nature as vector graphics. This
means that graphical output devices of any size can
render SVG images without significant information loss
or facing deficiencies in display quality. In times of
websites’ inhomogeneous output devices such as brow-
sers, feed- and screen readers, smartphones and Wire-
less Markup Language (WML) compatible cellphones,
this enables web developers to publish rich online doc-
uments without having to worry about the screen di-
mension of the device requesting the document.

• Openness: Unlike classical, raster-based image for-
mats, SVG files are neither stored in a binary format
nor is there a compression scheme rendering the actual
content of the file unreadable for the human eye. SVG
images can be enriched with meta-data and comments,
so that a (handicapped) human as well as a program
(e.g., a search engine or comparable parser) can ef-
fecively extract relevant information from the file in
question. In this case accessibility is ensured by storing
more descriptive information in a given file, compared
to the rather limited possibilities of image comments
provided by GIF and PNG files, or the embedded Ex-
changeable Image File Format (EXIF) data in RAW
and JPEG images. Note that gzipped SVG files (also
know as SVGZ) create an exception, for they do not
use compression as means to reduce the file size.

• Accessibility: Related to the aforementioned open-
ness, an SVG image can be enriched with sufficient
meta-data and information to beWeb Accessibility Ini-
tiative (WAI) compliant, i.e., visually impaired users
can extract relevant information by having their tools
parse and read the meta-data embedded in the SVG.

Furthermore, screen-readers can (theoretically) parse
SVG data and describe the shapes and visuals used by
the image, allowing a broader range of users to benefit
from its contents. In contrast, raster-based images are
void of this kind of support.

The SVG family consists of several members and we use
the following three file types as examples in later sections:

• SVG Full 1.1: SVG Full describes the full SVG fea-
ture set including 81 different SVG elements and tags.
The specification is designed without a special focus
on the devices parsing the SVG data.

• SVG Basic 1.1: SVG Basic is supposed to deliver a
subset of the SVG Full specification to ease the im-
plementation for developers of browsers for PDAs and
handheld devices. SVG Basic only provides 70 of the
81 SVG elements specified in SVG Full 1.1. Contrary
to SVG Tiny 1.2, the SVG Basic 1.1 features also in-
clude support for SVG fonts.

• SVG Tiny 1.2: SVG Tiny is specifically designed for
smartphones and similar mobile devices with limited
computing, rendering, and display capabilities. The
subset of allowed SVG elements and tags has been re-
duced to 47 elements. SVG Tiny also ships several
exclusive possibilities for event binding and external
resource loading which we discuss in Section 3.

Additionally, the SVG specification provides interface de-
scriptions for an SVG Document Object Model (DOM), which
implies that SVG files also offer some dynamic capabilities.
Users can create SVG files capable of providing event han-
dling, effects, time-based changes and animations, as well
as zoom effects and other helpful display enhancements. A
large set of filters can be applied to the elements of SVG
files to even more greatly increase the possibilities for image
transformation and animation.

The ability to combine SVG with the XML Linking Lan-
guage (XLink) features allows SVG files to link elements
to other elements in the same image file, other image files
or arbitrary objects referenced via Uniform Request Iden-
tifiers (URIs). Furthermore, these image files support the
implementation of International Color Consortium (ICC)
and Standard Red-Green-Blue (sRGB) color profiles, allow-
ing the embedment of arbitrary content such as Flash, PDFs,
Java and HTML via the <foreignObject> element.

2.2 HTML, SVG, and XML
Being historically an XML-based language, processing of

SVG documents has been quite different from the way brow-
sers process classic HTML websites. For instance, a slight
violation of the XML syntax, such as missing closing tags
or attribute value quotations, typically cause SVG proces-
sors to exit with an error. However, with the integration of
SVG capabilities into modern browsers, this strict parsing
approach got amalgamated with their more tolerant way of
processing HTML, CSS, JavaScript and the like.

This mixture is causing browsers to process SVG through
using two different processing modes: an HTML proces-
sor engine for CSS and JavaScript contents, and an ad-
ditional SVG parser supporting XML-specific features like
XML transformations (e.g. XSLT), XML Entity resolu-
tion, and tracking of XML Namespace bindings. Depending

on the particular website’s style of using SVG, the browser
switches between the two processing modes on the go. For
instance, encountering an inline <svg> tag within an HTML5
document causes the browser to switch from HTML mode to
XML/SVG mode. Vice versa, if the browser encounters an
HTML-specific tag (e.g. <p>) within an SVG mode context,
it automatically closes all open SVG elements, switches to
HTML mode, and renders the given tag.
As we show in the following sections, this approach is

error-prone and may cause a lot of SVG-related vulnerabil-
ities in most state-of-the-art browser engines.

2.3 Deployment Techniques
The capabilities, in terms of scripting and content inclu-

sion of SVG files, strongly depend on how they are embedded
in a website or loaded by the browser attempting to display
them. In this section, we focus on five diverse manners of
SVG files being deployed by a webserver or web application.
In addition, we outline the attack surface we have discov-
ered in connection to the five deployment techniques. The
specific attack vectors we use are discussed in detail in Sec-
tion 3, followed by Section 4 focusing on how to mitigate
and defend against those attacks.

1. SVG deployed via uploaded files: A large num-
ber of tested web applications (e.g., MediaWiki and
Wikipedia, OpenStreetMaps, DeviantArt, OpenClip-
Art, and several other free image hosting services) con-
sider SVG files to be equivalent to raster images such
as PNG, JPEG, and GIF files in terms of security im-
plications. MediaWiki and Wikipedia claim to block
the upload of SVG files containing script code, but
we did manage to easily bypass this restriction. As we
show in the next section, SVG files should be displayed
and executed with a heavily limited set of features to
prevent universal XSS attacks, since these files might
contain scripts, embed arbitrary content and process
events. In addition, we discovered alternative course
of action for outmaneuvering the capability limitations
of current browsers, which are used to protect sensitive
DOM properties such as a website’s cookies. Those are
discussed in detail in Section 3.2

2. SVG deployed via CSS backgrounds and img

tags: This way of deploying malicious SVG files can
be considered as the most dangerous and effective at-
tack, granted that the majority of the web applications
judge tags as part of user generated HTML to
be harmless:

Filter software, such as the HTMLPurifier [43], OWASP
AntiSamy [16], and similar tools whitelist image tags
and a large number of web applications allowing user
generated HTML are prone to be sensitive to a novel
class of attacks we term active image injections. Again,
we underline that SVG files should be displayed and
executed with a heavily limited set of features to pre-
vent universal XSS attacks. In Section 3.2 and 3.5,
we particularize on the attack vectors we discovered
through using this presumably harmless way of deploy-
ment, and outline an innovative method of attacking
browsers and high traffic web applications.

3. SVG deployed via inline SVG: The HTML5 spec-
ification draft suggests the web browsers to support

websites providing inline SVG. This means a developer
and an attacker are equally able to inject arbitrary
SVG content right into the markup tree of a HTML
document. The browser will then switch its parsing
mode, use an intermediary layer to parse the (possi-
bly non-well-formed) SVG content, clean it up, pass it
on to the internal XML parser and layout engine, and
then commence parsing and rendering the remaining
optional HTML content. The last step likely includes
even more inline SVG elements [17] that are capable
of interacting with the already parsed content. In Sec-
tion 3.4, we illustrate how this facilitates XSS filter
bypasses of existing websites, filter libraries, and most
importantly browsers and comparable user agents.

4. SVG deployed as font file (SVG Fonts): The
SVG standard specifies several possibilities to create
font files completely consisting of SVG data [3]. Mod-
ern browsers allow their inclusion via CSS and the
@font directive. In case when the browser supports
SVG fonts, for every character with an SVG font as-
signed, the parser checks whether the character has a
representation as an SVG path/glyph data and applies
this to the view port if possible. SVG fonts provide a
prominent range of features for detailed and complex
font formatting, Unicode support, alternative glyphs,
default behavior for missing glyphs, and more. We
detected attack vectors allowing the deployment of ar-
bitrary plug-in content via SVG fonts working on a
variety of desktop and mobile user agents.

5. SVG deployed via iframe, embed, or object tags:
The attack surface is comparably large to the one for
the classic XSS and does not differ much from the reg-
ular <iframe> and <script> injections. It will thus
not be discussed in more depth in this paper.

3. ATTACK VECTORS USING SVG FILES
Based on the prerequisites discussed in the previous sec-

tion, we now introduce several different attacks based on
SVG files and discuss their security impact.

3.1 Responsible Disclosure and Ethical Aspects
We describe several novel attacks related to SVG files and

their security impact, ranging from universal XSS attacks
to triggering vulnerabilities based on SVG images. Present-
ing such attacks is obviously an ethically sensitive area and
one question that arises is if it is acceptable and justifiable
to publish the attack details. In the following, we describe
most attack vectors from a high-level point of view and do
not present all implementation details. If a (legitimate) re-
searcher is interested in test cases, we are happy to share
them. Furthermore, we have contacted all major browser
vendors and informed them about these problems. We are
in contact with them and several reported problems have
already been fixed. As a result, an attacker cannot easily
take advantage of these identified attack vectors.

In addition, we introduce in Section 4 an approach to mit-
igate the attacks presented in this paper based on removing
suspicious content from SVG files at the server side. We are
in contact with the affected website’s security teams, and
discuss with them the possibility to deploy our countermea-
sure for these attacks. The WikiMedia team is interested in

testing and deploying the tool we created and discuss in Sec-
tion 4. Our mitigation approach can also be implemented
as a local filter proxy to protect a web browser against mali-
cious SVG images and we evaluate at the moment the effort
required to implement this local mitigation approach.

3.2 Local JavaScript Execution and
SVG Chameleons

One of the least sophisticated attack techniques (that is
still rather likely to work in real-world scenarios) is tricking
the victim into saving an SVG image from a website and
opening it later on for repeated viewing pleasure. There
are only a few ways for technically less affine users to tell
a classic raster-based image (PNG/JPEG/GIF) apart from
an SVG image. Once saved locally and double-clicked, the
browser will open the file – since most users do not have a
dedicated software installed that changes the application to
handle the SVG MIME type. The SVG file is consequently
opened from a file URI and in case it contains JavaScript,
this code will be executed in the same context. Depend-
ing on the web browser the victim is using, the JavaScript
can then attempt to read other files from the hard-disk or
neighboring directories, and cause a data leakage incident.
A thrifty adversary can cause the locally running JavaScript
to load an applet from an arbitrary domain, thus even by-
passing many of the security restrictions modern browsers
apply for local script execution.
Similar attacks could be performed with SVG Chameleons,

i.e., files containing both SVG and HTML content. Using
in-line XML transformation (XSLT), we managed to craft
an SVG file that acts like an image if embedded via ,
CSS or similar ways, but unfolds to a full stack HTML file
containing no SVG elements anymore as soon as opened di-
rectly [14]. This attack works with Gecko-based browsers,
since it appears to be the only layout engine supporting
in-line XSLT in SVG files. The attack would involve up-
loading an SVG Chameleon to a website such as Wikipedia,
and trick the victim into right-clicking the image shown em-
bedded and choosing to view the original. As soon as that
happens, the XSLT will transform the SVG into an HTML
file and execute embedded script code or worse [23].
Interestingly, some browsers such as Firefox do not allow

cookie access in case the SVG file is being opened directly.
This is especially important in cases where an attacker can
upload SVG files to the same domain a targeted user is be-
ing logged into. The reason for that limitation is a different
handling of the SVGDOM compared to the regular web-
site’s DOM. The SVGDOM does not know properties such
as document.cookie or even document.body. We discovered
ways to get around this limitation, though, by having the
SVG create a <foreignObject> tag containing an Iframe
loading the affected website. After the onload event of the
Iframe, we injected JavaScript into its scope capable of ex-
tracting sensitive data such as the cookies and bypassing the
more or less unconscious security restrictions.

3.3 Facilitating Cross Site Scripting Exploits
SVG images provide many possibilities for executing Java-

Script in uncommon ways. Many of these are not known
to typical web developers and thus are not covered by fil-
ter software protecting websites against XSS attacks. SVG
Tiny, for example, allows to execute JavaScript by using a
handler element with an event attribute, as shown in List-

ing 1. In case the event assigned to the handler element is
specified as load, the text content of the handler element
will be executed as JavaScript without any user interaction.
Blacklist-based XSS filter systems are usually not aware of
such ways of executing code, thus they are not capable of
detecting this kind of attacks.

<svg xmlns="http ://www.w3.org /2000/ svg">
<handler
xmlns:ev="http ://www.w3.org /2001/xml -

events"
ev:event="load">

alert (1)
</handler >

</svg >

Listing 1: Example for uncommon SVG-based
JavaScript execution via <handler> tag

Another uncommon way of embedding malicious Java-
Script in SVG files is shown in Listing 2. Using SVG’s
<set> tag, we dynamically equip an <feImage> tag with
an xlink:href pointing to a data: URI. This kind of im-
age element is meant to be used to apply overlay effects
for SVG elements utilizing external resources. Shielded by
the Base64 encoding, this URI contains another SVG im-
age that itself contains malicious JavaScript – which is run
immediately on loading the <feImage> tag.

<svg
xmlns="http ://www.w3.org /2000/ svg"
xmlns:xlink="http ://www.w3.org /1999/ xlink

">
<feImage >
<set
attributeName="xlink:href"
to="data:image/svg+xml;charset=utf -8;
base64 ,PHN2ZyB4bWxucz0iaHR0cDovL3d3dy53
My5vcmcvMjAwMC9zdmciPjxzY3JpcHQ%2BYWxl
cnQoMSk8L3NjcmlwdD48L3N2Zz4NCg%3D%3D"/>

</feImage >
</svg >

Listing 2: Example for uncommon SVG-based
JavaScript execution via <set> tag

These and other ways of executing JavaScript from within
an SVG file were used to bypass the filter used by the Me-
diaWiki software, which is the most commonly used open
source wiki software and, among many others, the platform
used by Wikipedia. We established contact with the Media-
Wiki team and work together with them on mitigation and
defense strategies against such attacks.

We also tried to load SVG images via a Canvas element
in an HTML website and steal information by using the
canvas.toDataURL() feature. This method is capable of
freezing the optical state of a canvas element and trans-
forming it into a dataURI for easy saving and later usage.
This attack technique to steal data cross domains has been
published by Lawrence in 2009 [30], but specifically aimed
to steal pixel data cross domain for attacking CAPTCHA
mechanisms and similar security instrumentations involv-
ing images. We attempted to use this attack technique in
a novel context and steal whole website screenshots from
SVG images being applied with a <foreignObject> tag and
cross domain Iframes. Surprisingly, this did not work at all.
All tested web browsers reacted with the expected behav-
ior and threw security errors on attempting to execute the

canvas.toDataURL() method when accessing the SVG with
cross domain content.

3.4 Facilitating Filter Bypasses
One feature distinguishing the rendering behavior of HTML

from XHTML and XML based websites and documents in
browsers is the handling of entities in plain text tags. Plain
text tags are HTML elements considered to contain plaintext
information (such as <script> and <style> tags, as well as
<noscript>, <noframes> and <nostyle> tags). While in
HTML documents entities such as a will be treated as
such, XHTML and XML documents will have the entity be
treated like its canonical representation (e.g., the character
a). In practice, this implies that within a XHTML/XML
document the code <script>alert(1)</script> will
execute the alert method, while an HTML document with
the same content causes the script engine to throw an error.
Of course, this behavior applies for SVG files as well, since

they are regular XML documents. Interesting in terms of
web security, though, is the fact that the same applies for
most web browsers to inline SVG. This implies that this
behavior can be transported to regular HTML documents
as soon as they contain an opening <svg> tag somewhere
in the markup tree. While the aforementioned <script>

tag example will not execute in an HTML document, the
variation of <svg><script>=lert(1)<p> will do.
Note that the browser’s parsers are also very tolerant

about well-formedness of inline SVG, and neither require at-
tribute delimiters nor balanced tags, nor even closing tags.
The <p> element at the end of the example shown above in-
dicates to the parser that the inline SVG just ended and an
HTML section has started. Thus, the browser automatically
closes both the <svg> and <script> tags, and thereby trig-
gers the alertmethod to execute. This technique, combined
with an injection, has been tested against the most common
XSS filters and we managed to bypass most of them.

3.5 Active Image Injection
Several ways of abusing SVG files to execute JavaScript

in situations where no script execution should happen at
all have been fixed after we reported them back to browser
vendors. Some vendors even completely restricted access to
the DOM from an SVG context. This makes it very hard
to execute same-domain JavaScript from within SVG files
delivered via CSS, image tags, CSS fonts, or other ways in
which browsers deliver images. Even if a web browser can
be tricked into executing JavaScript via SVG deployment
methods unintended for this, the script will run in the con-
text of about:blank and cannot get access to the deploying
website’s DOM. This effectively disables XSS attacks, since
they require their payload to execute on the targeted domain
and not on a bogus fully qualified domain name (FQDN)
such as about:blank.
A yet unsolved problem for several state-of-the-art web

browsers is plugin content. The Opera browser, for instance,
allows to use SVG files in order to deploy plugin content such
as Flash, Java, and PDF files, depending on which plugins
have been installed and registered on the user’s system. This
does not only hold for SVG files embedded via tags such as
<embed>, <object>, or <iframe>, but also for tags and
CSS. This means that an attacker can execute arbitrary plu-
gin code on a victim’s machine without any user interaction
by just having the victim browse a website containing an

image tag. The image can be delivered from any arbitrary
domain, thus most high-traffic websites and web applica-
tions allowing user generated image content are affected by
this problem.

The Opera security team has been informed about this
issue in summer 2010, but so far this vendor did not address
the issue with a sufficient fix. This leaves applications such
as Facebook, Google Mail, Yahoo! Mail, and many other
websites prone to this kind of Active Image Injection attack
– in case their users visit the page with Opera version 9 to
11. An example showcase has been set up to demonstrate
the severity of the vulnerability, also trying to enforce an
urgent fix from the Opera team [22].

Early versions of the Firefox 4 beta browser were prone to
AII attacks as well, but these bugs have been spotted and
fixed with Firefox 4 Beta 9, and did not surface in the fi-
nal release version. Nevertheless, all browser vendors should
monitor the security boundaries of SVG deployment closely,
since small changes can cause vulnerabilities affecting a ma-
jority of web applications at once.

3.6 Browser Vulnerabilities
So far we covered attacks utilizing malicious SVG files to

be instrumented in attacks against websites. We demon-
strated how SVG files can be used to facilitate XSS attacks
that bypass existing and well-configured filter mechanisms
and security best practices, such as encoding user-generated
data into HTML entities. SVG files can have other pur-
poses for attackers, though, and be used to leverage attacks
against the browser itself, or even against the underlying
operating system. During our tests, it became evident that
especially complex SVGs or SVG chameleons containing ex-
ecutable plugin code have the potential of easily crashing
web browsers. We observed and reported several cases of
memory corruption occurring in state-of-the-art browsers,
which were caused by faulty or incomplete implementation
of SVG features, or interference effects between the browser
components delivering the SVG data and other components
delivering embedded plugin code and Iframes.

One significant example showing the dangers of SVG files
when used as attack tools against browsers is a specific bug
in Opera version 11.50 24581. This version marked a turn-
ing point in the Opera browser history, since it was the first
officially released version supporting inline SVG so far. We
investigated an attack scenario where an attacker creates a
website providing an SVG image as favicon. This SVG im-
age deployed malicious content in form of a Flash file and
a Java applet, as well as, an embedded PDF file. When
opening the malicious website, the Opera browser attempted
to load the favicon to decorate the loaded page’s tab and
address bar, as shown in Figure 2. Although this context
should never execute plugin content or JavaScript at all, the
browser started to play the Flash video we used for testing,
and delivered the applet and PDF file – within the address
bar as can be seen in Figure 2. The code was executed in
the browser context, thus an exploit like this could easily
haven been escalated from a proof of concept to a full at-
tack, demonstrating how arbitrary vulnerabilities in browser
plugins can be triggered via image files.

Furthermore, SVG-based attack vectors should be consid-
ered relevant for another category of software as well: mail
clients such as Thunderbird and Opera Mail make use of
the same (or only slightly modified) rendering and layout

Figure 2: An SVG containing plugin content deliv-
ered via favicon

engines as their respective browser counterparts. We tested
the latest versions of Opera Mail and Thunderbird 3.3, and
discovered that both products allow usage of inline SVG
inside HTML mails. One attack vector we crafted caused
Thunderbird 3.3 alpha 3 to automatically store an SVG file
in the temporary folder, open it, and execute JavaScript in
the file:// context. The only required user interaction is a
click on an arbitrary part of the displayed mail body. At-
tacks like this can be used to place malicious software or
to steal sensitive information from the /tmp folder or other
directories, depending on the location of the SVG file and
the post-exploitation techniques used by the attacker.

4. MITIGATION TECHNIQUES
In the following section, we cover mitigation techniques to

fend the attacks presented in the previous part. We start
with a discussion of the common XML filtering and sanitiza-
tion techniques, point out which problems occur when SVG
is being used in modern web browsers, and list arguments as
to why the classic and formerly approved approaches cannot
be applied to SVGs used on the Internet. Based on these in-
sights, we introduce and discuss SVGPurifier , a PHP-based,
server-side SVG filter software we have developed to mit-
igate the identified attacks. What is more, we outline a
set of recommendations for browser vendors addressing non-
standard behavior that causes security problems with ma-
licious SVG images and inline SVG parsing. Some of the
listed issues have already been adopted by browser vendors
during the preparatory phase of this paper completion.

4.1 XML Sanitization
The most common approach for verifying an XML doc-

ument’s validity is the use of Document Type Definitions
(DTDs), XML Schema, or RelaxNG descriptions. All of
these languages authorize a precise specification of which
XML elements, attributes, and other tokens may be used
within a specific XML document. For instance, the SVG
Tiny specification provides a RelaxNG description of all
XML elements and attributes that may be used in “Tiny”-
compliant SVG documents. We have investigated these de-
scriptions for practical usage in terms of removing malicious
contents from SVG files. Unfortunately, we determined that
their capabilities of restricting SVG contents are more fo-
cused on the XML documents’ structure rather than re-
stricting the content values of the SVG elements and at-
tributes. Though both XML Schema and RelaxNG provi-
sion the means to restrict an SVG attribute value’s data
type to integer, string, URI, or other data types, we con-

cluded this is insufficient for effectively filtering malicious
SVG contents, such as those exemplified above.

For once, there is no feasible way to restrict the xlink:href
attribute of URI data type to point to same-domain loca-
tions only, which would have been essential for resisting cer-
tain XSS attacks. The only viable way to perform such a
verification while using XML Schema or RelaxNG capabil-
ities comes down to setting the attribute’s data type to a
restricted string value that must conform to a given reg-
ular expression pattern. Expressing a value restriction as
stated above would thus require a regular expression to be
crafted for each type of restriction necessary for fending off
the attacks. Although this might be (somehow and some-
what) feasible for same-domain URIs, it is easy to imagine
this approach to fail for complete CSS declarations, Base64-
encoded contents, and the like.

<!doctype html ><svg ><style >
<p>

Listing 3: XML Entity Resolution leading to
element injection

Another example that demonstrates the impossibility of
XML Schema to remove suspicious content from a given
file is shown in Listing 3. When processing this code frag-
ment, Firefox 4 resolves the < entity automatically, re-
sulting in the alert being triggered. The crux is that the
XML entity introduces an additional HTML element “on
the fly” during parsing. An XML Schema validator would
seen a <style> element with odd contents, but nothing to
be alerted about (note that the missing closing tags and
attribute value quotations are added automatically by the
parser engine.). However, the HTML renderer resolves the
entities, hence introducing the additional tag, and
triggering the onerror event due to the missing null file.

To summarize, we established that common XML valida-
tor techniques, like XML Schema or RelaxNG validation are
not capable of fending the specific SVG attack vectors de-
scribed above. Especially in the case of inline SVG, where
HTML, CSS, JavaScript, and SVG elements are mixed ar-
bitrarily, the approach of XML Schema validation must be
revoked as completely ineffective in practice.

4.2 SVG Purification
Due to the limitations discussed above, we require another

way to prevent the attacks introduced in Section 3. The ba-
sic idea of our methodology is to purify SVG images, i.e., re-
move all suspicious content from a given file and preserve as
much content as possible. As a result of this transformative
process, the visual impact is minimized and the suspicious
content is removed. Next, we discuss the overall design and
present some implementation details.

The open source market provides a lot of tools claiming to
possess the skills to filter user generated input for web appli-
cations in order to eliminate active markup and script code.
Their main purpose is usually XSS mitigation and markup
sanitation, as well as restructuring for validity and well-
formedness’ sake. For PHP-based web applications, several
filtering solutions are available and those most commonly
used include:

• kses [21], that has been incorporated into a highly cus-
tomized version by the popular WordPress software.

• htmlLawed [37], which claims to be the fastest and
most compact, yet complete solution.

• HTMLPurifier [43], which not only sanitizes data from
possibly malicious code fragments, but also generates
valid and well-formed XHTML output.

We analyzed all three XSS filters and have managed to
bypass each of them, demonstrating that even the most so-
phisticated filtering software can never be able to fully pro-
tect against malicious markup. Some of the bypasses worked
only for injections into SVG files, some even in a HTML/X-
HTML context.
Despite these drawbacks of the server-side filtering ap-

proaches, we have decided to choose HTMLPurifier as the
foundation for our SVG attack mitigation tool. One major
reason for this determination was the fact that HTMLPuri-
fier is very well maintained, receives frequent updates and
security fixes. Another reason is the quality of filtering: we
have only identified a few bypasses for this tool and every
single one of them was fixed very quickly upon having con-
tacted the developers. Still, most importantly, HTMLPur-
fier’s internal API allows to filter arbitrary XML data and is
not limited to HTML by design, unlike the other tested tools.
This knowledge allowed us to create an SVGPurifier branch,
a software that is using the HTMLPurifier API, but is not
touching the core components. Our SVGPurifier has been
supplied with a large array of data based on the SVG specifi-
cations defining which tags and attributes should be allowed
in the user-generated SVG files. We explicitly whitelist tags
and attributes, as well as the tag-attribute combinations and
specific value ranges for attributes. Uncommon sources for
cross-site scripting attacks, such as the <set> tag on older
Webkit-based browsers, are limited by SVGPurifier.
The <set> tag can be used in SVG files, similarly to the

timing driven equivalent <animate>, although the
attributeName value can only consist of a limited amount
of values. Specifically, we only allow those values which can-
not be used to initiate or overwrite event handlers, change
xlink:href values on the fly, or reposition elements and ele-
ment groups on a website. Our tests showed that the <set>
and <animate> tags can be used to assign javascript: and
data: URIs to existing elements. This can either enable
attacks by initiating malicious remote inclusions, or apply
malicious URL schemes to the existing elements.
Attacks like the one just portrayed, as well as those shown

in Listing 4, can be no longer carried out. Take account of
the fact that the <set>/<animate> functionality is not re-
moved completely, only the remote includes and the assign-
ment of malicious URL handlers have been blocked. Fur-
thermore, the resulys of our evaluation show that only two
files out of more than 100,000 tested instances from the
Wikipedia servers made use of the <set>/<animate> feature
at all (see Section 5 for details).

<svg xmlns="http ://www.w3.org /2000/ svg">
<set

attributeName="onmouseover"
to="alert (1)"/>

<animate
attributeName="onunload"
to="alert (1)"/>

</svg >

Listing 4: Initiating JavaScript execution via
set/animate elements

SVGPurifier completely forbids and removes <script>

as well as <foreignObject> tags and event handler usage.
Later versions of our purification approach might prove to
add a supplementary scripting layer to allow basic Java-
Script execution, but hinder scripts from reading, and over-
writing sensitive data, or conduct other activities capable
of leaking sensitive data or deploying malicious code [26].
As further elaborated on in Section 5, our tests showed that
none of the analyzed and purified SVG used actual <script>
tags. Surprisingly, a large percentage of the test files were
making use of <foreignObject> tags. The reason behind it
is that the software Adobe Illustrator uses this tag to hide
proprietary meta-info in the SVG images generated by this
tool [7]. Removing these tags does not affect the visual in-
formation provided by the SVG file.

Similar problems can be caused by maliciously crafted
SVG Cascading Stylesheets (SVGCSS). SVG styles support
more properties than classic CSS for (X)HTML documents
and specifically extend the feature set with font formatting,
typographic features, extended pointer event behavior, and
the possibility to reference to other SVG elements containing
definitions and visual effects. Arbitrary SVG elements can
constitute reference to other SVG elements or even let exter-
nal SVG files to borrow visual information or functionality
including event handling. Those references can be defined
via FunctionIRI or the fully qualified paths via protocol
schemes such as data, HTTP and others. SVGPurifier guar-
antees that no external references can be loaded by elements
allowing script execution. The <use> tag on modern Opera
browser versions is conversely problematic. This tag can be
utilized to include external resources executing JavaScript
or providing links with potentially malicious URL handlers.

Currently, SVGPurifier scans style elements and attributes
of the purified SVG for potentially malicious patterns and
neutralizes them by overwriting certain parts of the payload.
This includes replacing strings indicating the use of CSS ex-
pressions, Opera link and link target properties, as well as,
data binding approaches with the placeholder INVALID. List-
ing 5 demonstrates an example for a purification result. Be
assured that we do not forbid dangerous tags such as <set>,
but analyze the attribute values and remove them in case
an attack could be initiated by their contents.

// before
<svg xmlns="http ://www.w3.org /2000/ svg">

<circle r="50" fill="red" cx="30" cy="30
">

<set attributeName="onclick"
to="javascript:alert (1)//">

<set attributeName="fill" to="green">
</circle >

</svg >

// after
<svg xmlns="http ://www.w3.org /2000/ svg">
<circle r="50" fill="red" cx="30" cy="30">
<set to="INVALID"></set ><set attributeName
="fill" to="green"></set ></circle ></svg >

Listing 5: A malicious SVG before and after
purification

Section 5 will further build upon the results of this pu-
rification process and furnish insight into how far this (for
XML data unconventional) approach affects the visual in-
formation provided by the SVG test set.
SVGPurifier itself has undergone substantial testing from

the security community during a public demonstration over
a time-frame of several months [24]. The results helped us
to refine the filtering mechanism and spot all the less ob-
vious and difficult to find browser behaviors requiring dedi-
cated fixes to deliver effective filtering and keep the security
promise that the tool poses. During the testing phase we
logged about 500 attempts targeted to break the filter func-
tionality of the SVGPurifier and inject malicious content.
Of those, about 15 were successful and resulted in the re-
finement of our algorithms. The SVGPurifier performance
scales with the number of SVG tags and elements to sani-
tize, but can be considered uncritical since the main use case
for the tool is on the server-side (e.g., each uploaded SVG
image is transformed to remove suspicious content).
A server-side solution has the advantage that a website

owner can performantly protect its users from attacks using
SVGs and not requiring all users to upgrade their client-
software. Our evaluation showed that the SVGPurifier was
capable of removing malicious code in all of the discussed
test cases. We examined possibilities to craft a purely client-
side SVG filter combined with the possibility of limiting
down DOM elements and their capabilities. Our initial re-
search showed that this is feasible and considered as future
work.

4.3 Unexpected Browser Behavior
We also found several cases of unusual and (depending on

the execution context) often problematic browser behaviors
that forced us to adapt SVGPurifier to address them:

• The Opera AII attacks mentioned in Section 3.5 have
not been fixed by the vendor despite several bug re-
ports from our side. This problem complicates the im-
plementation of SVGPurifier since basically any exter-
nal image resource loaded by an SVG file could contain
suspicious plugin code and initiate an attack.

• Most browsers support the SVG <use> tag, but so far
only Opera allows to include external SVG resources
containing script code to execute, or links to show and
point to possibly malicious URIs via URL handlers
such as javascript and data. Most browsers tested
permit utilizing the <set> as well as the <animate> tag
to transform xlink:href attributes and set them with
JavaScript and data URIs, too. This should be re-
stricted by browsers for the sake of avoiding injection
attacks via <use>, <set>, and <animate>. However,
none of the over 100.000 SVG files we have tested dur-
ing our evaluation actually used this feature.

• Plain text tags inside SVG images such as <script>,
<style>, <noscript>, and similar tags allow to use
HTML entities, giving them an equivalent syntacti-
cal meaning as their canonical forms. This was rele-
vant for several of the XSS filter bypasses we described
in Section 3.4. Especially the automated decoding of
entities such as < and > could be used to by-
pass XSS filters and common protection mechanisms.
Browsers therefore need to be more selective in deter-
mining which entities get automatically decoded and

which do not. For example, Google Chrome went as
far as to completely disable the automated decoding.

Some of these behaviors forced us to customize SVGPurifier
and reduce the available feature set. Later versions of the
tool might be less restrictive, assuming that the browser
bugs get fixed and the market share of the affected browser
versions shrinks to an insignificant level. Future versions of
the tool will also be capable of handling external entities
and place their proper value at the desired locations.

5. EVALUATION
We have implemented a prototype of SVGPurifier, con-

sisting of 5,663 lines of PHP code. To evaluate the tool, we
compiled a test set of SVG images obtained from Wikipedia.
We chose this platform for several reasons: SVG images are
widely used within Wikipedia, the content of the platform
consists of the contributions from a large community, and
among the contributors, the employment of a diverse set of
tools to create the images can be observed. As a result, we
have a heterogeneous test set that enables us to study the
robustness and versatility of SVGPurifier.

To download the files, we used wikix, a tool that uses a
snapshot of Wikipedia (exported as XML) to generate the
URLs of the SVG files hosted at upload.wikimedia.org.
The latest snapshot of the english Wikipedia at the time
of writing has referenced a total of 112,646 SVG images.
105,509 were actually available for download at that time
and we used those files for our evaluation.

5.1 Evaluation Setup
In order to minimize the impact of SVGPurifier on us-

ability, the tool should not alter the visual appearance of an
image since this would decrease the user experience. Our
implementation only removes elements from an SVG file,
thus (by construction) no new image element will appear
in a purified image. However, the cleaning process might
be too aggressive, i.e., cases where we remove elements that
have a visual impact on the resulting image might occur.
To evaluate this effect, we compare the original image with
the purified one and determine if the file was altered during
the process. Since the size of our test set is too large for a
manual evaluation, we developed an approach to compare
SVG files in an automated way.

Comparing two SVG images for similarity is difficult, re-
sulting from the fact that there are countless ways of achiev-
ing the same visual appearance. Consequently, contrasting
only the XML markup does not enable us to determine if a
pair of images has the same visual appearance. Therefore,
we decided to convert the SVG files to Portable Network
Graphics (PNG) format and then perform the comparative
step. PNG is a raster graphics format providing lossless data
compression. Each pixel is defined in an 24 bit RGB color-
space with an optional 8 bit alpha channel (32 bit RGBA).
Comparing two PNG files for similarity can thus be achieved
by matching the value of each channel for each pair of pixels,
which in turn results in a numerical value representing the
absolute error a. A value of a = 0 indicates that no differ-
ence between the two images was found, while a > 0 denotes
some discrepancy. Note that this evaluation measures the
visual impact of our tool and approximates the deviation
caused by the transformation process.

We tested the following four tools regarding their capabil-
ity to convert SVG images to PNG format:

• Apache batik (http://xml.apache.org/batik/)

• rSVG (http://librsvg.sourceforge.net/)

• GIMP (http://www.gimp.org/)

• Inkscape (http://inkscape.org/)

Based on our test set, we have empirically found that the
Apache batik toolkit was able to convert the largest number
of files: only 23 of the 105,509 files could not be converted
by the tool, prompting us to remove them from the test
set. All files from the resulting evaluation set were con-
verted to a PNG image with a fixed width, assuring the
aspect ratio’s preservation. As batik does not fully sup-
port declarative animations, we create static PNG images
from the SVG files. In this manner, if an image was an-
imated beforehand, we will only consider the visual state
it is in before the animation begins. There are five differ-
ent elements within a SVG file to accomplish animation:
<set>, <animate>, <animateMotion>, <animateColor>, and
<animateTransform>. A close analysis showed that only two
SVG files in our test set actually contained one of these ele-
ments, which indicates that this feature is not (yet) widely
used. We therefore consider comparison of static images ex-
clusively to be only a minor limitation of our evaluation.
After converting images to PNGs, we compare the origi-

nal and the purified image using the ImageMagick toolkit,
which provides methods for a pixel-wise comparison of raster
images, as well as, for gathering statistics on the amount
of aberration. Furthermore, the tool is capable of creating
difference images that visually indicate what regions of an
image contain an error, which eventually enables us to man-
ually examine cases in which actual changes occur. Other
than determining the absolute number of pixels that differ
between the two images, we calculate the normalized mean
absolute error for each pair of images as metrics. We con-
sider the normalized mean absolute error to be more relevant
in our scenario than the root mean square error, as the for-
mer weights every aberration equally. Moreover, we log both
the size of the original file, and that of the purified one, fac-
tually determining the compression ratio resulting from the
purification process.

5.2 Evaluation Results
Based on the procedure outlined above, we analyzed all

105,486 files belonging to the evaluation set. For 98.5% of
the samples, no visual difference exists in the appearance
of the original versus the purified image (i.e., absolute error
a is 0 and, therefore, all other error metrics are 0 as well).
The 99th percentile of the normalized mean absolute error
is 0.00000474877, where 0 represents no error at all and 1
indicates completely dissimilar images.
When investigating the error cases and the corresponding

different images, we often found that although the image
contained some kind of aberration that can be expressed
numerically, a visual difference cannot be easily found by a
human observer. Specifically, we manually analyzed 1,000
test cases in which the absolute error was larger than zero.
We tried to determine in how many cases a human observer
would notice an aberration. While this is not believed to be
an approach that is valid overall (i.e., specific circumstances

like medical applications require precise conversion), a visual
impact in the context of a website exists only if a user can
actually spot it.

During the manual inspection process, we spent about 10
seconds on each pair of the images to compare them (aided
by the difference image to support the user). The results of
this manual examination indicate that only 46.3% of the er-
roneous samples were perceived as different from their orig-
inal. Since user experience may differ, we provide a website
where we present all defective images complete with their
original and the difference images, inviting others to freely
inspect these cases [6].

Several side effects were observed during the purification
process and the evaluation of this process’ results. What
was an additional positive side effect we found, was that
due to the removal of elements not contributing to the visual
appearance of the image, SVGPurifier actually compresses
files with an average compression ratio of 2.6. Some files had
a slightly larger file size after the purification process, which
was caused by the transformation the tool has performed on
broken files. In most cases, the increase in file size was based
on the addition of missing closing tags by SVGPurifier.

1.59% of the files in our test set contained one or more
instances of the <foreignObject> element. In the major-
ity of the 1,686 cases, this element was used as what had
appeared to be an artifact of Adobe Illustrator to store a
base64-encoded representation of its proprietary AI file for-
mat within the SVG file. SVGPurifier deleted these el-
ements and no visual impact resulted from this removal.
However, the image size was reduced significantly.

6. RELATEDWORK
Not surprisigly, being one of the most common problems

in the area of web security, the Cross Site Scripting (XSS)
problem has received a lot of attention during the last decade.
[11,12,20,27–29,31,36,39,40,42]. On the offensive side, sev-
eral different kinds of attacks were studied [12, 28, 31]. Ap-
proaches to prevent XSS attacks include information flow
and taint tracking [20,36,39,40], and analysis on the client-
or server-side [11, 29, 40]. John’s dissertation elaborated on
the attack and defense techniques in detail [27], while Phung
et al. presented specific defense techniques against client
side and JavaScript based attacks [38]. Nevertheless, none
of these works dealt with the threat of malicious image files
in the JavaScript execution context. In this paper, we in-
troduce new innovative attacks that highlight the fact that
in the era of HTML5, even a previously unsuspicious
tag may introduce security vulnerabilities due to the tight
integration of SVG images into the modern browsers.

One exception is the work by Barth et al., who discussed
attacks and mitigations around faulty and jaunty content
sniffing [9]. Deprecated browsers such as Opera 9 and Inter-
net Explorer 6 allowed to execute JavaScript by combining
image tags with JavaScript URIs, but none of the tested
modern browsers supports this kind of render behavior any-
more, as this particular attack vector has been recently fixed.
In contrast, the risks of Cross Site Scripting and related at-
tacks against browsers induced by SVG images have not yet
been investigated.

SVG as a subject itself surfaced rarely in the scientific se-
curity community. One notable exception is given by Dami-
ani et al. [18], who dealt with access control requirements
of parts of SVG files. Their assumption was that SVG files

containing sensitive personal information should be rendered
differently for different viewers, hence requiring some parts
of an SVG document to be deleted (or kept encrypted).
However, they did not manage to cope with the threat of
misusing SVG files as attack vectors. In the same line of
work, Mohammed et al. [33–35] investigated the use of SVG
images in medical contexts, where certain security guaran-
tees have to be granted for sensitive information contained
in an SVG image. Again, their publication did not resolve
the offensive use of SVG files.
One area of research closely related to the results pre-

sented in this paper deals with the problem of code embed-
ded in document formats. For example, Backes et al. showed
that maliciously prepared PostScript files can be used as an
attacker vector [8], and Checkoway et al. discussed malicious
TEX files that can, among other consequences, lead to an ar-
bitrary code execution and data exfiltration based on TEX’s
Turing-complete macro language [13]. Even pure text files
might contain shellcode as shown by Mason et al. [32]. We
continue this line of scientific enquiry and present attacks
related to SVG images.
An orthogonal area of research are alternative browser de-

signs [10,15,19,41]. These browsers explore how the security
of state-of-the-art browsers can be improved, for example by
creating separate protection domains. The results presented
in this paper need to be taken into account when designing
more secure browser and especially the fact that tags
might lead to suspicious content have to be considered.

7. CONCLUSION
In this paper, we provide an overview of Scalable Vec-

tor Graphics (SVG) and their security impact on the World
Wide Web as based on the new HTML5 specification drafts.
We show that this image format (which exists for more than
a decade), significantly changes the browser and web security
landscape. We introduce several novel attacks against mod-
ern browsers and show that this phenomenon can have major
impact on web applications that allow their users to post im-
ages. In particular, we illustrate that SVG images embedded
via tag and CSS can execute arbitrary JavaScript code
and similar attacks. Subsequently, the discussed XSS filter
bypasses, which work against several browsers, can have a
similarly high impact on a targeted attack scenario.
To mitigate the attacks presented, we proposed SVGPu-

rifier as a first practical solution available and capable of
removing potentially malicious code from SVG files. We
have empirically shown that the software is usable for real-
world scenarios such as a purification of the SVG files stored
by Wikipedia. We are in a discussion with the Wikipedia
team, who might adopt SVGPurifier to their infrastructure.
Furthermore, many of the identified attacks have already
been fixed by major browser vendors.

8. REFERENCES

[1] National vulnerability database (NVD)
(CVE-2007-1765). http://web.nvd.nist.gov/view/
vuln/detail?vulnId=CVE-2007-1765, Mar. 2007.

[2] National vulnerability database (NVD)
(CVE-2008-3702). http://web.nvd.nist.gov/view/
vuln/detail?vulnId=CVE-2008-3702, Aug. 2008.

[3] Fonts – SVG 1.1 (Second Edition).
http://www.w3.org/TR/SVG/fonts.html, June 2010.

[4] National vulnerability database (NVD)
(CVE-2010-3113). http://web.nvd.nist.gov/view/
vuln/detail?vulnId=cve-2010-3113, Aug. 2010.

[5] Scalable vector graphics (SVG) 1.1 (Second edition).
http://www.w3.org/TR/SVG11/, June 2010.

[6] Svgpurifier: inaccurately converted images.
http://svgpurifier.nds.rub.de/, May 2011.

[7] Adobe Systems Inc. Illustrator 10 XML Extensions
Guide, Sept. 2001.

[8] M. Backes, M. Durmuth, and D. Unruh. Information
Flow in the Peer-Reviewing Process. In IEEE
Symposium on Security and Privacy, 2007.

[9] A. Barth, J. Caballero, and D. Song. Secure Content
Sniffing for Web Browsers, or How to Stop Papers
from Reviewing Themselves. In IEEE Symposium on
Security and Privacy, 2009.

[10] A. Barth, C. Jackson, C. Reis, and Google Chrome
Team. The Security Architecture of the Chromium
Browser, 2008.
http://seclab.stanford.edu/websec/chromium/.

[11] P. Bisht and V. N. Venkatakrishnan. XSS-GUARD:
Precise Dynamic Prevention of Cross-Site Scripting
Attacks. In Conference on Detection of Intrusions and
Malware & Vulnerability Assessment, 2008.

[12] H. Bojinov, E. Bursztein, and D. Boneh. XCS: Cross
Channel Scripting and its Impact on Web
Applications. In ACM Conference on Computer and
Communications Security (CCS), 2009.

[13] S. Checkoway, H. Shacham, and E. Rescorla. Are
Text-only Data Formats Safe? or, Use This LaTeX
Class File to Pwn Your Computer. In USENIX
Workshop on Large-Scale Exploits and Emergent
Threats (LEET), 2010.

[14] J. Clark. XSL transformations (XSLT).
http://www.w3.org/TR/xslt, Nov. 1999.

[15] R. S. Cox, S. D. Gribble, H. M. Levy, and J. G.
Hansen. A Safety-Oriented Platform for Web
Applications. In IEEE Symposium on Security and
Privacy, 2006.

[16] A. Dabirsiaghi. The OWASP AntiSamy project.
http://code.google.com/p/owaspantisamy/, Apr.
2011.

[17] E. Dahlström. SVG and HTML. http://dev.w3.org/
SVG/proposals/svg-html/svg-html-proposal.html,
July 2008.

[18] E. Damiani, S. De Capitani di Vimercati,
E. Fernandez-Medina, and P. Samarati. An access
control system for SVG documents. King’s College,
University of Cambridge, UK, pages 29–31, 2002.

[19] C. Grier, S. Tang, and S. T. King. Secure Web
Browsing with the OP Web Browser. In IEEE
Symposium on Security and Privacy, 2008.

[20] M. V. Gundy and H. Chen. Noncespaces: Using
Randomization to Enforce Information Flow Tracking
and Thwart Cross-Site Scripting Attacks. In
Symposium on Network and Distributed System
Security (NDSS), 2009.

[21] U. Harnhammar. kses - PHP HTML/XHTML filter.
http://sourceforge.net/projects/kses/, Mar.
2010.

[22] M. Heiderich. Opera SVG AII testcase.
http://heideri.ch/opera/, 2011.

[23] M. Heiderich. SVG chameleon via XSLT - HTML5
Security Cheatsheet. http://html5sec.org/#125,
Mar. 2011.

[24] M. Heiderich and T. Frosch. SVGpurifier smoketest.
http://heideri.ch/svgpurifier/SVGPurifier/,
Apr. 2011.

[25] I. Hickson. HTML standard — the map element.
http://whatwg.org/specs/web-apps/current-work/

multipage/the-map-element.html#svg-0, Apr. 2011.

[26] L. Huang, Z. Weinberg, C. Evans, and C. Jackson.
Protecting browsers from Cross-Origin CSS attacks. In
ACM Conference on Computer and Communications
Security (CCS) 2010), 2010.

[27] M. Johns. Code Injection Vulnerabilities in Web
Applications - Exemplified at Cross-site Scripting.
PhD thesis, University of Passau, Passau, July 2009.

[28] C. Karlof, U. Shankar, J. D. Tygar, and D. Wagner.
Dynamic Pharming Attacks and Locked Same-Origin
Policies for Web Browsers. In ACM Conference on
Computer and Communications Security (CCS), 2007.

[29] E. Kirda, C. Kruegel, G. Vigna, and N. Jovanovic.
Noxes: A Client-Side Solution for Mitigating
Cross-Site Scripting Attacks. In ACM Symposium On
Applied Computing (SAC), 2006.

[30] E. Lawrence. Same origin policy part 1: No peeking.
http://blogs.msdn.com/b/ieinternals/archive/

2009/08/28/

explaining-same-origin-policy-part-1-deny-read.

aspx, Aug. 2009.

[31] M. Martin and M. S. Lam. Automatic Generation of
XSS and SQL Injection Attacks with Goal-directed
Model Checking. In USENIX Security Symposium,
2008.

[32] J. Mason, S. Small, F. Monrose, and G. MacManus.
English Shellcode. In ACM Conference on Computer
and Communications Security (CCS), 2009.

[33] S. Mohammed, L. Chamarette, J. Fiaidhi, and
S. Osborn. A Safe RSS Approach for Securely Sharing
Mobile SVG Biomedical Images for Web 2.0. In 12th
IEEE International Conference on Computational
Science and Engineering, 2009.

[34] S. Mohammed, J. Fiaidhi, H. Ghenniwa, and
M. Hahn. Developing a Secure Web Service
Architecture for SVG Image Delivery. Journal of
Computer Science, 2(2):171–179, 2006.

[35] S. M. A. Mohammed and J. A. W. Fiadhi. Developing
Secure Transcoding Intermediary for SVG Medical
Images within Peer-to-Peer Ubiquitous Environment.
In CNSR ’05 Proceedings of the 3rd Annual
Communication Networks and Services Research
Conference, 2005.

[36] Y. Nadji, P. Saxena, and D. Song. Document
Structure Integrity: A Robust Basis for Cross-site
Scripting Defense. In Symposium on Network and
Distributed System Security (NDSS), 2009.

[37] S. Patnaik. htmLawed. http://www.bioinformatics.
org/phplabware/internal_utilities/htmLawed/.

[38] P. H. Phung, D. Sands, and A. Chudnov. Lightweight
Self-Protecting JavaScript. In ACM Symposium on
Information, Computer and Communications Security
(ASIACCS), 2009.

[39] T. Pietraszek and C. V. Berghe. Defending Against
Injection Attacks Through Context-Sensitive String
Evaluation. In Symposium on Recent Advances in
Intrusion Detection (RAID), 2005.

[40] P. Vogt, F. Nentwich, N. Jovanovic, E. Kirda,
C. Kruegel, and G. Vigna. Cross-Site Scripting
Prevention with Dynamic Data Tainting and Static
Analysis. In Symposium on Network and Distributed
System Security (NDSS), 2007.

[41] H. J. Wang, C. Grier, A. Moshchuk, S. T. King,
P. Choudhury, and H. Venter. The Multi-Principal OS
Construction of the Gazelle Web Browser. In USENIX
Security Symposium, 2009.

[42] G. Wassermann and Z. Su. Static Detection of
Cross-Site Scripting Vulnerabilities. In International
Conference on Software Engineering (ICSE), 2008.

[43] E. Z. Yang. HTML Purifier.
http://htmlpurifier.org/, Mar. 2011.

