
On the (in-)security of
JavaScript Object Signing and Encryption

Dennis Detering

Master’s Thesis – 18th November 2016.
Chair for Network and Data Security

Supervisor: Prof. Dr. Jörg Schwenk
Advisors: M. Sc. Christian Mainka, Dipl.-Ing. Vladislav Mladenov, Dr.-Ing. Juraj Somorovsky

Eidesstattliche Erklärung

Ich erkläre, dass ich keine Arbeit in gleicher oder ähnlicher Fassung bereits für eine andere Prüfung an der

Ruhr-Universität Bochum oder einer anderen Hochschule eingereicht habe.

Ich versichere, dass ich diese Arbeit selbständig verfasst und keine anderen als die angegebenen Quellen

benutzt habe. Die Stellen, die anderen Quellen dem Wortlaut oder dem Sinn nach entnommen sind, habe

ich unter Angabe der Quellen kenntlich gemacht. Dies gilt sinngemäß auch für verwendete Zeichnungen,

Skizzen, bildliche Darstellungen und dergleichen.

Ich versichere auch, dass die von mir eingereichte schriftliche Version mit der digitalen Version

übereinstimmt. Ich erkläre mich damit einverstanden, dass die digitale Version dieser Arbeit zwecks

Plagiatsprüfung verwendet wird.

Official Declaration

Hereby I declare, that I have not submitted this thesis in this or similar form to any other examination at

the Ruhr-Universität Bochum or any other Institution of High School.

I officially ensure, that this paper has been written solely on my own. I herewith officially ensure, that I have

not used any other sources but those stated by me. Any and every parts of the text which constitute quotes

in original wording or in its essence have been explicitly referred by me by using official marking and proper

quotation. This is also valid for used drafts, pictures and similar formats.

I also officially ensure, that the printed version as submitted by me fully confirms with my digital version. I

agree that the digital version will be used to subject the paper to plagiarism examination.

Not this English translation, but only the official version in German is legally binding.

___________________________ ___________________________

Datum / Date Unterschrift / Signature

Acknowledgements

I would like to thank many people who supported and helped me throughout the work on this
thesis. First, I would like to thank the CSPi GmbH for the cooperation in writing this thesis. I
learned a lot during this time and am happy to continue my employment after my graduation. A
special thanks goes to my advisors at the Chair for Network and Data Security, Christian Mainka,
Vladislav Mladenov and Juraj Somorovsky, for quickly responding to all of my questions and for
their helpful input. Their explanations clarified complex issues and their enormous knowledge and
years of practice ensured the practical relevance and necessary features of the developed Burp
Suite extension. Many thanks to my proofreaders, Benedict and Alex, and to my dad Dirk for all
the helpful comments and advices. Finally, another big thank you to my girlfriend Karoline for
her support, patience and linguistic proofreading without even understanding a single word of the
content.

For every lock, there is someone out there trying to pick
it or break it.

— DAVID BERNSTEIN

Abstract
JavaScript Object Signing and Encryption describes how to apply encryption and signing algorithms
to JSON-based data structures. Despite their young age, the all together five new specifications
have already been implemented in several major protocols, frameworks and applications. Those in-
clude Single Sign-on (SSO) protocols like OpenID Connect, the Automatic Certificate Management
Environment (ACME) protocol, Apache’s CXF Webservice Framework and the IBM DataPower
Gateway solution.

This thesis investigates the security of these specifications, presents several practically applicable
attacks on library level and introduces a newly developed Burp Suite extension to assist in per-
forming security analyses on implementing applications. The attacks include the removal or faking
of signatures to break the integrity of messages and the recovery of encrypted data containing
symmetric keys to break the confidentiality of hidden contents. Apart from the attacks themselves,
this thesis provides recommended countermeasures to the mentioned vulnerabilities. All libraries,
which were found to be vulnerable during investigation, have been fixed in close communication
with the maintainers.

KEYWORDS: JSON, JavaScript Object Signing and Encryption (JOSE), Digital Signature, En-
cryption, Burp Suite, Signature Exclusion, Key Confusion, Algorithm Substitution, Bleichenbacher
Million Message Attack, PKCS#1 v1.5, Timing Attack

Contents

1. Introduction 1
1.1. Contribution . 2
1.2. Related Work . 2
1.3. Outline . 3

2. Fundamentals 4
2.1. JavaScript Object Notation . 4
2.2. JavaScript Object Signing and Encryption . 5

2.2.1. JSON Web Algorithm . 6
2.2.2. JSON Web Key . 8
2.2.3. JSON Web Signature . 9
2.2.4. JSON Web Encryption . 13
2.2.5. JSON Web Token . 16

2.3. Burp Suite . 17
2.4. Library Level . 18

3. Attacks 19
3.1. Signature Exclusion . 19

3.1.1. Library Analysis . 19
3.1.2. Test Cases . 21
3.1.3. Countermeasures . 21

3.2. Key Confusion . 22
3.2.1. Library Analysis . 23
3.2.2. Test Cases . 25
3.2.3. Countermeasures . 25

3.3. Bleichenbacher Million Message Attack . 26
3.3.1. Library Analysis . 28
3.3.2. Test Cases . 30
3.3.3. Countermeasures . 32

3.4. Timing Attack on Hash Comparison . 33
3.4.1. Library Analysis . 35
3.4.2. Countermeasures . 36

4. Implementation 39
4.1. System Setup . 39
4.2. User Interface . 41
4.3. Internal Structure . 46
4.4. Extensibility . 51

5. Conclusions and Future Work 57

A. Appendix 59
A.1. Base64 vs. Base64url . 59
A.2. Registered Header Parameter . 60
A.3. Timing Attack . 62
A.4. CVE Overview . 64
A.5. Burp Suite Feature Requests . 65

List of Figures 66

List of Listings 67

List of Tables 68

List of Acronyms 69

Bibliography 71

1. Introduction

Many applications available on the World Wide Web rely on secure communication channels on
lower layers, such as Internet Protocol Security (IPSec), Secure Sockets Layer (SSL) or Transport
Layer Security (TLS). These mechanisms only provide end-to-end encryption in point-to-point
scenarios, where the complete data is securely transported between two communication partners.
In several more complex scenarios, like communication over untrusted third-party intermediates
(proxy) or the need to only secure specific parts of a message, these technologies become insufficient.
These cases demand additional security technologies on the application layer which provide the
fundamental security concepts integrity, authenticity and confidentiality of arbitrary elements on
message level.

In practice, the Extensible Markup Language (XML)-based secure object formats XML Signa-
ture and XML Encryption enjoy great popularity and have been adopted in many widely deployed
protocols and systems, like in the Security Assertion Markup Language (SAML) [1]. The high com-
plexity of the Extended Markup Language and its manifold features lead to an increased suscepti-
bility to errors and potential vulnerabilities. XML parsers need to add support for namespacing,
Document Type Definitions (DTD), different node types, canonicalization and more [2] which in
certain scenarios might cause overhead issues, such as significant increases in processing time and
the data size of the document content. In particular, in certain scenarios with constrained environ-
ments, XML-based formats do not satisfactorily fulfill the requirements. Furthermore, there exist
several known attacks against XML Signatures and XML Encryption, abusing parsing issues and
programming errors.

An alternative to XML-based formats is the JavaScript Object Notation (JSON) [3] format.
JSON is a platform-independent data format which operates with only four primitive and two
structured types [3]. The JSON data format is widely deployed and used, among other things,
for databases, web services and configuration files. Its simplicity and small set of formatting rules
[3] facilitate a developer’s effort implementing JSON-based data structures and its lightweightness
reduces network load. “With the increased usage of JSON in protocols [...] there is now a desire
to offer security services which use encryption, digital signatures [and] Message Authentication
Codes (MACs) algorithms, that carry their data in JSON format” [4].

This demand has been addressed by the JavaScript Object Signing and Encryption (JOSE)
working group, which proposed all in all five new Request for Comments (RFC) specifications.
These standards specify means of applying cryptographic mechanisms to JSON messages, in order
to secure their integrity, authenticity and confidentiality.

1.1 Contribution 2

1.1. Contribution

This thesis investigates the security of JavaScript Object Signing and Encryption and aims to sup-
port enthusiasts with further research. First, several vulnerabilities are analyzed for their practical
exploitability and occurrence based on real world library implementations. Signature Exclusion and
Key Confusion are addressing JSON Web Signature and used to force the receiving party to accept
invalidly signed messages. The Bleichenbacher Million Message Attack is a well known vulnerability,
but has not yet been investigated with a special focus on JSON Web Encryption implementations.
This attack exploits specific system behavior to recover the encrypted plaintext message. Timing
attacks on hash comparison are known security issues in basically all cryptographic implementa-
tions. It is analyzed whether implementing libraries follow best practices of cryptographic security
for protection. During our investigation, the latest versions of several libraries have been identified
to be vulnerable. All in all six Common Vulnerabilities and Exposures (CVE) identifiers have been
assigned and all issues were fixed in cooperation with the maintainers.

Second, a Burp Suite extension has been developed, to support penetration testers and library
maintainers to test implementations for their resistance of the examined attacks. Apart from the
attacks, the extension provides several features to assist in manual testing and is easily extensible to
add further discovered attacks and checks. During the development two difficulties in working with
the Burp Suite Application Programming Interface (API) occurred. As a result, a public feature
request has been created and a second one updated. Both are depicted in the Appendix A.5.

1.2. Related Work

There already existed some attempts in the past to develop mechanisms for JSON security on
message level, all of which influenced the work on the JOSE specifications. The Google employees
Panzer, Laurie and Balfanz drafted the Magic Signatures mechanism [5] to digitally sign nearly
arbitrary messages, including JSON objects, while the Protivity Government Services and the
Nomura Research Institute worked on a comparable design called JSON Simple Sign [6] and the
related JSON Simple Encryption mechanism [7]. In 2009, the Microsoft employees Hardt and
Goland proposed a standardization draft called Simple Web Token [8] to the IETF, whose ideas
have been included into the JSON Web Token specification. Furthermore, certain concepts of the
JavaScript Message Security Format were incorporated into JWS and JWE [9].

XML Security

XML Signature and XML Encryption implementations suffered from several vulnerabilities and
attacks in the past. Many of them were investigated by Juraj Somorovsky in his dissertation On The
Insecurity Of XML Security [10] and related published papers like How To Break XML Encryption
[11], How To Break XML Encryption – Automatically [12], Bleichenbacher’s Attack Strikes Again:
Breaking PKCS#1 v1.5 in XML Encryption [13] and One Bad Apple: Backwards Compatibility

1.3 Outline 3

Attacks on State-of-the-Art Cryptography [14]. Further attacks on XML Signatures were researched
by James Forshaw in his whitepaper Exploiting XML Digital Signature Implementations [15]. Due
to similar supported cryptographic algorithms and use-cases, those publications were of special
interest to this thesis.

Security Research on JOSE

Tim McLean is a researcher, who focused on a security analysis of JSON Web tokens and discovered
the Signature Exclusion and Key Confusion vulnerabilities [16]. Many JOSE implementations were
fixed after his disclosure. Apart from the theoretical threat description, no proof-of-concept or
testing tool has been published.

Burp Suite Extension

Even if the standards for XML Signature and XML Encryption already exist for some years, the
only two publicly available Burp Suite plugins appeared just recently - in the mid/end of 2015.
The SAML Raider [17] “is a Burp Suite extension for testing SAML infrastructures [with the] two
core functionalities: Manipulating SAML messages and managing X.509 certificates” [17]. It comes
with a preset of common XML Signature Wrapping attacks to test against services. The Extension
for Processing and Recognition of Single Sign-On Protocols, short EsPReSSO [18], focuses on Single
Sign-On protocols and is the first plugin supporting the recognition and manipulation of messages
containing JSON Web Tokens. At the time of writing, there exists no extension for the Burp Suite
aiding security analyses of JSON Web Signature and JSON Web Encryption implementations, and
offering a preset of known attacks.

1.3. Outline

Chapter 2 gives an overview of the JSON technology and introduces the five JOSE specifications.
Additionally, it shortly describes the Burp Suite and its components, and delimits the term library
level. These are the necessary fundamentals to understand our research and the related attacks.
Chapter 3 is the main part of this thesis and explains the investigated vulnerabilities and applied
attacks. Apart from the attack itself, at least one library found to be vulnerable is analyzed in detail
and the resulting developed test cases are described. Each attack section finishes with possible
and recommended countermeasures. Chapter 4 presents the developed Burp Suite extension by
explaining the User Interface (UI) and its internal structure. The thesis concludes with a short
summary and prospects for future research in Chapter 5.

2. Fundamentals

The following chapter introduces the concepts and specifications behind JOSE and its related
JSON format. They are relevant to this thesis and provide the reader with the necessary basics
to comprehend the developed test cases, understand the user interface and implementations of the
Burp Suite extension and facilitate further research. Further, the Burp Suite platform and its
components are shortly introduced. The last section gives a delimitation of the term library level
as understood within this thesis. Readers familiar with these standards and technologies can safely
skip this chapter.

2.1. JavaScript Object Notation

The JavaScript Object Notation is a “lightweight, text-based, language-independent data inter-
change format [...] derived from the ECMAScript Programming Language Standard” [3]. While
originally specified by Douglas Crockford [19], the specification has been improved by the Internet
Engineering Task Force (IETF) to an Internet Standards Track document [3]. JSON’s design goals
were to be minimal, portable, textual, and a subset of JavaScript and can represent four primitive
types (strings, numbers, booleans, and null) and two structured types (objects and arrays) [3].

JSON Types

The terms string, object and array are understood the same way as described in the specification [3]:

• A string is a sequence of zero or more Unicode [20] characters. Within a string, the back-
slash (\) is used as control character to escape e. g. the double quote (") or the backslash itself.

• An object is an unordered collection of zero or more name/value pairs, where a name is a
string and a value is a string, number, boolean, null, object, or array.

• An array is an ordered sequence of zero or more values.

Structural Characters

The specification names six structural characters. The square brackets ([,]) define the beginning
and end of an array, the curly brackets ({, }) delimit an object, the colon (:) acts as separator in
a name-value pair and the comma (,) separates different elements in an array or a value from a
following name. Furthermore, insignificant whitespace, represented by a normal ASCII whitespace,

2.2 JavaScript Object Signing and Encryption 5

horizontal tab (\t), line feed (\n) or carriage return (\r), is allowed before or after any of the six
structural characters.

The following listing shows an example of a JSON array containing two objects and all previ-
ously mentioned primitive and structural types.

The owner member of both objects is another object itself, containing two values: A string
(name) and an integer (age). The registered value is of the type boolean and the favorite food
member is an array of strings.

1 [{
2 "name": "Rex",
3 "species": "dog",
4 "owner": {
5 "Name": "Dennis Detering",
6 "Age": 26
7 },
8 "favorite food": ["cracker", "cheese"],
9 "registered": true

10 },
11 {
12 "name": "Chang Miao",
13 "species": "cat",
14 "owner": {
15 "Name": "John Doe",
16 "Age": null
17 },
18 "favorite food": ["milk"],
19 "registered": false
20 }]

Listing 2.1: Example of a JSON array containing two objects

2.2. JavaScript Object Signing and Encryption

In May 2015, the JSON Web Signature (JWS) [21] and JSON Web Encryption (JWE) [22] mech-
anisms received the RFC status Proposed Standard by the IETF as a result of the proposals by
the JavaScript Object Signing and Encryption (JOSE) working group [4]. Along with the related
new RFC standard proposals JSON Web Key (JWK) [23], JSON Web Algorithm (JWA) [24] and
JSON Web Token (JWT) [25]1 they build a new approach to represent secured content “intended
for space constrained environments such as HTTP Authorization headers and URI query param-
eters [...] using JavaScript Object Notation (JSON) data structures” [26]. As a lightweight and

1When referring to all five RFC specifications as a group the abbreviation JOSE will be used in the following.

2.2 JavaScript Object Signing and Encryption 6

URL-safe2 alternative to XML-based data structures it has early been integrated into several ma-
jor protocols, frameworks and applications. Those include SSO protocols like OpenID Connect, an
identity layer on top of the OAuth 2.0 protocol [27], the ACME protocol [28], exemplarily used by
Let’s Encrypt [29], Atlassian Connect, where it is used as an authentication layer for add-ons [30],
the IBM DataPower Gateway solution [31] and Apache’s CXF Webservice Framework [32].

Base64 vs. Base64url

Throughout the JOSE specifications, most components are represented in a base64url encoded
format. “The Base 64 encoding is designed to represent arbitrary sequences of octets in a form
that allows the use of both upper- and lowercase letters but that need not be human readable”
[33, Section 4] and consists of an alphabet containing 64 characters. For using this encoding in
constrained environments, such as an URL or HTTP header, the character set must not contain
structural characters. Specifically, this refers to character 62 (+), 63 (/) and the padding charac-
ter (=) of the original alphabet. Section 5 of RFC 4648 defines an alternative character set called
base 64 encoding with URL and filename safe alphabet [33, Section 5], also shortly referred to as
base64url. The main difference is the substitution of the + to the character - (minus) and the /

to the character _ (underline). Additionally, the appended padding is omitted. A short illustration
of the difference is shown in Appendix A.1. Appendix C of the JWS specification gives an example
of how to implement base64url encoding without padding [21].

2.2.1. JSON Web Algorithm

The JSON Web Algorithm is specified in RFC 7518 and enumerates cryptographic algorithms and
identifiers represented in JSON-based data structures. Intended to be used with the JSON Web
Signature, JSON Web Encryption and JSON Web Key specifications, it describes the semantics
and operations that are specific to these algorithms and key types [24].

Cryptographic Algorithms for Digital Signatures and MACs

“JWS uses cryptographic algorithms to digitally sign or create a MAC of the contents of the JWS
Protected Header and the JWS Payload” [24]. The available algorithms for use with JWS are listed
in table 2.1.

Cryptographic Algorithms for Key Management

“JWE uses cryptographic algorithms to encrypt or determine the Content Encryption Key (CEK)”
[24]. The available algorithms for use with JWE in order to encrypt the CEK, produce the JWE
encrypted key or to use key agreement to agree upon the CEK are listed in table 2.2.

2In its Compact Serialization which will be described in Subsection 2.2.3.

2.2 JavaScript Object Signing and Encryption 7

Table 2.1.: List of available algorithms for use with JSON Web Signature including their alg header
parameter value and implementation requirements according to RFC 7518 [24].

alg Param Value Digital Signature or MAC Algorithm Implementation
Requirements

HS256 HMAC using SHA-256 Required
HS384 HMAC using SHA-384 Optional
HS512 HMAC using SHA-512 Optional
RS256 RSASSA-PKCS1-v1_5 using SHA-256 Recommended
RS384 RSASSA-PKCS1-v1_5 using SHA-384 Optional
RS512 RSASSA-PKCS1-v1_5 using SHA-512 Optional
ES256 ECDSA using P-256 and SHA-256 Recommended
ES384 ECDSA using P-384 and SHA-384 Optional
ES512 ECDSA using P-521 and SHA-512 Optional
PS256 RSASSA-PSS using SHA-256 and MGF1 with SHA-256 Optional
PS384 RSASSA-PSS using SHA-384 and MGF1 with SHA-384 Optional
PS512 RSASSA-PSS using SHA-512 and MGF1 with SHA-512 Optional
none No digital signature or MAC performed Optional

Table 2.2.: List of available algorithms for use with JSON Web Encryption in order to encrypt
or determine the CEK, including their alg header parameter value and implementation
requirements according to RFC 7518 [24].

alg Param Value Key Management Algorithm Implementation
Requirements

RSA1_5 RSAES-PKCS1-v1_5 Recommended
RSA-OAEP RSAES OAEP using default parameters Recommended
RSA-OAEP-256 RSAES OAEP using SHA-256 and MGF1 with SHA-256 Optional
A128KW AES Key Wrap with default initial value using 128-bit key Recommended
A192KW AES Key Wrap with default initial value using 192-bit key Optional
A256KW AES Key Wrap with default initial value using 256-bit key Recommended
dir Direct use of a shared symmetric key as the CEK Recommended
ECDH-ES Elliptic Curve Diffie-Hellman Ephemeral Static key agreement

using Concat KDF
Recommended

ECDH-ES+A128KW ECDH-ES using Concat KDF and CEK wrapped with A128KW Recommended
ECDH-ES+A192KW ECDH-ES using Concat KDF and CEK wrapped with A192KW Optional
ECDH-ES+A256KW ECDH-ES using Concat KDF and CEK wrapped with A256KW Recommended
A128GCMKW Key wrapping with AES GCM using 128-bit key Optional
A192GCMKW Key wrapping with AES GCM using 192-bit key Optional
A256GCMKW Key wrapping with AES GCM using 256-bit key Optional
PBES2-HS256+A128KW PBES2 with HMAC SHA-256 and A128KW wrapping Optional
PBES2-HS384+A192KW PBES2 with HMAC SHA-384 and A192KW wrapping Optional
PBES2-HS512+A256KW PBES2 with HMAC SHA-512 and A256KW wrapping Optional

2.2 JavaScript Object Signing and Encryption 8

Cryptographic Algorithms for Content Encryption

“JWE uses cryptographic algorithms to encrypt and integrity-protect the plaintext and to integrity-
protect the Additional Authenticated Data” [24]. The available algorithms for use with JWE in
order to encrypt and integrity-protect the content are listed in table 2.3.

Table 2.3.: List of available algorithms for use with JSON Web Encryption in order to encrypt and
integrity-protect the content, including their enc header parameter value and imple-
mentation requirements according to RFC 7518 [24].

enc Param Value Content Encryption Algorithm Implementation
Requirements

A128CBC-HS256 AES_128_CBC_HMAC_SHA_256 authenticated encryption algorithm Required
A192CBC-HS384 AES_192_CBC_HMAC_SHA_384 authenticated encryption algorithm Optional
A256CBC-HS512 AES_256_CBC_HMAC_SHA_512 authenticated encryption algorithm Required
A128GCM AES GCM using 128-bit key Recommended
A192GCM AES GCM using 192-bit key Optional
A256GCM AES GCM using 256-bit key Recommended

2.2.2. JSON Web Key

JSON Web Key is specified in RFC 7517 and represents a cryptographic key in a JSON data
structure as used in the JWS and JWE specifications. Additionally, a JWK Set is defined as
a set of JWKs to represent multiple keys in a single JSON object [23]. The specification lists
and describes several parameters registered in the Internet Assigned Numbers Authority (IANA)
registry for use with JWKs. Four of them, which are mainly used, are explained in the following.
Refer to Table A.3 in the appendix for a full list and to [23] for full details.

• The kty (key type) parameter which “identifies the cryptographic algorithm family used with
the key, such as RSA or EC” [23, Section 4.1]. This is the only required parameter to be
present in a JWK.

• The use (public key use) parameter which “identifies the intended use of the public key [and]
is employed to indicate whether a public key is used for encrypting data or verifying the
signature on data” [23, Section 4.2]. This parameter is optional. Specified values are: sig

(signature) and enc (encryption).

• The alg (algorithm) parameter which “identifies the algorithm intended for use with the
key” [23, Section 4.4]. This parameter is optional.

• The kid (key ID) parameter which “is used to match a specific key [and] is used, for instance,
to choose among a set of keys within a JWK Set during key rollover” [23, Section 4.5]. The
structure of the value is not specified. This parameter is optional.

2.2 JavaScript Object Signing and Encryption 9

Listing 2.2 shows an example of a JWK Set containing three different cryptographic keys represented
as JWKs. One symmetric key designated as being for use with the AES key wrap algorithm, a
public key using an elliptic curve algorithm and a second public key using an RSA algorithm.

1 {
2 "keys":
3 [{
4 "kty":"oct",
5 "alg":"A128KW",
6 "k":"GawgguFyGrWKav7AX4VKUg"
7 },
8 {
9 "kty":"EC",

10 "crv":"P-256",
11 "x":"MKBCTNIcKUSDii11ySs3526iDZ8AiTo7Tu6KPAqv7D4",
12 "y":"4Etl6SRW2YiLUrN5vfvVHuhp7x8PxltmWWlbbM4IFyM",
13 "use":"enc",
14 "kid":"1"
15 },
16 {
17 "kty":"RSA",
18 "n": "0vx7agoebGcQSuuPiLJXZptN9nndrQmbXEps2aiAFbWhM78LhWx
19 4cbbfAAtVT86zwu1RK7aPFFxuhDR1L6tSoc_BJECPebWKRXjBZCiFV4n3oknjhMs
20 tn64tZ_2W-5JsGY4Hc5n9yBXArwl93lqt7_RN5w6Cf0h4QyQ5v-65YGjQR0_FDW2
21 QvzqY368QQMicAtaSqzs8KJZgnYb9c7d0zgdAZHzu6qMQvRL5hajrn1n91CbOpbI
22 SD08qNLyrdkt-bFTWhAI4vMQFh6WeZu0fM4lFd2NcRwr3XPksINHaQ-G_xBniIqb
23 w0Ls1jF44-csFCur-kEgU8awapJzKnqDKgw",
24 "e":"AQAB",
25 "alg":"RS256",
26 "kid":"2011 -04 -29"
27 }]
28 }

Listing 2.2: Example JWK Set containing one symmetric and two public keys represented as
JWKs3

2.2.3. JSON Web Signature

JSON Web Signature is specified in RFC 7515 and represents integrity protected content secured
with digital signatures or MACs using JSON-based data structures [21]. There are several registered
header parameter names defined in the specification, a full list is printed in Table A.2 in the
appendix. The only required of them is the alg (algorithm) parameter, used to identify the applied
cryptographic algorithm to secure the JWS.

3Examples taken from RFC 7517 [23]

2.2 JavaScript Object Signing and Encryption 10

JWS Header Types

The JWS specification differentiates between three types of headers: JOSE Header, JWS Protected
Header and JWS Unprotected Header. The JOSE Header is a “JSON object containing the param-
eters describing the cryptographic operations and parameters employed” [21, Section 2]. The JWS
Protected Header is a JSON object containing the header parameter which is integrity protected by
the JWS signature. By using the JWS Unprotected Header, no integrity protection is used for the
header parameter. A JWS Unprotected Header can only be present if the JWS JSON Serialization
is used. Within the JWS Compact Serialization only one header is present, which means in this
case, the JOSE Header and the JWS Protected Header are the same, and the integrity protection
comprises the entire header.

The difference between both serializations is explained in the following section.

JWS Serialization

The JWS specification defines two types of serialization to represent a JWS. The JWS Compact
Serialization is a compact and URL-safe string representation and supports only a single signature
or MAC. As already depicted in the previous section, this type of serialization does not provide any
syntax to contain a JWS Unprotected Header and treats the JOSE Header and the JWS Protected
Header as being equal. One example is depicted in Listing 2.3, showing the three base64url-
encoded and concatenated result strings. Basically all samples used in this thesis are shown in its
JWS Compact Serialization representation.

1 eyJhbGciOiJSUzI1NiJ9 # Header
2 .
3 eyJpc3MiOiJqb2UiLA0KICJleHAiOjEzMDA4MTkzODAsDQogImh0dHA6Ly9leGFt # Payload
4 cGxlLmNvbS9pc19yb290Ijp0cnVlfQ
5 .
6 cC4hiUPoj9Eetdgtv3hF80EGrhuB__dzERat0XF9g2VtQgr9PJbu3XOiZj5RZmh7 # Signature
7 AAuHIm4Bh-0Qc_lF5YKt_O8W2Fp5jujGbds9uJdbF9CUAr7t1dnZcAcQjbKBYNX4
8 BAynRFdiuB–f_nZLgrnbyTyWzO75vRK5h6xBArLIARNPvkSjtQBMHlb1L07Qe7K
9 0GarZRmB_eSN9383LcOLn6_dO–xi12jzDwusC-eOkHWEsqtFZESc6BfI7noOPqv

10 hJ1phCnvWh6IeYI2w9QOYEUipUTI8np6LbgGY9Fs98rqVt5AXLIhWkWywlVmtVrB
11 p0igcN_IoypGlUPQGe77Rw

Listing 2.3: JSON Web Signature in its JWS Compact Serialization representation4

The second type is called JWS JSON Serialization and further differentiates between a general
and a flattened variant. The JWS JSON Serialization is “a representation of the JWS as a JSON
object [and] enables multiple digital signatures and/or MACs to be applied to the same content”
[21, Section 2]. Unlike the JWS Compact Serialization, “this representation is neither optimized
for compactness nor URL-safe” [21, Section 2]. Listing 2.4 presents an example using the general

4Example taken from [21, Appendix A.2.1]

2.2 JavaScript Object Signing and Encryption 11

JWS JSON Serialization syntax and “demonstrates the capability for conveying multiple digital
signatures and/or MACs for the same payload” [21, Appendix A.6]. The first digital signature has
been generated with the RSA algorithm and the second one by using ECDSA.

1 {
2 "payload": "eyJpc3MiOiJqb2UiLA0KICJleHAiOjEzMDA4MTkzODAsDQogImh0dHA6Ly9leGF
3 tcGxlLmNvbS9pc19yb290Ijp0cnVlfQ",
4 "signatures":[{
5 "protected": "eyJhbGciOiJSUzI1NiJ9",
6 "header": {"kid":"2010-12-29"},
7 "signature": "cC4hiUPoj9Eetdgtv3hF80EGrhuB__dzERat0XF9g2VtQgr9PJbu3XOiZj5RZ
8 mh7AAuHIm4Bh-0Qc_lF5YKt_O8W2Fp5jujGbds9uJdbF9CUAr7t1dnZcAcQjb
9 KBYNX4BAynRFdiuB–f_nZLgrnbyTyWzO75vRK5h6xBArLIARNPvkSjtQBMHl

10 b1L07Qe7K0GarZRmB_eSN9383LcOLn6_dO–xi12jzDwusC-eOkHWEsqtFZES
11 c6BfI7noOPqvhJ1phCnvWh6IeYI2w9QOYEUipUTI8np6LbgGY9Fs98rqVt5AX
12 LIhWkWywlVmtVrBp0igcN_IoypGlUPQGe77Rw"
13 },{
14 "protected": "eyJhbGciOiJFUzI1NiJ9",
15 "header": {"kid":"e9bc097a-ce51-4036-9562-d2ade882db0d"},
16 "signature": "DtEhU3ljbEg8L38VWAfUAqOyKAM6-Xx-F4GawxaepmXFCgfTjDxw5djxLa8IS
17 lSApmWQxfKTUJqPP3-Kg6NU1Q"
18 }]
19 }

Listing 2.4: JSON Web Signature in its General JWS JSON Serialization representation5

Listing 2.5 illustrates an example using the flattened JWS JSON Serialization syntax which, as
the name implies, reduces the amount of nesting within the JSON object and does not allow for
multiple signatures or MACs.

1 {
2 "payload": "eyJpc3MiOiJqb2UiLA0KICJleHAiOjEzMDA4MTkzODAsDQogImh0dHA6Ly9leGF
3 tcGxlLmNvbS9pc19yb290Ijp0cnVlfQ",
4 "protected": "eyJhbGciOiJFUzI1NiJ9",
5 "header": {"kid":"e9bc097a-ce51-4036-9562-d2ade882db0d"},
6 "signature": "DtEhU3ljbEg8L38VWAfUAqOyKAM6-Xx-F4GawxaepmXFCgfTjDxw5djxLa8IS
7 lSApmWQxfKTUJqPP3-Kg6NU1Q"
8 }

Listing 2.5: JSON Web Signature in its Flattened JWS JSON Serialization representation6

5Example taken from [21, Appendix A.6.4]
6Example taken from [21, Appendix A.7]

2.2 JavaScript Object Signing and Encryption 12

Signature Computation

To create a JWS, the following steps have to be performed. “The order of the steps is not sig-
nificant in cases where there are no dependencies between the inputs and outputs of the steps”
[21, Section 5.1]. Some steps slightly vary if the JWS JSON Serialization is used. A graphical
illustration of the generation process is shown in Figure 2.1.

Steps:

1. Create the JSON object containing the desired header parameters and compute the encoded
header value by using BASE64URL(UTF8(JWS Protected Header)) (red)

2. Compute the encoded payload value by using BASE64URL(JWS Payload) (green)

3. Compute the JWS signature in the manner defined for the particular algorithm by using the
previously generated encoded values, concatenated with a dot, as input:
ASCII(BASE64URL(UTF8(JWS Protected Header)) || ’.’ || BASE64URL(JWS Payload)) (white)

4. Compute the encoded signature value by using BASE64URL(JWS Signature) (blue)

5. Create the JWS Compact Serialization output by concatenating the three encoded values
with a dot: BASE64URL(UTF8(JWS ProtectedHeader)) || ’.’ || BASE64URL(JWS Payload)

|| ’.’ || BASE64URL(JWS Signature)

Figure 2.1.: Process of generating a JSON Web Signature

2.2 JavaScript Object Signing and Encryption 13

2.2.4. JSON Web Encryption

JSON Web Encryption is specified in RFC 7516 and provides authenticated encryption to ensure
the confidentiality and integrity of an arbitrary sequence of octets using JSON-based data struc-
tures [22]. The registered header parameters defined by the specification are listed in Table A.3
in the appendix. For JWE, there are two required parameters to be implemented for compliance,
namely the alg (algorithm) parameter and the enc (encryption algorithm) parameter. The alg

parameter identifies the cryptographic algorithm or method used to transmit the value of the CEK,
while the enc parameter holds the identifier of the content encryption algorithm used to perform
authenticated encryption on the plaintext [22].

Basic Structure

The basic structure of a JWE consists of six logical components:

1. The JOSE Header, a JSON object containing the cryptographic meta-data, just like described
in the previous section 2.2.3 for the JWS header types.

2. The JWE Encrypted Key which is the value of the Content Encryption Key, if necessary as
defined by the used algorithm and encrypted with the key encryption algorithm specified in
the alg header parameter [22].

3. The JWE Initialization Vector which is the Initialization Vector (IV) used for the encryption
of the plaintext, for specific algorithms requiring an IV [22].

4. The JWE Additional Authenticated Data which is an integrity protected but not encrypted
input to an AEAD7 operation [22]. This might, for instance, be the JWE Protected Header.

5. The JWE Ciphertext which is the ciphertext value resulting from the authenticated encryp-
tion.

6. The JWE Authentication Tag which is one of the two outputs of an AEAD operation and
used to ensure the integrity of the inputs [22]. Only available with specific algorithms.

JWE Serialization

The JWE specification defines two types of serialization which are closely related to the serializations
for JWS. A compact variant for constrained environments, called JWE Compact Serialization, and
the JWE JSON Serialization which represents JWEs as JSON objects and allows for encryption

7An Authenticated Encryption with Associated Data (AEAD) algorithm “is one that encrypts the plaintext, al-
lows Additional Authenticated Data to be specified, and provides an integrated content integrity check over the
ciphertext and Additional Authenticated Data. AEAD algorithms accept two inputs, the plaintext and the Ad-
ditional Authenticated Data value, and produce two outputs, the ciphertext and the Authentication Tag value”
[22, Section 2]. One of such algorithms is the AES Galois/Counter Mode (GCM).

2.2 JavaScript Object Signing and Encryption 14

of the same content to multiple parties [22]. Listing 2.6 depicts one example of a JWE in its JWE
Compact Serialization representation, showing the five base64url-encoded and concatenated result
strings. In this example, taken from [22, Appendix A.2.7], the plaintext “Live long and prosper.”
is encrypted using the RSA PKCS#1 v1.5 algorithm for key encryption and AES-128 CBC with
HMAC SHA-1 for the content encryption.

1 eyJhbGciOiJSU0ExXzUiLCJlbmMiOiJBMTI4Q0JDLUhTMjU2In0 # Header
2 .
3 UGhIOguC7IuEvf_NPVaXsGMoLOmwvc1GyqlIKOK1nN94nHPoltGRhWhw7Zx0-kFm # Encrypted Key
4 1NJn8LE9XShH59_i8J0PH5ZZyNfGy2xGdULU7sHNF6Gp2vPLgNZ__deLKxGHZ7Pc
5 HALUzoOegEI-8E66jX2E4zyJKx-YxzZIItRzC5hlRirb6Y5Cl_p-ko3YvkkysZIF
6 NPccxRU7qve1WYPxqbb2Yw8kZqa2rMWI5ng8OtvzlV7elprCbuPhcCdZ6XDP0_F8
7 rkXds2vE4X-ncOIM8hAYHHi29NX0mcKiRaD0-D-ljQTP-cFPgwCp6X-nZZd9OHBv
8 -B3oWh2TbqmScqXMR4gp_A
9 .

10 AxY8DCtDaGlsbGljb3RoZQ # IV
11 .
12 KDlTtXchhZTGufMYmOYGS4HffxPSUrfmqCHXaI9wOGY # Ciphertext
13 .
14 9hH0vgRfYgPnAHOd8stkvw # Auth Tag

Listing 2.6: JSON Web Encryption in its JWE Compact Serialization representation8

Message Encryption

The process of generating a JWE strongly depends on the used algorithms and contains up to 19
steps, described in detail in [22, Section 5.1]. One example of how a JWE might be generated
is graphically illustrated in Figure 2.2. The first step is to create the JSON objects building the
header(s) and encode them using base64url (red). Second, the value of the CEK is determined
which might include random generating, computing based on key agreement methods, asymmetri-
cally or symmetrically encrypting to the recipient or simply directly adding the shared key or the
empty octet sequence [22] (purple). For JWE, there exist five specified Key Management Modes,
defining how the CEK is determined and transferred:

1. Key Encryption, “a Key Management Mode in which the CEK value is encrypted to the
intended recipient using an asymmetric encryption algorithm” [22, Section 2].

2. Key Wrapping, “a Key Management Mode in which the CEK value is encrypted to the in-
tended recipient using a symmetric key wrapping algorithm” [22, Section 2].

3. Direct Key Agreement, “a Key Management Mode in which a key agreement algorithm is used
to agree upon the CEK value” [22, Section 2].

8Example taken from [22, Appendix A.2.7]

2.2 JavaScript Object Signing and Encryption 15

4. Key Agreement with Key Wrapping, “a Key Management Mode in which a key agreement
algorithm is used to agree upon a symmetric key used to encrypt the CEK value to the
intended recipient using a symmetric key wrapping algorithm” [22, Section 2].

5. Direct Encryption, “a Key Management Mode in which the CEK value used is the secret
symmetric key value shared between the parties” [22, Section 2].

Next, the CEK value is encoded using base64url. After that, if required for the specific algorithm,
an IV is randomly generated and base64url encoded (blue). If compression is enabled, the plaintext
will be compressed using the selected algorithm.

Figure 2.2.: Process of generating a JSON Web Encryption

The plaintext value (green) is encrypted using the CEK and IV values of the previous steps, together
with the Additional Authenticated Data (AAD) (white), if present. The encryption is based on the
selected content encryption algorithm and outputs the ciphertext (yellow) and an authentication tag
(orange). These values are all encoded using base64url and compound to the desired serialization
output.

2.2 JavaScript Object Signing and Encryption 16

2.2.5. JSON Web Token

JSON Web Token is specified in RFC 7519 and used to transfer claims9 in a compact, URL-safe
representation using the JWS/JWE Compact Serialization between two parties [25]. “The claims
in a JWT are encoded as a JSON object that is used as the payload of a JSON Web Signature
(JWS) structure or as the plaintext of a JSON Web Encryption (JWE) structure, enabling the
claims to be digitally signed or integrity protected with a Message Authentication Code (MAC)
and/or encrypted” [25, Abstract].

The specification defines seven Claim Names that are registered in the IANA registry. None of
them is intended to be mandatory to use or implement, but rather seen as “a starting point for a
set of useful, interoperable claims” [25, Section 4.1].

• The iss (issuer) claim, which “identifies the principal that issued the JWT” [25, Section 4.1.1].

• The sub (subject) claim, which “identifies the principal that is the subject of the JWT, [as]
claims in a JWT are normally statements about the subject” [25, Section 4.1.2].

• The aud (audience) claim, which “identifies the recipients that the JWT is intended for. [...]
If the principal processing the claim does not identify itself with a value in the aud claim
when this claim is present, then the JWT MUST be rejected” [25, Section 4.1.3].

• The exp (expiration time) claim, which “identifies the expiration time on or after which the
JWT MUST NOT be accepted for processing” [25, Section 4.1.4].

• The nbf (not before) claim, which “identifies the time before which the JWT MUST NOT
be accepted for processing” [25, Section 4.1.5].

• The iat (issued at) claim, which “identifies the time at which the JWT was issued [...] can
be used to determine the age of the JWT” [25, Section 4.1.6].

• The jti (JWT ID) claim, which “provides a unique identifier for the JWT” [25, Section 4.1.7]
and can be used to protect against replay attacks.

As the claims of a JWT are either used as payload of a JWS or plaintext of a JWE, the generation
and verification processes follow the exact same steps as described in the previous sections. Listing
2.7 shows an exemplary payload containing six claims that are used to determine a user’s session
and administrative role.

9A claim is “a piece of information asserted about a subject [and] is represented as a name/value pair consisting of
a Claim Name and a Claim Value” [25, Section 2]

2.3 Burp Suite 17

1 {
2 "iss": "dety.eu",
3 "iat": 1478452995,
4 "nbf": 1478452935,
5 "exp": 1483228800,
6 "username": "ddety",
7 "is_admin": true
8 }

Listing 2.7: Example of a JWT payload containing six claims

2.3. Burp Suite

Burp Suite is “an integrated platform for performing security testing of web applications” [34]
developed by PortSwigger Ltd. and enjoys great popularity amongst security testers. It allows for
a combination of advanced manual and fully automated security testing of web-based services and
is extensible through a built-in modular plugin system. Burp Suite consists of the following key
components:

Intercepting Proxy “An intercepting proxy, which [enables a user to] inspect and modify traffic
between [the] browser and the target application” [34] by operating as a man-in-the-middle. The
proxy tool gives full control over any request with the ability to forward, modify or drop them.
Apart from listing interesting details, such as the response length, status code, MIME type, etc., the
HTTP history enables the user to review all previously recorded requests and responses.

Spider “An application-aware spider, for crawling content and functionality” [34]. This tool aims
to aid in the reconnaissance of a test by passively compiling a list of URLs found in HTTP responses,
thus creating a comprehensive site map of the target’s application, with the additional information
of its actual reachability.

Web Application Scanner “An advanced web application scanner, for automating the detection of
numerous types of vulnerability” [34]. The vulnerability scanner is only available in the professional
version of the Burp Suite and actively or passively scans the target for a large list of known security
issues10.

Intruder “An intruder tool, for performing powerful customized attacks to find and exploit unusual
vulnerabilities” [34]. Its main characteristic is to inspect specific entry points, such as parameters
or headers, by performing, for instance, brute force, fuzzing11 or enumeration checks.
10See: https://portswigger.net/KnowledgeBase/Issues/ for a full list of Burp Suite’s issue types.
11“Fuzz testing or Fuzzing is a Black Box software testing technique, which basically consists in finding implementa-

tion bugs using malformed/semi-malformed data injection in an automated fashion.” [35]

https://portswigger.net/KnowledgeBase/Issues/

2.4 Library Level 18

Repeater “A repeater tool, for manipulating and resending individual requests” [34]. With this
tool, the user is able to easily test for replay attacks or manually manipulate certain parts of
a request.

Sequencer “A sequencer tool, for testing the randomness of session tokens” [34]. By collecting a
list of samples for session, CSRF or other security-relevant tokens, this tool estimates the degree
of randomness and analyzes its quality – including the standard FIPS12 tests.

Extender An extension API “allowing [one] to easily [develop custom] plugins, to perform complex
and highly customized tasks within Burp” [34]. Burp Suite in general is closed source and only
exposes certain interfaces and functions for public access13. Its functionality can be extended with
plugins developed in Java, as Burp Suite itself, in Python using JPython or Ruby using JRuby.
Developers have the opportunity to publish their bundled extensions to the BApp Store14, Burp
Suite’s own application store containing extensions written by its community.

2.4. Library Level

All tests of the attacks against implementations of the JOSE specifications explained in this thesis
have been performed on the library level.

Apart from auditing the publicly available source codes, a minimal testing environment has been
set up as HTTP wrapper to process incoming requests, call the corresponding functions of the
JOSE library to be tested and generate a JSON-formatted response. The necessary configurations,
function calls and arguments have been taken from the library’s documentation or examples. For
Python libraries the microframework Flask15 and for PHP libraries a combination of the web server
nginx and the PHP-FPM 16 FastCGI implementation are used. With this setup, the developed Burp
Suite extension could be tested and the practical applicability of the attacks could be verified.

Limiting the test setup this way allowed for a controlled context, as higher level services, frame-
works or applications, like e.g. OpenID Connect or Atlassian Connect, usually perform additional
operations on received messages and may have specific countermeasures in place.

12Federal Information Processing Standards (FIPS) are standards and guidelines developed by the National Institute
of Standards and Technology (NIST) [36].

13See https://portswigger.net/burp/extender/api/index.html for Burp Suite’s extender API documentation
14URL: https://portswigger.net/bappstore/
15URL: http://flask.pocoo.org/
16URL: https://php-fpm.org/

https://portswigger.net/burp/extender/api/index.html
https://portswigger.net/bappstore/
http://flask.pocoo.org/
https://php-fpm.org/

3. Attacks

The following chapter describes attacks against JWT, JWS and JWE. For each attack, the basic
idea and underlying problem is explained first. Afterwards, at least one specific library is analyzed
in order to understand how such vulnerabilities occur and look like in real-world implementations,
following an explanation of the developed test cases for the Burp Suite extension. Each section fin-
ishes with possible countermeasures to mitigate the attack. All tests of the attacks and source code
audits were performed at the library level and not against actual implementations in applications.

3.1. Signature Exclusion

Signature Exclusion is an attack, where an adversary is able to remove the signature of a signed
message and to trick the application into falsely accepting this message as valid. The JWA spec-
ification [24] defines the algorithm type none, intended for use in “contexts where the payload is
secured by means other than a digital signature or MAC value, or need not be secured” [24]. These
so called Unsecured JWSs are of the exact same format as other JWSs, with the only difference of
using the empty octet sequence as its JWS Signature value [24]. Up to and including draft 15 of
the RFC 7518 specification [37], the none algorithm was one of the two required algorithms to be
implemented for compliance.

It was first discovered by Tim McLean that many libraries do not adequately check if Unsecured
JWSs are allowed, and that they treat them as a valid token with a correct signature [16]. An
attacker might easily abuse this to craft a valid JWS or JWT with arbitrary content by replacing
the alg header value with none and removing the signature, thus performing arbitrary actions on
a system or impersonating other users.

3.1.1. Library Analysis

To understand how such a vulnerability occurs and how to build appropriate test cases for the Burp
Suite extension, old versions of the PHP JOSE library by Alessandro Nadalin (aka Namshi) [38]
have been analyzed, which are known to be vulnerable against Signature Exclusion.

In order to check whether a given algorithm is supported and to load its related class, the PHP
JOSE library relies on the mandatory alg header value and checks the existence of a class with
this name on a certain location using namespace definition. Listing 3.1 shows the implementation
of the getSigner() function, which performs this check (l. 4), and will return a new instance if

3.1 Signature Exclusion 20

the class exists (l. 5). If not, an InvalidArgumentException is thrown, stating that the given
algorithm is not supported (l. 7).

1 protected function getSigner () {
2 $signerClass = sprintf(’Namshi \\JOSE\\ Signer \\%s\\%s’,
3 $this ->encryptionEngine , $this ->header[’alg’]);
4 if (class_exists($signerClass)) {
5 return new $signerClass ();
6 }
7 throw new InvalidArgumentException(sprintf("The algorithm ’%s’ is not

supported for %s", $this ->header[’alg’], $this ->encryptionEngine));
8 }

Listing 3.1: PHP JOSE getSigner() function (version 2.1.3)1.

With version 2.1.3, an allowUnsecure flag has been introduced and set to false by default (Listing
3.2, l. 2) in order to mitigate any unexpected use of an Unsecured JWS. An additional condition
checks whether the algorithm value of the header is None and if yes, whether allowUnsecure is
permitted (Listing 3.2, ll. 4-6).

1 - public static function load($jwsTokenString)
2 + public static function load($jwsTokenString , $allowUnsecure = false)
3 [...]
4 + if ($header[’alg ’] === ’None ’ && !$allowUnsecure) {
5 + throw new InvalidArgumentException(sprintf(’The token "%s" cannot be

validated in a secure context , as it uses the unallowed "none" algorithm ’,
$jwsTokenString));

6 + }

Listing 3.2: Commit diff excerpt of the PHP JOSE library showing the changes to disable the
none algorithm by default2.

The problem with this amendment is how the algorithm value is checked: Apart from the fact that
None is not the correct spelling as defined by the specification – that would be all lowercase: none –
an attacker might use different capitalization to bypass this check. The algorithm value is used to
verify that a class with this name exists by using the class_exists() function and creating an
instance with the help of its namespace definition (Listing 3.1, ll. 3-5). The class name though “is
matched in a case-insensitive manner”3, leaving this version of the library open to the signature
exclusion vulnerability even with the introduced allowUnsecure flag.

This issue has been detected and fixed with version 5.0.2 by using the native strtolower()

function to perform a case-insensitive check of the algorithm value. Listing 3.3 shows the diff of
the related file.

1See: https://github.com/namshi/jose/blob/master/src/Namshi/JOSE/JWS.php for full file.
2See: https://github.com/namshi/jose/commit/127b4415e66d89b1fcfb5a07933db0b5ff5cd636 for full commit.
3PHP.net, class_exists function, URL: http://php.net/manual/en/function.class-exists.php

https://github.com/namshi/jose/blob/master/src/Namshi/JOSE/JWS.php
https://github.com/namshi/jose/commit/127b4415e66d89b1fcfb5a07933db0b5ff5cd636
http://php.net/manual/en/function.class-exists.php

3.1 Signature Exclusion 21

1 - if ($header[’alg ’] === ’None ’ && !$allowUnsecure) {
2 + if (strtolower($header[’alg ’]) === ’none ’ && !$allowUnsecure) {

Listing 3.3: Commit diff excerpt of the PHP JOSE library showing the changes to fix the case-
sensitivity of the algorithm value4.

3.1.2. Test Cases

Testing an implementation for signature exclusion is quite straightforward and does not require
additional input from the tester. Only a single original message is required without any further
prerequisites. Based on the original message, the signature value is removed to fulfill the empty
octet sequence requirement and the alg value is modified to the none algorithm in four spelling
variations – the payload and other header values remain unchanged. Based on the JWA specification
in RFC 7518 [24] and the analyzed PHP JOSE library by Alessandro Nadalin [38], the following
four spelling variations have been chosen: None, none, NONE, nOnE (Table 3.1).

Table 3.1.: Available vectors for the Signature Exclusion attack
Vector Action

Lowercase Replace algorithm header value with: none; Remove signature string.
Capitalized Replace algorithm header value with: None; Remove signature string.
Uppercase Replace algorithm header value with: NONE; Remove signature string.
Mixed Replace algorithm header value with: nOnE; Remove signature string.

3.1.3. Countermeasures

Due to the fact that the none algorithm has intentionally been added to the JWA specification
to support Unsecured JWSs in certain scenarios, it is necessary for full compliance to support
this algorithm and implement other mechanism to prevent any abuse. The none algorithm has
been introduced in draft 01 of the RFC 7518 and was one of the two required algorithms to be
implemented for compliance up until draft 15. Since draft 16, the none algorithm is set to being
optional. The Unsecured JWS Security Considerations section of the JWA specification [24, section
8.5] provides two possible example means of prevention:

1. Add an additional boolean acceptUnsecured parameter to the verify() method of the
library to indicate whether the none algorithm is an acceptable algorithm to use. This
approach has been implemented by the analysed PHP JOSE library of the previous section.

2. Amend the verify() method of the library to take a list of acceptable algorithms as an
additional parameter and reject all JWS values that are not listed.

4See: https://github.com/namshi/jose/commit/be2db86f5224cc7d34ef98f9a315c6b45bc4fc4e for full commit.

https://github.com/namshi/jose/commit/be2db86f5224cc7d34ef98f9a315c6b45bc4fc4e

3.2 Key Confusion 22

Apart from these two means of prevention named in the RFC, two other approaches have been
discovered by evaluating different implementations of the JOSE specifications:

3. Every algorithm related function is individually implemented in its own class according to
the specific algorithm. In case of the none algorithm, the verify() function always returns
false, with the intention in mind that if Unsecured JWSs are used on purpose, there is no
need to validate any signature. This approach is, for example, taken by the PyJWT 5 python
library by José Padilla.

4. A similar approach, taken for example by the node-jsonwebtoken6 library by Auth0, Inc.,
would be to throw an error on verification for tokens using the none algorithm or not con-
taining a signature, if a secret key was provided.

All of the given approaches are satisfactory to circumvent the explained Signature Exclusion, but
do not solve the underlying problem that attackers control the choice of the algorithm. This leaves
implementations open to other possible pitfalls, one of which is examined in the following section.

3.2. Key Confusion

Key Confusion, also known as Algorithm Substitution, is an attack, where an adversary is able to
trick the application into using a specific known cryptographic key for an unexpected algorithm.
This is problematic in cases where both, symmetric and asymmetric, algorithms are supported.
Symmetric algorithms use a shared secret to sign a given message and verify its related signa-
ture, whereas asymmetric algorithms use a secret private key to generate a signature and the
corresponding (published) public key to verify its validity. The JWA specification defines four dif-
ferent cryptographic algorithms with different key sizes for digital signatures and MACs. The only
symmetric Keyed-Hash Message Authentication Code (HMAC) algorithm is required for compliant
implementations and the asymmetric algorithms based on RSA and ECDSA are recommended, thus
the probability of symmetric and asymmetric algorithms being implemented (and used) alongside
is considered realistic.

Figure 3.1.: Attack scenario for the Key Confusion Attack

5José Padilla, JSON Web Token implementation in Python, URL: https://github.com/jpadilla/pyjwt
6Auth0, Inc., JsonWebToken implementation for node.js, URL: https://github.com/auth0/node-jsonwebtoken

https://github.com/jpadilla/pyjwt
https://github.com/auth0/node-jsonwebtoken

3.2 Key Confusion 23

Tim McLean discovered that many libraries solely rely on the user-controlled algorithm header
parameter alg to distinguish which algorithm to use for verification [16]. In his research, he
recognized that most implementing libraries use the same basic structure for the verify() function:

verify(string token , string verificationKey)

Depending on the implementing system and which algorithm is used, the verification function is
either called with the shared HMAC secret key or with the server’s (e.g. RSA) public key:

System using HMAC
verify(clientToken , serverHMACSecretKey)

System using an asymmetric algorithm (e.g. RSA)
verify(clientToken , serverRSAPublicKey)

The vulnerability will occur if the system is expecting a token signed with one of the asymmetric
algorithms. An attacker might abuse the structure of the verification API to craft an HMAC
signature by using the server’s public key as shared secret. On the server side, the system passes
the token and the RSA public key to the verify() function to check its validity. The underlying
JOSE library, however, bases its verification decision on the alg header – which in this case is
HMAC. Thus, it generates a new HMAC with the given public key as secret and compares it to
the provided signature – which has been generated equally by the adversary. An exemplary attack
workflow is illustrated in Figure 3.1.

3.2.1. Library Analysis

Tim McLean put much effort in informing the public and especially the maintainers of many JOSE
libraries via blog post, Twitter, proposal to the JOSE working group and direct mail7. Apart from
media attention8, corresponding security considerations have been added to the JWS specification
in RFC 7515 [21].

This is the reason why almost all of the analyzed libraries were not vulnerable to the key confusion
attack (anymore). Nevertheless, one library could be identified which implemented a countermea-
sure, but disabled it by default.

Responsible Disclosure. The maintainer of the jose-php library by Nov Matake & Gree, Inc.
[39] has been informed that its implemented mitigation is deactivated by default, thus likely to
be still vulnerable on many usages. This issue has been assigned the CVE identifier CVE-2016-5431.

7Blog post: URL: https://www.chosenplaintext.ca/2015/03/31/jwt-algorithm-confusion.html; Twitter: URL:
https://twitter.com/McLean0/status/578281292237815808; JOSE working group mailing list: URL: http:
//www.ietf.org/mail-archive/web/jose/current/msg05036.html; Exemplary direct mail: URL: https://
bitbucket.org/b_c/jose4j/wiki/04-01-15-Transparency

8Threatpost, The Kaspersky Lab security news service, Critical vulnerabilities affect JSON Web Token libraries,
URL: https://threatpost.com/critical-vulnerabilities-affect-json-web-token-libraries/111943/

https://www.chosenplaintext.ca/2015/03/31/jwt-algorithm-confusion.html
https://twitter.com/McLean0/status/578281292237815808
http://www.ietf.org/mail-archive/web/jose/current/msg05036.html
http://www.ietf.org/mail-archive/web/jose/current/msg05036.html
https://bitbucket.org/b_c/jose4j/wiki/04-01-15-Transparency
https://bitbucket.org/b_c/jose4j/wiki/04-01-15-Transparency
https://threatpost.com/critical-vulnerabilities-affect-json-web-token-libraries/111943/

3.2 Key Confusion 24

One of the recommended countermeasures is to pass an additional parameter with a list of
allowed algorithms to the verify() function (see Section 3.2.3). This mitigation technique has
been implemented by the jose-php library [39], but set to null by default:

private function _verify($public_key_or_secret , $expected_alg = null)

Listing 3.4: Signature of the verify function of jose-php9

The problem is that a developer is not forced to specify the expected algorithm and that old
vulnerable code is still working when upgrading to the new version without any warning or notice.
The maintainer of the library reacted with the fix shown in Listing 3.5, which will raise an Exception

if one of the HMAC algorithms is used and if the algorithm is implicitly determined by the alg

header.

1 if (! $expected_alg) {
2 - # NOTE: might better to warn here
3 $expected_alg = $this ->header[’alg ’];
4 + $using_autodetected_alg = true;
5 }
6

7 switch ($expected_alg) {
8 case ’HS256 ’:
9 case ’HS384 ’:

10 case ’HS512 ’:
11 - return $this ->signature === hash_hmac($this ->digest (),

$signature_base_string , $public_key_or_secret , true);
12 + if ($using_autodetected_alg) {
13 + throw new JOSE_Exception_UnexpectedAlgorithm(
14 + ’HMAC algs MUST be explicitly specified as $expected_alg ’
15 +);
16 + }
17 + $hmac_hash = hash_hmac($this ->digest (), $signature_base_string ,

$public_key_or_secret , true);
18 + return hash_equals($this ->signature , $hmac_hash);

Listing 3.5: Commit diff of the php-jose library addressing the disabled countermeasure to the
key confusion attack10

Even if the given commit fixes this specific case of the key confusion vulnerability, it was rec-
ommended to change the signature from $expected_alg = null to $expected_alg to force a
developer to explicitly set the expected algorithms. With the given fix, it is still possible to ma-

9URL: https://github.com/nov/jose-php/blob/a7fa2b3a02ce62f1edc1804dd93bc81e7cb59f8c/src/JOSE/JWS.
php#L121

10URL: https://github.com/nov/jose-php/commit/1cce55e27adf0274193eb1cd74b927a398a3df4b

https://github.com/nov/jose-php/blob/a7fa2b3a02ce62f1edc1804dd93bc81e7cb59f8c/src/JOSE/JWS.php#L121
https://github.com/nov/jose-php/blob/a7fa2b3a02ce62f1edc1804dd93bc81e7cb59f8c/src/JOSE/JWS.php#L121
https://github.com/nov/jose-php/commit/1cce55e27adf0274193eb1cd74b927a398a3df4b

3.2 Key Confusion 25

nipulate the algorithm header when other algorithms are used, which might, for instance, lead to
possible downgrade attacks.

3.2.2. Test Cases

The most challenging part from an attacker’s perspective is to use the exact same string represen-
tation of the public key as used by the verifying system. Usually, (RSA) public keys are stored in
Privacy Enhanced Mail (PEM) formatted files or as JWK data set. Both formats are supported
by the developed JOSEPH Burp Suite extension.

Table 3.2.: Available vectors for the Key Confusion attack
Vector Action

Original Original PEM string.
OriginalNoHeaderFooter Remove PEM header and footer.
OriginalNoLF Remove any line feeds.
OriginalNoHeaderFooterLF Remove PEM header and footer. Remove any line feeds.
PKCS1 Remove first 24 bytes.
PKCS1NoHeaderFooter Remove first 24 bytes. Remove PEM header and footer.
PKCS1NoLF Remove first 24 bytes. Remove any line feeds.
PKCS1NoHeaderFooterLF Remove first 24 bytes. Remove PEM header and footer. Remove

any line feeds.
PKCS8 Original PKCS8 PEM string.
PKCS8WithHeaderFooter Add PEM header and footer.
PKCS8WithLF Add PEM specific line feeds.
PKCS8WithHeaderFooterLF Add PEM specific line feeds. Add PEM header and footer.
PKCS8WithHeaderFooterLFEndingLF Add PEM specific line feeds. Add PEM header and footer. Add

ending line feed.

Various string operations are performed on the given input, as depicted in Table 3.2, in order to
increase the probability of finding the correct string representation used by the server. Basically,
several different variations with/without the PEM header and footer and with/without line feeds
and spaces are generated. Additionally, some vectors remove the first 24 bytes, which is the most
simple textual conversion from a PKCS#8 formatted public key to a PKCS#1 format, specifically
used for RSA keys. All vectors are tested with all three available key sizes of the HMAC algorithm,
to cover even more variations.

3.2.3. Countermeasures

In his blog post [16], Tim McLean suggested adding an algorithm parameter to the signature of
the verification function:

verify(string token , string algorithm , string verificationKey)

With the intention that the receiving party should know its expected algorithm, any dissent would
be easily detectable. Nevertheless, just passing a list of expected algorithms to the verification

3.3 Bleichenbacher Million Message Attack 26

function is not sufficient for systems supporting multiple algorithms. The JWS specification defines
the kid (key ID) header parameter for the purpose of selecting the correct key for the corresponding
algorithm [21, section 4.1.4]. Not only does this evade an attacker to control the manner of which key
is used for which algorithm, it additionally facilitates phased key rotation11 and “allows originators
to explicitly signal a change of key to recipients” [21, Section 4.1.4]

Apart from that, the more basic underlying problem with the given verification API is the typical
case of primitive obsession by representing a cryptographic key as a primitive data type – as in this
case a string. As depicted by Pedro Félix, a cryptographic key is a “potentially composed object
(e.g. two integers in the case of a public key for RSA-based schemes) with associated metadata”
[40], such as the related algorithm(s) it applies for and the usage context (encryption, signing). It
is recommended to use corresponding objects, such as RSAPublicKeySpec12 in Java, to represent a
cryptographic key.

In addition to these countermeasures, one might add an additional field containing the algorithm
value to the payload of the JWS. This integrity protected value can then be compared to the pro-
vided algorithm in the header during the verification process to detect any dissent. This mitigation
method is more likely to be used on application level, though.

3.3. Bleichenbacher Million Message Attack

In 1998, Daniel Bleichenbacher published a novel adaptive chosen ciphertext attack against pro-
tocols based on the RSA encryption standard PKCS#1 [41] at the International Cryptology Con-
ference CRYPTO. Bleichenbacher exemplarily applied his attack to the SSL v3.0 protocol with
experimental results of recovering an encrypted message within between 300 thousand and 2 mil-
lion chosen ciphertexts. Due to an average of roughly 1 million necessary messages, this attack is
referred to as the Million Message Attack (MMA). Since then, the attack has been tested on other
protocols, implementations and devices and further, has been optimized to improve the necessary
amount of oracle queries in certain scenarios [42] [43].

In 2002, the W3C consortium published the XML Encryption standard [44]. Up until today, the
RSA with PKCS#1 v1.5 padding algorithm13 is one of the two mandatory key transport mecha-
nisms to be implemented for compliance. Despite the known vulnerability found by Bleichenbacher,
the RSA PKCS#1 v1.5 algorithm is used in practice for years, but the XML Encryption standard
does not even contain a related security considerations section. In 2012, the researchers Jager,
Schinzel and Somorovsky published a paper describing several attacks against the PKCS#1 v1.5
key transport mechanism, based on the known Bleichenbacher attack [46]. They were able to “re-
11Key rotation is the process of systematically replacing one cryptographic key with a new one without interruption

of ongoing operations.
12Oracle, Class RSAPublicKeySpec, URL: https://docs.oracle.com/javase/7/docs/api/java/security/spec/

RSAPublicKeySpec.html
13When mentioning RSA PKCS#1 v1.5 in the context of encryption, the RSAES-PKCS1-v1_5 algorithm as specified in

RFC 3447 is meant, which combines the defined RSAEP and RSADP primitives with the EME-PKCS1-v1_5 encoding
method [45].

https://docs.oracle.com/javase/7/docs/api/java/security/spec/RSAPublicKeySpec.html
https://docs.oracle.com/javase/7/docs/api/java/security/spec/RSAPublicKeySpec.html

3.3 Bleichenbacher Million Message Attack 27

cover the secret key used to encrypt [the] transmitted payload data [by exploiting] differences in
error messages and in the timing behavior” [46].

Starting with the very first draft of the JWA specification in 2012, the RSA PKCS#1 v1.5
algorithm was one of the listed key management algorithms for JWE. From the introduction of
the implementation requirements definition for algorithms in draft 03, up to and including draft
33, RSA PKCS#1 v1.5 was the only mandatory algorithm for key management. With draft 34 in
2015, the implementation requirement has been demoted to Recommended-14, but is still one of the
recommended algorithms and thus likely to be implemented in JOSE libraries.

Figure 3.2.: Attack scenario for the Bleichenbacher Million Message Attack

The basic idea of the Bleichenbacher attack is to send several chosen ciphertexts to the server and
observe its response. If the attacker is able to distinguish between a validly and invalidly padded
message – based on detailed error messages, measurable timing differences or other side channels
– he will learn sensitive information about the encrypted plaintext. Abusing an involved party as
an oracle for the PKCS#1 v1.5 padding, classifies this attack as Padding Oracle Crypto Attack as
specified in CAPEC-463 of the Common Attack Pattern Enumeration and Classification (CAPEC)
database [47]. “An attacker is able to efficiently decrypt data without knowing the decryption key
if a target system leaks data on whether or not a padding error happened while decrypting the
ciphertext” [47]. The only prerequisites to apply this attack is that an attacker is able to capture
a single ciphertext and has the ability to send arbitrary ciphtertexts to the intended receiver, as
illustrated in Figure 3.2.

PKCS#1 v1.5 Encryption Padding. The PKCS#1 encryption padding version 1.5 is specified in
RFC 2313 [48] and used to pad the data to be encrypted using the RSA public-key cryptosystem
out to the length of the modulus N . This is done by concatenating a randomly generated padding
string PS to the given message k, before applying the RSA encryption function m 7→ me mod N .
The PKCS#1 v1.5 conforming RSA input message m is of the following format and interpreted as
integer, such that 0 < m < N :

m := 00||02||PS||00||k

14The “-” indicates that the requirement strength is likely to be decreased in a future version of the specification.

3.3 Bleichenbacher Million Message Attack 28

The leading zero byte 0x00 “ensures that the encryption block, converted to an integer, is less
than the modulus” [48, Section 8.1] and the second byte 0x02 specifies the block type as public-key
encryption operation15. The random padding string PS is of the length l−3−|k| with a minimum
length of |PS| ≥ 8 and does not contain any zero byte 0x00. l in this case denotes the byte-length
of the modulus N . The subsequent zero byte 0x00 is used to separate the padding string and the
data k.

Attack Description. The Bleichenbacher MMA exploits the malleability of the RSA encryption
scheme, which allows the following binding of a (randomly generated) integer s [41]:

c′ ≡ (c · se) mod N = (me · se) mod N = (ms)e mod N

Given an oracle ϑ(c′) responding with true or false according to the PKCS#1 v1.5 conformity,
an attacker will learn that the first two bytes of ms are 0x00 and 0x02 if the response is true.
Mathematically, this leads to 2B ≤ ms mod N < 3B, where B = 28(l−2) [41]. By incrementing the
value s and querying the oracle, the adversary learns on every positive result that

2B ≤ ms− rN < 3B

for some computed r, which allows him to reduce the set of possible solutions to

2B + rN

s
≤ m <

3B + rN

s

and gradually narrowing down the interval containing the original m value, until only one solution
in the interval is left [49].

A more detailed description of the algorithm is shown in Section 3.3.2, for full details refer to
the original paper [41].

3.3.1. Library Analysis

In this section the results of two analyzed libraries are described, which latest versions were found
to be vulnerable to the Million Message Attack.

Responsible Disclosure. The maintainers of all listed libraries have been informed about the
MMA vulnerability and all libraries were fixed in cooperation with the developers. The following

15Other block types are 0x00 and 0x01 for private-key and signing operations. Refer to [48] for further details.

3.3 Bleichenbacher Million Message Attack 29

CVE identifiers have been assigned: CVE-2016-6298 for JWCrypto by Simo Source [50] and CVE-
2016-5430 for jose-php by Nov Matake & Gree, Inc. [39]. Additionally, the json-jwt ruby library
by Nov Matake [51] and the José C library by latchset [52] have been fixed16 based on our disclosure.

The jose-php library structurally outsources every single step of the decryption process – de-
cryption of the CEK, derivation of the encryption and MAC keys, the actual decryption of the
ciphertext and the integrity check with the authentication tag – into its own functions17. The suc-
cess of each step is checked within its function and immediately throws an Exception on failure,
giving precise information about which part failed. Listing 3.6 shows the three relevant parts and
their occurrence in the code.

throw new JOSE_Exception_DecryptionFailed(’Master key decryption failed ’);
https :// github.com/nov/jose -php/blob/a7fa2b3a02ce62f1edc1804dd93bc81e7cb59f8c/

src/JOSE/JWE.php#L193

throw new JOSE_Exception_DecryptionFailed(’Encryption/Mac key derivation failed ’);
https :// github.com/nov/jose -php/blob/a7fa2b3a02ce62f1edc1804dd93bc81e7cb59f8c/

src/JOSE/JWE.php#L214

throw new JOSE_Exception_DecryptionFailed(’Payload decryption failed ’);
https :// github.com/nov/jose -php/blob/a7fa2b3a02ce62f1edc1804dd93bc81e7cb59f8c/

src/JOSE/JWE.php#L239

Listing 3.6: Exceptions thrown during the decryption process in the jose-php library

This behavior can be used by an attacker to successfully build an error-based Padding Oracle to
distinguish between an invalid PKCS#1 v1.5 padding (“Master key decryption failed”) or a valid
one. Even if an implementing developer does not directly pass the Exception messages to the end
user, immediately throwing an Exception causes distinguishable timing difference in the processing
[49] – offering the ability to create a time-based validity oracle. However, it was not possible to
programmatically exploit this vulnerability to apply the MMA attack by using Bleichenbacher’s
original algorithm. Further investigation revealed that the underlying phpseclib library18 does not
strictly validate the PKCS#1 v1.5 format as defined in the specification [45].

1 if (ord($em [0]) != 0 || ord($em [1]) > 2) {
2 user_error(’Decryption error ’);
3 return false;
4 }

Listing 3.7: Excerpt of phpseclib’s _rsaes_pkcs1_v1_5_decrypt() function19

16See: https://github.com/nov/json-jwt/commit/c46f8133bedd48e3d24a97a5f45df02ebf5923d2 and https://
github.com/latchset/jose/pull/11 for the related commit / pull request.

17See: https://github.com/nov/jose-php/blob/a7fa2b3a02ce62f1edc1804dd93bc81e7cb59f8c/src/JOSE/JWE.
php#L47

18PHP Secure Communications Library, URL: http://phpseclib.sourceforge.net

https://github.com/nov/json-jwt/commit/c46f8133bedd48e3d24a97a5f45df02ebf5923d2
https://github.com/latchset/jose/pull/11
https://github.com/latchset/jose/pull/11
https://github.com/nov/jose-php/blob/a7fa2b3a02ce62f1edc1804dd93bc81e7cb59f8c/src/JOSE/JWE.php#L47
https://github.com/nov/jose-php/blob/a7fa2b3a02ce62f1edc1804dd93bc81e7cb59f8c/src/JOSE/JWE.php#L47
http://phpseclib.sourceforge.net

3.3 Bleichenbacher Million Message Attack 30

The relevant excerpt is shown in Listing 3.7. Apart from the desired prefix 0x00 02, the phpseclib
only checks whether the second byte is not > 2, which leads to messages beginning with 0x00 00

and 0x00 01 also being treated as valid. According to a describing comment within the source
code20, this deviation has been added for compatibility reasons with PKCS#1 v2.1. The original
Bleichenbacher algorithm is not able to correctly deal with false positives, which resulted in an
endless loop of searching for compliant messages in our tests.

Nonetheless, the given vulnerability in the jose-php library can be practically exploited with a
modified version of Bleichenbacher’s algorithm. In [49], the researchers had to cope with a similar
problem. They were able to amend the original algorithm to work with a much weaker oracle,
which responded with true if a decrypted message started with 0x?? 02, where 0x?? represents an
arbitrary byte [49]. Such modification could also be used for the jose-php library, but has been set
out of scope for this thesis.

The JWCrypto library had the same issue of exposing detailed information of specific failing
steps during the decryption process. The most relevant Exceptions are depicted in Listing 3.8.

raise InvalidJWEKeyLength(keylen , len(cek))
https :// github.com/latchset/jwcrypto/blob/v0.3.1/ jwcrypto/jwe.py#L178

raise InvalidJWEData(’Decryption Failed ’)
https :// github.com/latchset/jwcrypto/blob/v0.3.1/ jwcrypto/jwe.py#L274

raise InvalidJWEData(’Failed to verify MAC’)
https :// github.com/latchset/jwcrypto/blob/v0.3.1/ jwcrypto/jwe.py#L699

Listing 3.8: Exceptions raised during the decryption process in the JWCrypto library

The Decryption Failed Exception indicated an invalid first or second byte of the PKCS#1 v1.5
format and could be successfully used to build an error-based padding oracle to apply the Bleichen-
bacher attack. In all test cases with different key sizes of 512, 1024 and 2048 bit and all specified
encryption algorithms21, the Content Encryption Key could be recovered within less than 100.000
requests to the server and used to decrypt the hidden message.

3.3.2. Test Cases

Testing an implementation for the Million Message Attack requires the public key of the receiving
party as additional input by the tester and is performed in two steps:

1. Testing for the existence of a Padding Oracle. The first step is to perform several checks
to determine whether an oracle exists that exposes information about the PKCS#1 v1.5

19See: https://github.com/phpseclib/phpseclib/blob/2.0.4/phpseclib/Crypt/RSA.php#L2538
20See: https://github.com/phpseclib/phpseclib/blob/2.0.4/phpseclib/Crypt/RSA.php#L2496
21Refer to Table 2.3

https://github.com/phpseclib/phpseclib/blob/2.0.4/phpseclib/Crypt/RSA.php#L2538
https://github.com/phpseclib/phpseclib/blob/2.0.4/phpseclib/Crypt/RSA.php#L2496

3.3 Bleichenbacher Million Message Attack 31

conformity of a given ciphertext. This is performed by using various different test vectors to
generate encrypted messages with the provided public key, listed in Table 3.3.

Table 3.3.: List of PKCS#1 v1.5 vectors to test the availability of a Padding Oracle.
Vector Characteristic

NoNullByte Generated a PKCS1 padded message with no separating 0x00 byte.
NullByteInPadding Generated a PKCS1 padded message with a 0x00 byte in the padding.
NullByteInPkcsPadding Generated a PKCS1 padded message with a 0x00 byte in the PKCS1 padding.
SymmetricKeyOfSize8 Generated a PKCS1 padded symmetric key of size 8.
SymmetricKeyOfSize16 Generated a PKCS1 padded symmetric key of size 16.
SymmetricKeyOfSize24 Generated a PKCS1 padded symmetric key of size 24.
SymmetricKeyOfSize32 Generated a PKCS1 padded symmetric key of size 32.
SymmetricKeyOfSize40 Generated a PKCS1 padded symmetric key of size 40.
WrongFirstByte Generated a PKCS1 padded message with a wrong first byte (!= 0x00).
WrongSecondByte Generated a PKCS1 padded message with a wrong second byte (!= 0x02).

The responses have to be manually reviewed by the tester and assigned to a list of responses
indicating valid messages, due to the fact that response and error messages might vary a lot,
depending on the used implementation (and underlying programming language) and thus,
rendering a fully automated solution imprecise and inflexible.

2. Decryption of the ciphertext with the Padding Oracle. For the actual decryption
process using the previously identified and adjusted Padding Oracle, the original algorithm
from Bleichenbacher is used [41], which is shown in a reduced form in the following:

Step 1: Blinding. Given a ciphertext c as integer, choose different random integers s0

and check whether c(s0)e mod N is PKCS conforming by accessing the oracle. This step
can be skipped if c already is PKCS conforming, which should always be the case if an
attacker captured a JWE and attempted to recover its plaintext.

Step 2: Searching for PKCS conforming messages.

Step 2a: Starting the search. If this is the first iteration (i = 1), search for the
smallest positive integer s1 > N/(3B), such that the ciphertext c0(s1)e mod N is PKCS
conforming.

Step 2b: Searching with more than one interval left. If i > 1 and the number
of remaining intervals is ≥ 2, search for the smallest integer si > si−1, such that the
ciphertext c0(si)e mod N is PKCS conforming.

Step 2c: Searching with one interval left. If only one interval is left, choose small
integer values ri and si based on the formulas (1) and (2) of the original paper, until the
ciphertext is PKCS conforming.

Step 3: Narrowing the set of solutions. After si has been found, compute the new
interval set Mi with formula (3) of the original paper.

3.3 Bleichenbacher Million Message Attack 32

Step 4: Computing the solution. If the interval set Mi contains only one interval of
length 1, return the solution m ← a(s0)−1 mod N ≡ cd (mod N). Otherwise, increment
i and go to step 2.

The Chair of Network and Data Security of the Ruhr University Bochum22 and the Hackmanit
GmbH23 developed a modular and open source framework for web services penetration testing
called WS-Attacker24 [12], which includes a Java implementation of the Bleichenbacher attack
on XML Encryption. Main parts of this implementation have been reused and adapted for the
developed JOSEPH Burp Suite extension.

3.3.3. Countermeasures

Due to the high impact and relevance of the Bleichenbacher algorithm, the RFC 3218 [53] has been
developed to draw attention to the known vulnerability and provide three basic countermeasures.

One of the listed countermeasures is to use the alternative Optimal Asymmetric Encryption
Padding (OAEP) technique – also known as PKCS#1 version 2.125 – which is specified in RFC
3447 [45] and not vulnerable to the MMA. Nevertheless, one must take special care using this
solution if PKCS#1 v1.5 is also implemented and usable alongside. In the paper One Bad Apple:
Backwards Compatibility Attacks on State-of-the-Art Cryptography [14] the researchers proved that
certain circumstances allow the decryption of OAEP-ciphertexts by mounting the Bleichenbacher
attack. The only requirements are that a “PKCS#1 v1.5-validity oracle is given” and that “the
PKCS#1 v1.5 encryption scheme and the attacked cryptosystem use the same RSA-key” [14].

The second countermeasure states that sufficiently careful checking might be satisfactory to
mitigate the success of the MMA [53]. “If the receiving implementation also checks the length
of the CEK and the parity bits (if available) AND responds identically to all such errors, the
chances of a given M’ being properly formatted are substantially decreased” [53, Section 2.3.1].
This technique, however, does explicitly not entirely eliminate the attack, but intends to increase
the number of necessary messages to such an amount that renders the attack impractical.

The third countermeasure is called Random Filling and simply “treat[s] misformatted messages as
if they were properly PKCS-1 formatted” [53, Section 2.3.2]. Instead of instantly returning an error
message if an improperly formatted message is detected, the recipient substitutes the message with
a new, randomly generated message and continues the decryption process. “Eventually this will
result in a decryption or signature verification error but this is exactly what would have happened
if M’ happened to be properly formatted but contained an incorrect CEK. This approach also
prevents the attacker from distinguishing various failure cases via timing since all failures return
roughly the same timing behavior.” [53, Section 2.3.2]. Even if the additional time required to
generate the random bytes can be considered negligible, special care must be taken to not open
22http://nds.rub.de
23http://hackmanit.de
24RUB NDS, WS-Attacker, URL: https://github.com/RUB-NDS/WS-Attacker
25Which obsoletes the previous version 2.0 [54]

http://nds.rub.de
http://hackmanit.de
https://github.com/RUB-NDS/WS-Attacker

3.4 Timing Attack on Hash Comparison 33

further side-channels. In [49], the researchers identified measurable timing differences up to 20
microseconds between validly and invalidly padded messages due to improper (internal) Exception

handling in Java’s PKCS#1 implementation. The countermeasure of unified error messages did not
leak any distinguishable information, but non-compliant messages provoked an additional internal
Exception and thus, needed more processing time, due to the fact that Exception handling is a
time consuming task.

The best countermeasure would be to completely implement the decryption in constant-time.
This would include reimplementing all used native functions to be constant-time and would need
a lot of effort and analysis to prevent any leakage. A sufficient alternative is shown in Listing
3.9, which is the implemented fix by Simo Source for CVE-2016-6298. Apart from the Random
Filling protection mechanism, an Exception is always thrown – irrespective of the success or failure
of the operation. This prevents the previously mentioned possible new side channel of improper
Exception handling.

1 def unwrap(self , key , bitsize , ek , headers):
2 self._check_key(key)
3 # Address MMA attack by implementing RFC 3218 - 2.3.2. Random Filling
4 # provides a random cek that will cause the decryption engine to
5 # run to the end , but will fail decryption later.
6

7 # always generate a random cek so we spend roughly the
8 # same time as in the exception side of the branch
9 cek = _randombits(bitsize)

10 try:
11 cek = super(_Rsa15 , self).unwrap(key , bitsize , ek , headers)
12 # always raise so we always run through the exception handling
13 # code in all cases
14 raise Exception(’Dummy ’)
15 except Exception:
16 return cek

Listing 3.9: Fixed version of JWCrypto26

3.4. Timing Attack on Hash Comparison

The timing attack on hash comparison is an attack of the type Covert Timing Channel, specified in
CWE-385 of the Common Weakness Enumeration (CWE) database [55]. “Covert timing channels
convey information by modulating some aspect of system behavior over time, so that the program
receiving the information can observe system behavior and infer protected information”[55]. In this
specific case, the time needed for validating different HMAC signatures is observed in order to gain
information about its validity at a specific position of a character.
26https://github.com/latchset/jwcrypto/blob/v0.3.2/jwcrypto/jwe.py#L190

https://github.com/latchset/jwcrypto/blob/v0.3.2/jwcrypto/jwe.py#L190

3.4 Timing Attack on Hash Comparison 34

In order to explain how this vulnerability occurs and how an attacker might exploit it, one
has to understand the underlying functionality of a regular (string) comparison operation –
exemplarily shown on the PHP programming language. Listing 3.10 shows an excerpt of the
zend_is_identical() function from PHP’s source code, which handles the actual comparison.
Apart from a preliminary check on identity (l. 2), it is first checked whether both strings are of
equal length (l. 3). If this is the case, both strings are passed to the memcmp() C function (l. 4),
which is displayed in Listing 3.11.

1 case IS_STRING:
2 return (Z_STR_P(op1) == Z_STR_P(op2) ||
3 (Z_STRLEN_P(op1) == Z_STRLEN_P(op2) &&
4 memcmp(Z_STRVAL_P(op1), Z_STRVAL_P(op2), Z_STRLEN_P(op1)) == 0));

Listing 3.10: Excerpt of PHP’s zend_is_identical() function27

The memcmp() function simultaneously iterates over all characters of both strings and checks each
character at the same position of both strings for equality. If two compared characters differ, the
function will return the difference immediately.

1 int memcmp(const void *s1 , const void *s2 , size_t n)
2 {
3 unsigned char u1, u2;
4

5 for (; n-- ; s1++, s2++) {
6 u1 = * (unsigned char *) s1;
7 u2 = * (unsigned char *) s2;
8 if (u1 != u2) {
9 return (u1 -u2);

10 }
11 }
12 return 0;
13 }

Listing 3.11: Implementation of the memcmp() C function28

Basically all programming languages implement their functions with respect to performance, for
which such a comparison construction makes perfectly sense. In a security, or more specifically a
cryptographic, context, such an implementation does not meet the necessary conditions.

An adversary with the ability to send arbitrary messages to the server might abuse the premature
return on the first difference by gradually iterating over every possible character/byte and measuring
the timing needed for processing. Listing 3.12 gives an example of possible results29 when searching
for the first character of a given but unknown hash.
27https://github.com/php/php-src/blob/php-7.0.12/Zend/zend_operators.c#L2006
28http://opensource.apple.com//source/tcl/tcl-3.1/tcl/compat/memcmp.c
29See Appendix A.3 for details on how this numbers were created.

https://github.com/php/php-src/blob/php-7.0.12/Zend/zend_operators.c#L2006
http://opensource.apple.com//source/tcl/tcl-3.1/tcl/compat/memcmp.c

3.4 Timing Attack on Hash Comparison 35

(Original) 73702ca3cf26f97b69d6891bff8f93a06d0bcc68
0.0000013119118 00
0.0000013932216 1000000000000000000000000000000000000000
0.0000016285241 2000000000000000000000000000000000000000
0.0000015981053 3000000000000000000000000000000000000000
0.0000013780439 4000000000000000000000000000000000000000
0.0000014892939 5000000000000000000000000000000000000000
0.0000012960518 6000000000000000000000000000000000000000
0.0000021717087 7000000000000000000000000000000000000000
0.0000014749665 8000000000000000000000000000000000000000
0.0000016347097 9000000000000000000000000000000000000000
0.0000016016298 a000000000000000000000000000000000000000
0.0000016616338 b000000000000000000000000000000000000000
0.0000016631538 c000000000000000000000000000000000000000
0.0000015649927 d000000000000000000000000000000000000000
0.0000014099265 e000000000000000000000000000000000000000
0.0000016158320 f000000000000000000000000000000000000000

Listing 3.12: Example showing measurable timing differences on native string comparison29

This way, an attacker might determine step-by-step the correct signature to an arbitrary message,
without knowing the secret.

3.4.1. Library Analysis

Although remote timing attacks are applicable in practice [56] [57], it is a challenging task to
reliably measure timing differences over a network, due to the noise and jitter induced by network
components and other clients [58]. Setting up a working test environment requires full control
over the measuring machine to, for instance, disable CPU halting and CPU frequency scaling or
use specific hardware [49] for sufficient results. Controlling such configuration is not possible from
within a Burp Suite extension and thus, out of scope for this thesis. Nevertheless, several timing
attack vulnerabilities have been identified in different libraries by analyzing their public source code.

Responsible Disclosure. The maintainers of all listed libraries have been informed about the
timing attack vulnerability and all libraries were fixed in cooperation with the developers. The
following CVE identifiers have been assigned: CVE-2016-5429 for jose-php by Nov Matake &
Gree, Inc. [39], CVE-2016-7037 for JWT by Malcolm Fell [59] and CVE-2016-7036 for python-jose
by Michael Davis [60].

All of the three libraries follow the same structure: Given a signature and a message, a new
signature for the message is calculated and the resulting hash is compared to the provided signa-
ture. The comparison itself is performed as a native string comparison. Listings 3.13, 3.14 and
3.15 show the relevant excerpts of the examined libraries.

3.4 Timing Attack on Hash Comparison 36

1 private function _verify($public_key_or_secret , $expected_alg = null) {
2 [...]
3 return $this ->signature === hash_hmac($this ->digest (),

$signature_base_string , $public_key_or_secret , true);
4 [...]
5 }

Listing 3.13: Excerpt of the vulnerable _verify() function of the jose-php library by Nov
Matake & Gree Inc.30

1 public function verify($value , $signature) {
2 return $this ->algorithm ->compute($value) === $signature;
3 }

Listing 3.14: Vulnerable verify() function of the JWT library by Malcolm Fell31

1 def verify(self , msg , sig):
2 return sig == self.sign(msg)

Listing 3.15: Vulnerable verify() function of the python-jose library by Michael Davis32

3.4.2. Countermeasures

The issue of timing attacks on cryptographic operations is well known and addressed in the JWA
specification, explicitly stating that “the comparison of the computed HMAC value to the JWS Sig-
nature value MUST be done in a constant-time manner to thwart timing attacks” [24, Section 3.2].
Within the Security Considerations chapter of the JWS specification, a more general description
has been used to draw attention to timing differences on successful or unsuccessful operations of
cryptographic algorithm implementations, but without mentioning any mitigation strategies [21,
Section 10.9].

There exist basically two defensive strategies to prevent any leakage of sensitive information
by exploiting measurable timing differences in the comparison of two hashes:

Constant Time Comparison. The constant-time comparison strategy ensures that every single
byte of both inputs is compared, regardless of previously recognized differences. Most of the
programming languages nowadays offer native functions to perform such timing-safe operations,

30URL: https://github.com/nov/jose-php/blob/a7fa2b3a02ce62f1edc1804dd93bc81e7cb59f8c/src/JOSE/JWS.
php#L132

31URL: https://github.com/emarref/jwt/blob/1.0.2/src/Encryption/Symmetric.php#L59
32URL: https://github.com/mpdavis/python-jose/blob/1.3.1/jose/jwk.py#L162

https://github.com/nov/jose-php/blob/a7fa2b3a02ce62f1edc1804dd93bc81e7cb59f8c/src/JOSE/JWS.php#L132
https://github.com/nov/jose-php/blob/a7fa2b3a02ce62f1edc1804dd93bc81e7cb59f8c/src/JOSE/JWS.php#L132
https://github.com/emarref/jwt/blob/1.0.2/src/Encryption/Symmetric.php#L59
https://github.com/mpdavis/python-jose/blob/1.3.1/jose/jwk.py#L162

3.4 Timing Attack on Hash Comparison 37

like hash_equals in PHP33, hmac.compare_digest in Python34 or MessageDigest.isEqual in
Java35. Listing 3.16 shows the source code of the isEqual implementation in Java 1.7, which might
also be used as reference if native functions do not exist. On every byte of both inputs the bitwise
exclusive OR operation is performed and added to the result variable with the bitwise inclusive
OR operation. This way, any difference at any position can be recognized by checking whether
result is unequal zero at the end. One might notice that constant-time comparison functions
are meant to compare two inputs of equal length (see e.g. ll. 9-11 of Listing 3.16). This is not
considered problematic, as constant-time comparison is usually used for values of publicly known
length – such as hashes. It is quite the reverse: If the verification function did not check the length
of the input and the first argument digesta is controlled by the user, an adversary might simply
send a zero-length string, resulting in the for-loop never being executed, thus the input being
accepted as valid.

1 /**
2 * Compares two digests for equality. Does a simple byte compare.
3 *
4 * @param digesta one of the digests to compare.
5 * @param digestb the other digest to compare.
6 * @return true if the digests are equal , false otherwise.
7 */
8 public static boolean isEqual(byte[] digesta , byte[] digestb) {
9 if (digesta.length != digestb.length) {

10 return false;
11 }
12 int result = 0;
13 // time -constant comparison
14 for (int i = 0; i < digesta.length; i++) {
15 result |= digesta[i] ^ digestb[i];
16 }
17 return result == 0;
18 }

Listing 3.16: Source code of the MessageDigest.isEqual() function in Java 1.736

Double HMAC Verification. The second strategy is called Double HMAC Verification [61].
This method makes use of an additional random key to render the comparison operation non-
deterministic and thus, truly blind the side-channel (under the assumption that a cryptographically
secure random number generator is used) [62]. Listing 3.17 shows an exemplary use of this strategy:
33PHP.net, hash_equals function, URL: http://php.net/manual/de/function.hash-equals.php
34Python Software Foundation, hmac.compare_digest function, URL: https://docs.python.org/3/library/hmac.

html#hmac.compare_digest
35Oracle, MessageDigest.isEqual function, URL: https://docs.oracle.com/javase/7/docs/api/java/security/

MessageDigest.html#isEqual(byte[],%20byte[])
36http://www.docjar.com/html/api/java/security/MessageDigest.java.html

http://php.net/manual/de/function.hash-equals.php
https://docs.python.org/3/library/hmac.html#hmac.compare_digest
https://docs.python.org/3/library/hmac.html#hmac.compare_digest
https://docs.oracle.com/javase/7/docs/api/java/security/MessageDigest.html#isEqual(byte[],%20byte[])
https://docs.oracle.com/javase/7/docs/api/java/security/MessageDigest.html#isEqual(byte[],%20byte[])
http://www.docjar.com/html/api/java/security/MessageDigest.java.html

3.4 Timing Attack on Hash Comparison 38

Given two input strings a and b, a random key is generated and used to generate an HMAC value
for input a and an HMAC value for input b. The return value of this function is not the direct
comparison of the two input values, but the comparison of their related HMAC values. The use of
a randomly generated key ensures that sending the same message twice does not yield the same
time duration, rendering this function non-deterministic.

1 /**
2 * Compare two strings with non -deterministic blinding
3 *
4 * @param string $a
5 * @param string $b
6 * @return bool
7 */
8 function hmac_compare($a, $b)
9 {

10 $compare_key = random_bytes (32);
11 return hash_hmac(’sha256 ’, $a , $compare_key) === hash_hmac(’sha256 ’, $b ,

$compare_key);
12 }

Listing 3.17: Exemplary use of the double HMAC strategy37

Although both of the countermeasures perfectly prevent disclosing any sensitive timing information,
the Constant Time Comparison is more likely to be found in existing implementations, probably
due to a slightly better performance compared to the Double HMAC Verification technique.

37Example taken from: https://paragonie.com/blog/2015/11/preventing-timing-attacks-on-string-
comparison-with-double-hmac-strategy

https://paragonie.com/blog/2015/11/preventing-timing-attacks-on-string-comparison-with-double-hmac-strategy
https://paragonie.com/blog/2015/11/preventing-timing-attacks-on-string-comparison-with-double-hmac-strategy

4. Implementation

As part of this thesis, a Burp Suite extension with the name JOSEPH has been developed. JOSEPH
is an abbreviation for JavaScript Object Signing and Encryption Pentesting Helper and aims to sup-
port penetration testers, developers and analysts to test implementations of the JOSE specifications.
Its newly designed logo is pictured in Figure 4.1.

Figure 4.1.: Logo of the JOSEPH Burp Suite extension

This chapter gives an overview of the developed Burp Suite extension and its features. It starts
with short information about how to compile the project from source and which versions JOSEPH
has been tested with. Apart from the following explanation of the UI to understand necessary
workflows and how to use this extension in general, this chapter also serves as a documentation
and describes the underlying internal structure and extensibility.

4.1. System Setup

The Burp Suite extension is written in Java and uses the build management tool Apache Maven1

to organize its dependencies, run the included unit tests and compile the project to a standalone
JAR-file. The minimal required Java version to work with is 1.7, in order to support a variety of
operating systems not yet running Java 1.8.

Compiling the Extension

To compile the JOSEPH Burp Suite extension from source, it is necessary to have Apache Maven
installed and to run the command shown in Listing 4.1 below from within the project directory.

$ mvn clean package

Listing 4.1: Command to compile the JOSEPH Burp Suite extension from source

This command attempts to clean any files and directories generated during previous builds to
start with a fresh environment, automatically compiles the files, runs all included unit tests and

1The Apache Software Foundation, Apache Maven, URL: https://maven.apache.org/

https://maven.apache.org/

4.1 System Setup 40

takes the compiled code to package it to its distributable JAR format. To skip the (unit) tests, the
additional argument -DskipTests can be used.

One important notice is that if Oracle’s Java Development Kit (JDK) is used, it is not possi-
ble to ship the Burp Suite extension as single JAR-file. The Java Cryptography Extension (JCE)
requires additional providers, in this case the Bouncy Castle2 library, to be signed – due to security
considerations to ensure its integrity. Repackaging it into a comprehensive JOSEPH JAR will
remove its signature and will break its inclusion.

When performing the Bleichenbacher attack without Bouncy Castle being correctly loaded, the
following error will occur:

[BleichenbacherPkcs1Info]: Error during key encryption: Cannot find any provider
supporting RSA/NONE/NoPadding

If this issue arises, one needs to perform the following step(s)3:

1. Copy the Bouncy Castle JAR-file bcprov-jdk15on-1.54.jar from JOSEPH’s lib folder into
the /[PATH_TO_JVM]/jre/lib/ext directory.

2. In some cases, it is necessary to additionally amend the
/[PATH_TO_JVM]/jre/lib/security/java.security file and add the following line (prefer-
ably directly below the other provider definitions):
security.provider.9=org.bouncycastle.jce.provider.BouncyCastleProvider.
The 9 in this case specifies the priority and should be adjusted to fit into existing definitions.

This workaround should not be necessary when the extension is delivered through the BApp Store.
BApp Store extensions may contain a library folder which will be automatically loaded by the Burp
Suite.

Testing Environment

The JOSEPH Burp Suite extension has been tested with both Java versions 1.7.0 and 1.8.0

(Oracle JDK and OpenJDK), using the latest stable release of Burp Suite’s free edition in version
1.7.104. JOSEPH has been developed on an OSX 10.11.6 (El Capitan) operating system and has
been additionally tested on a Linux Mint 17.3 system. A quick basic test has also been performed
on a Windows 10 operating system. For building and dependency management, Apache Maven in
version 3.3.9 has been used.

2Legion of the Bouncy Castle Inc., Bouncy Castle Crypto APIs, URL: https://www.bouncycastle.org/
3See https://docs.oracle.com/cd/E19830-01/819-4712/ablsc/index.html for a similar solution described in the
Sun Java System Application Server Platform Edition 8.2 Administration Guide

4Last checked on 2016-11-15

https://www.bouncycastle.org/
https://docs.oracle.com/cd/E19830-01/819-4712/ablsc/index.html

4.2 User Interface 41

4.2. User Interface

The look-and-feel of JOSEPH’s graphical user interface is adapted to the other parts of the Burp
Suite. The basic idea is to create a familiar environment to quickly get along with its features and
to reduce the need of any previous training. Its goal is to follow the principle of simplicity while
still offering as much flexibility as possible.

Proxy and Editors

The HTTP history tab of the Burp Suite proxy lists all processed HTTP messages and enables the
user to review the performed requests and recorded responses. By enabling the JOSEPH extension,
the functionality of the HTTP history is amended to search for JWS and JWE patterns and to
highlight matching messages with a cyan colored background, alongside with a specific comment.
Figure 4.2(a) shows a screenshot of the HTTP history tab listing several messages, where two
requests were detected to contain a JOSE value.

(a) Detection and marking of JOSE requests (b) Attacker tab of the JWS editor

Figure 4.2.: Screenhots of the marking feature (a) and additional editor tabs (b)

In addition to the marking, the native request/response editors are supplemented to include a
JWS/JWE tab with sub tabs for displaying the separate components of a discovered JOSE value.
Where useful, the base64url encoded content is shown in its decoded ASCII format.
When used within the Repeater tool or during an active interception, the JWS/JWE editors are
editable and may be used to modify the JOSE parameter value of the request before sending it.
Furthermore, the JWS editor is extended by an additional Attacker tab, allowing a user to update
the given request with attack related modifications. This feature is shown in Figure 4.2(b).

JOSEPH Tab

If the extension is getting enabled, an extra JOSEPH tab will appear on the main navigation
of Burp Suite. This tab contains different sections for the features of the extension, namely the

4.2 User Interface 42

Attacker, a Manual tab, the Decoder and Preferences.

Decoder and Preferences

The Decoder, depicted in Figure 4.3(a), is a simple helper utility to en-/decode base64url strings
and display them in an ASCII or hexadecimal format. The Burp Suite itself has its own Decoder
tool, but base64url is not one of the available encoding formats and the public API for extensions
does not offer any possibility to add additional formats.

(a) The Decoder tab (b) The Preferences tab

Figure 4.3.: Screenshots showing the decoder (a) and preferences (b) tabs

Figure 4.3(b) shows a screenshot of the Preferences tab. This tab serves to configure several
options of JOSEPH’s behavior. JOSEPH uses its own logging functions, for which the verbosity
level can be set to Debug, Info or Error (1.). A second option (2.) allows to en-/disable the
highlighting feature of messages containing JOSE values in the HTTP history. The third option (3.)
aims to increase the flexibility of this extension. The user is able to dynamically maintain a list of
names, which are used to search for JOSE values in parameters at different locations5 and HTTP
headers. By clicking the Save Configuration button (4.), the preferences are persistently saved into
a configuration file on the hard disk to survive a restart or crash of the Burp Suite.

Attack Workflow

One of the main features of JOSEPH is the attack engine, enabling the user to apply the discovered
attacks of Chapter 3 and test implementations for their vulnerability. If a message is detected to
contain a JOSE value, one is able to send it to the JOSEPH extension by right clicking on the mes-
sage and selecting Send to JOSEPH from the context menu. Within the JOSEPH Attacker, shown
in Figure 4.4, a new tab will be added (1.), showing some very basic information about the token
and a list of available attacks (2.) to choose from. If a specific attack is loaded, a short description of
the selected attack will be displayed (3.) and, if necessary as defined by the attack itself, additional

5Within the URL, body and cookies, as JSON, XML or multipart format.

4.2 User Interface 43

Figure 4.4.: Attack selection and configuration

form elements will appear requesting additional information needed to perform the attack (4.). This
additional information can be, for instance, the recipient’s public key, as shown in the given screen-
shot in Figure 4.4 where the Key Confusion attack is loaded. The public key might be of the PEM or
JWK (Set) format, both are supported by JOSEPH. By clicking the Attack button at the bottom of
this window, the user can start the attack. If any of the configuration is incorrect or format checks
fail, an error popup will show up with a short Exception message, exemplarily shown in Figure 4.5.

Figure 4.5.: Error popup

For the attack and its results a separate window is opened, in order
to concurrently use other tools of the Burp Suite in case the attack
takes a longer time. This new window, depicted in Figure 4.6, is
basically structured similarly to Burp Suite’s native Intruder tool.
The upper part shows a table listing the performed requests (1.),
with details such as the response status, length, time, an attack
related payload type (2.) and short information about the payload
itself (3.). The payload type is used to identify the exact payload,
in order to select and use it for further tests within the Repeater
tool or during active interception. On the lower part of the window, the Request/Response viewer
and JOSEPH’s additional JWS/JWE editors are shown (4.). The very bottom displays a progress
bar (5.), indicating the current status of the attack by giving the amount of requests that have
already been performed alongside with the number of all prepared requests.

This structure and workflow is basically the same for all standard attacks. For Bleichenbacher’s
Million Message Attack though a slightly different workflow and UI was needed, as it is performed in
two separate steps: The testing for an oracle and the actual decryption of the hidden content. The
result table of the MMA (Figure 4.7(a)) has been expanded by an additional editable column (2.),
which is used as a configuration step for the second part of the attack. According to the responses of

4.2 User Interface 44

Figure 4.6.: Attack result window

the different testing vectors, the user has to decide whether the format was considered PKCS#1 v1.5
conform or not and needs to assign the related message to a list of valid responses by clicking the
checkbox. With at least a single valid response in the list, the Decryption Attack tab gets enabled,
containing the UI to perform the second part of the attack. Within this tab (Figure 4.7(b)), the
user is able to start (1.) the decryption attack, which takes the previously configured list of valid
responses to query the server endpoint and use the system as padding oracle. The attack can be
canceled at any time by clicking the Cancel button. By starting the attack, further UI elements get
visible, displaying secondly updated information about the current status (2.). This includes the
elapsed time, amount of performed requests and last found s value6. On completion and successful
decryption of the hidden content, a new text box with the recovered Content Encryption Key in
its hexadecimal, or alternatively base64url encoding appears (3.). The content is shown in its full
PKCS#1 v1.5 conform representation, including prefix and padding string. The recovered CEK is
then used to decrypt the actual protected message, based on the encryption algorithm of the enc

JOSE header (4.). Both algorithm types, AES CBC with HMAC and AES GCM, with all three
key sizes7 are supported by JOSEPH.

6Refer to Section 3.3 for its meaning
7Refer to Table 2.3

4.2 User Interface 45

(a) Phase 1: Testing for a Padding Oracle (b) Phase 2: Decrypting the hidden content

Figure 4.7.: Workflow of the MMA attack: Testing for the existence of a Padding Oracle (a) and
performing the actual decryption of the hidden content (b).

Manual Tab

The Manual tab is some kind of fallback solution, for any special cases where non-standard JOSE
implementations need to be tested and JOSEPH is not able to automatically recognize and handle
it. In this cases, the user can manually copy and paste the JOSE token into the manual tab and
is still able to apply the provided attacks to it. The UI of the manual tab, shown in Figure 4.8,
is basically the same as for the repeater and attacker tabs of the editors, with only one additional
textbox widget for the output.

Figure 4.8.: The Manual tab

4.3 Internal Structure 46

4.3. Internal Structure

The JOSEPH extension consists of several packages separating the logical components, all being
part of the eu.dety.burp.joseph namespace. An overview of the package structure is shown in
Figure 4.9. In addition to this section, the source code itself is comprehensively documented and
follows the Javadoc8 syntax to enable the automatic generation of an API documentation.

Figure 4.9.: Package structure overview

Utilities Package

The utilities package contains helper classes and functions to provide an interface for recurring
operations at different locations. This includes the following classes:

• The Converter, which helps on the transformation between a JWK object or PEM string
and Java’s RSAPublicKey type.

• A Crypto class, which provides methods to generate a MAC, decrypt an AES ciphertext in
different modes and with different key sizes, or get the correct key size based on the selected
algorithm.

• The Decoder, which aids to encode and decode a JOSE value from and to different represen-
tations.

• The Finder, which assists in finding and extracting JWS and JWE values based on regex
pattern matching.

• A JoseParameter class, which is used to represent a JOSE parameter, irrespective of its
source (header, URL, cookie, ...) and type (JWS or JWE).

• The own Logger for this extension, which enables the adjustability of different log levels and
the use of a custom logging format.

8Oracle, Javadoc Tool, URL: http://www.oracle.com/technetwork/articles/java/index-jsp-135444.html

http://www.oracle.com/technetwork/articles/java/index-jsp-135444.html

4.3 Internal Structure 47

Scanner Package

The scanner package contains the recognition and marking logic, used within the HTTP proxy
history. Its Marker class implements Burp Suite’s IHttpListener9 interface and gets registered
as HTTP listener. The Marker is responsible for highlighting a message and adding a specific
comment if any JWS or JWE pattern was found.

GUI Package

Figure 4.10.: The GUI package structure

Within the gui package, basically all visible UI components are defined. Figure 4.10 gives an
overview of the containing classes. The MainTabGroup is JOSEPH’s main UI component, which
implements Burp Suite’s ITab10 interface and adds itself as new extension tab to the Burp Suite
window. The MainTabGroup also serves as parent for the Decoder, Preferences, and Help panels
and implements Burp Suite’s IContextMenuFactory11 interface to allow being registered as context
menu within the HTTP proxy history. It additionally creates a new JTabbedPane instance, which
holds the AttackerInfo panel and all created instances of the Attacker panel, which are added
when a user sends a recorded message to the JOSEPH extension. The Manual panel provides a
fallback solution to manually apply attack payloads to JOSE values. The Help panel is a static
view, displaying information about the extension and how to contact the developer. The Decoder

panel simply encodes and decodes base64url strings and offers the choice to show it in ASCII
or hex, just as described in the previous User Interface section 4.2. Within the Preferences

panel, several options to customize the extension are provided. The state of the settings can be

9PortSwigger Ltd., Interface IHttpListener, URL: https://portswigger.net/burp/extender/api/burp/
IHttpListener.html

10PortSwigger Ltd., Interface ITab, URL: https://portswigger.net/burp/extender/api/burp/ITab.html
11PortSwigger Ltd., Interface IContextMenuFactory, URL: https://portswigger.net/burp/extender/api/burp/

IContextMenuFactory.html

https://portswigger.net/burp/extender/api/burp/IHttpListener.html
https://portswigger.net/burp/extender/api/burp/IHttpListener.html
https://portswigger.net/burp/extender/api/burp/ITab.html
https://portswigger.net/burp/extender/api/burp/IContextMenuFactory.html
https://portswigger.net/burp/extender/api/burp/IContextMenuFactory.html

4.3 Internal Structure 48

persistently saved into a JSON-file which will be loaded on startup of the extension and which is
located at $HOME/.joseph/config.json. The AttackerResultWindow extends the JFrame class
to create an independent, new and non-blocking window to display the attack results.

The gui package contains a sub-package table with the Table, TableModel and TableEntry

classes. These classes are used by standard attacks to list the performed attack requests and
show their results, and are displayed within the AttackerResultWindow. Standard attack in this
case refers to an attack for which it is sufficient to display the columns Payload type, Payload,
Status, Length, Time and Comment as result, alongside with the performed request and obtained
response. This is the case for the implemented Signature Exclusion and Key Confusion attacks.
The Bleichenbacher attack is more complex, thus includes its own gui package with customized
components.

Editor Package

The editor package contains the JwsEditor and JweEditor, which both implement Burp Suite’s
IMessageEditorTabFactory12 interface and are registered as additional message editor tabs. They
create new text editor instances for every JOSE component by using Burp Suite’s ITextEditor13

interface and provided callback function14.

Attacks Package

The attacks package is one of the central parts of JOSEPH and contains all available attacks,
organized in own sub-packages. Figure 4.11 shows the contents of the attacks package and a
sample standard attack, together with their relation between each other. An attack package must
consist of at least the three [AttackName], [AttackName]Info and [AttackName]AttackRequest

classes.

• The AttackLoader class is used as single point of management to register and retrieve all
available attacks.

• The IAttack interface defines necessary methods which must be implemented by any
[AttackName] attack class. Attack classes contain the main attack logic and operations
to actually perform the attack by sending the previously prepared payload requests. All
attack classes contain an inner class AttackExecutor, which extends from the abstract
SwingWorker15 class and is used to process time-consuming GUI-interaction tasks in a
non-blocking background thread.

12PortSwigger Ltd., Interface IMessageEditorTabFactory, URL: https://portswigger.net/burp/extender/api/
burp/IMessageEditorTabFactory.html

13PortSwigger Ltd., Interface ITextEditor, URL: https://portswigger.net/burp/extender/api/burp/
ITextEditor.html

14PortSwigger Ltd., Function createTextEditor(), URL: https://portswigger.net/burp/extender/api/burp/
IBurpExtenderCallbacks.html#createTextEditor()

15Oracle, Class SwingWorker<T,V>, URL: https://docs.oracle.com/javase/7/docs/api/javax/swing/
SwingWorker.html

https://portswigger.net/burp/extender/api/burp/IMessageEditorTabFactory.html
https://portswigger.net/burp/extender/api/burp/IMessageEditorTabFactory.html
https://portswigger.net/burp/extender/api/burp/ITextEditor.html
https://portswigger.net/burp/extender/api/burp/ITextEditor.html
https://portswigger.net/burp/extender/api/burp/IBurpExtenderCallbacks.html#createTextEditor()
https://portswigger.net/burp/extender/api/burp/IBurpExtenderCallbacks.html#createTextEditor()
https://docs.oracle.com/javase/7/docs/api/javax/swing/SwingWorker.html
https://docs.oracle.com/javase/7/docs/api/javax/swing/SwingWorker.html

4.3 Internal Structure 49

• The IAttackInfo interface defines necessary methods which must be implemented by any
[AttackName]Info attack info class. Apart from meta data, such as the attack name and
a short description, this class defines additional UI elements to retrieve necessary, supple-
mentary information. Furthermore, it contains the logic to prepare the attack requests by
applying several payloads.

• AttackRequest is an abstract class whichmust be extended by any [AttackName]AttackRequest

attack request class. This class contains data about a single payload request and might be
expanded to hold additional information for attack specific use.

Figure 4.11.: General attack structure

Detailed instructions on how to develop and integrate a new custom attack are given in the next
Section 4.4 Extensibility.

4.3 Internal Structure 50

The Bleichenbacher PKCS1 Attack Package

The bleichenbacher_pkcs1 package is the currently most complex attack available in JOSEPH.
Apart from the three necessary attack classes, the Bleichenbacher PKCS#1 attack includes
the BleichenbacherPkcs1DecryptionAttackExecutor class which also extends the abstract
SwingWorker class and is used to perform the second phase of the attack: the actual cipher-
text decryption. Additionally, this class makes use of the custom Interval class, representing
a single interval used by the Bleichenbacher algorithm, and the BleichenbacherPkcs1Oracle

class, holding all oracle responses and their validity according to PKCS#1 v1.5. Furthermore, the
BleichenbacherPkcs1Oracle class contains the logic to compare the validity of new responses
based on Dice similarity metrics, as implemented by the used SimMetrics Java library of similarity
and distance metrics16.

Figure 4.12.: Class diagram of the Bleichenbacher PKCS1 attack package

16M.P. Korstanje, SimMetrics, URL: https://github.com/Simmetrics/simmetrics

https://github.com/Simmetrics/simmetrics

4.4 Extensibility 51

Figure 4.12 depicts the class diagram of the Bleichenbacher attack package without display-
ing any dependencies to classes and interfaces outside the package. Due to the complexity of
this attack it defines its own GUI elements with a custom AttackerResultWindow class and
amended Table, TableModel and TableEntry classes within a gui sub-package. Further, the
new class BleichenbacherPkcs1DecryptionAttackPanel is defined and added as tab to the
AttackerResultWindow, displaying the status and results of the second decryption phase of the
attack. The class diagram of the gui sub-package is illustrated in Figure 4.13.

Figure 4.13.: Class diagram of the Bleichenbacher PKCS1 attack GUI sub-package

4.4. Extensibility

One of JOSEPH’s design goals was its simple extensibility, mainly in the sense of easily adding new
attacks to it. The sources contain an __attack_template package, which is an empty but fully
working implementation of a standard attack, intended for use as a basis for a quick start. The
following instructions provide a step-by-step guide to add a new attack to JOSEPH. This guide
uses an exemplary attack called Algorithm Check that aims to check which JWS algorithms are
supported on a system.

4.4 Extensibility 52

1. Copy the __attack_template package and rename it to the attack name: algorithm_check.
This package contains the three required classes of a standard attack. Rename each three
of them, following the given naming convention. This should result in having the three
classes AlgorithmCheck, AlgorithmCheckInfo and AlgorithmCheckAttackRequest. All
good Integrated Development Environments (IDEs) provide refactoring features, which should
aid in this step being only a single click per class.

2. Register the new attack in the AttackLoader class. This can easily be done by adding the
following (adjusted) snippet to the getRegisteredAttackInstances() function.

/* Algorithm Check Attack */
AlgorithmCheckInfo algorithmCheckInfo = new AlgorithmCheckInfo(callbacks);
registeredAttackInstances.put(algorithmCheckInfo.getName (),

algorithmCheckInfo);
loggerInstance.log(AttackLoader.class , "Attack registered: Algorithm Check",

Logger.LogLevel.INFO);

3. Within the AlgorithmCheckInfo class, change the meta data of the id, name and description

variables to fit to the new attack.

// Unique identifier for the attack class
private static final String id = "algorithm_check";

// Full name of the attack
private static final String name = "Algorithm Check";

// Attack description
private static final String description = "<html >The Algorithm Check

attack checks the supported algorithms of the implementing JWS system
against a list of available algorithms from the specifications .</html >";

This is basically enough to add a new attack to JOSEPH. On recompilation, the Algorithm Check
should appear in the list of available attacks. Next, the attack logic needs to be implemented.

4. For this specific attack, add a new variable algorithms which contains the list of algorithms
that should be tested as array. Here, only three algorithms are included. This array can be
easily extended with no additional effort. Additionally, dynamically calculate the amount of
necessary requests by using the length of the algorithms array.

// Array of algorithms to test
private static final String [] algorithms = {"HS256", "RS256", "ES256"};

// Amount of requests needed
private static final int amountRequests = algorithms.length;

4.4 Extensibility 53

5. Each attack needs to list its different payload types as enum. In this case, it makes sense to
name them equally to the tested algorithm.

// Types of payload variation
enum PayloadType {

HS256 ,
RS256 ,
ES256

}

6. The payloads hashmap contains all available payloads together with a verbose name. To
minimize the effort of extending the list of algorithms to be tested, this hashmap is dynam-
ically created by using the PayloadType enumeration. This hashmap is used for the Editor
Attacker tab and Repeater to select a single payload.

// Hashmap of available payloads with a verbose name
private static final HashMap <String , PayloadType > payloads = new HashMap <>();
static {

for (PayloadType payload : PayloadType.values ()) {
put(String.format("Algorithm: %s", payload.name()), payload);

}
}

7. Based on this list, the updateValuesByPayload() function can be implemented, which applies
a single payload to the given JWS values. For the Algorithm Check attack, the alg algorithm
header value is replaced with the payload’s algorithm.

@Override
public HashMap <String , String > updateValuesByPayload(Enum payloadTypeId ,

String header , String payload , String signature) {
HashMap <String , String > result = new HashMap <>();

result.put("header", header.replaceFirst(
"\"alg \":\"(.+?) \"",
"\"alg \":\"" + payloadTypeId.name() + "\"")

);
result.put("payload", payload);
result.put("signature", signature);

return result;
}

4.4 Extensibility 54

8. If further user input is needed, amending the getExtraUI() function allows for adding addi-
tional UI elements. The JPanel and related constraints for the used GridBagLayout17 passed
to this function, enable a developer to easily add and position any attack specific widgets. As
no extra UI is needed for this exemplary attack, returning false is enough.

@Override
public boolean getExtraUI(JPanel extraPanel , GridBagConstraints constraints) {

return false;
}

However, to give a short example, adding an extra label and textarea might look like the
following. It is important to change the return value to true, if any additional widgets are
added.

@Override
public boolean getExtraUI(JPanel extraPanel , GridBagConstraints constraints) {

JLabel extraBoxLabel = new JLabel("Extra UI Example");
extraBox = new JTextArea (10, 50);
extraBox.setLineWrap(true);

constraints.gridy = 0;
extraPanel.add(extraBoxLabel , constraints);

constraints.gridy = 1;
extraPanel.add(extraBox , constraints);

return true;
}

9. Each attack needs to implement a check to determine the suitability of applying its payloads,
based on the passed JOSE type and algorithm. This is done in the isSuitable() function.
For the exemplary attack, it is sufficient to check whether the provided JOSE value is a JWS.

@Override
public boolean isSuitable(JoseParameter.JoseType type , String algorithm) {

return (type == JoseParameter.JoseType.JWS);
}

17Oracle, Class GridBagLayout, URL: https://docs.oracle.com/javase/7/docs/api/java/awt/GridBagLayout.
html

https://docs.oracle.com/javase/7/docs/api/java/awt/GridBagLayout.html
https://docs.oracle.com/javase/7/docs/api/java/awt/GridBagLayout.html

4.4 Extensibility 55

10. The prepareAttack() function prepares all requests that will be processed by launching the
complete attack. Amend this function to add the specific AlgorithmCheckAttackRequest

objects to the requests list.

@Override
public AlgorithmCheck prepareAttack(IBurpExtenderCallbacks callbacks ,

IHttpRequestResponse requestResponse , IRequestInfo requestInfo ,
JoseParameter parameter) throws AttackPreparationFailedException {

this.requestResponse = requestResponse;
this.parameter = parameter;
this.requests.clear();

for (PayloadType payload : PayloadType.values ()) {
try {

String [] tmpComponents =
Decoder.getComponents(this.parameter.getJoseValue ());

String tmpDecodedHeader = Decoder.getDecoded(tmpComponents [0]);
String tmpReplaced = tmpDecodedHeader.replaceFirst(

"\"alg \":\"(.+?) \"",
"\"alg \":\"" + payload.name() + "\""

);
String tmpReplacedEncoded = Decoder.getEncoded(tmpReplaced);
String [] tmpNewComponents = {

tmpReplacedEncoded ,
tmpComponents [1],
tmpComponents [2]

};
String tmpParameterValue = Decoder.concatComponents(tmpNewComponents);

byte[] tmpRequest = JoseParameter.updateRequest(
this.requestResponse.getRequest (),
this.parameter , helpers ,
tmpParameterValue

);

requests.add(new AlgorithmCheckAttackRequest(tmpRequest ,
payload.ordinal (), payload.name()));

} catch (Exception e) {
throw new AttackPreparationFailedException("Attack preparation failed.

Message: " + e.getMessage ());
}

}
return new AlgorithmCheck(callbacks , this);

}

4.4 Extensibility 56

Those straightforward steps suffice to add a new simple attack. For showing the results, the
standard AttackerResultWindow is used automatically. Use the bleichenbacher_pkcs1 attack
package as reference for more complicated attacks.

5. Conclusions and Future Work

This thesis featured critical attacks on JSON Web Signature and JSON Web Encryption, which still
practically affect current applications. There exist several important areas in need of prospective
research.

Summary

The JavaScript Object Signing and Encryption working group put much effort into developing
means to apply cryptographic mechanisms to JSON messages. All five specifications include a
Security Considerations section to address well known vulnerabilities and common attacks, and
provide detailed examples on how to work with the described methods.

Nevertheless, this thesis proved that a textual security considerations section within a specifica-
tion is not sufficient to ensure secure implementations. The Bleichenbacher Million Message Attack
is known for almost 20 years and the dangers of using standard methods for cryptographic oper-
ations have often been practically shown. During the research of this thesis we discovered several
libraries being vulnerable to those attacks. Previous research of Tim McLean, with a special focus
on JOSE implementations, revealed signature exclusion and signature faking issues, after which
numerous libraries needed to be fixed. Thus, it is necessary to provide security mechanisms on the
lowest possible level, which includes deprecating insecure cryptographic algorithms and parameters
already within the specification.

JOSEPH is the first attempt to offer a tool to aid in security analyses of JOSE implementations
and to test the susceptibility to known attacks. By providing the features of automatic recognition
and visualization, semi-automatic testing of known attacks, manual manipulation and easy, dynamic
extensibility, JOSEPH is hopefully a helpful contribution to the security community and a good
starting point for further research and more secure implementations.

Future Work

The JavaScript Object Signing and Encryption is a set of young specifications, which require a lot
more research and evaluation. Apart from modifications to the specifications itself, to e.g. deprecate
insecure cryptographic algorithms, it is necessary to further analyze real world implementations and
applications. Some future research might include the following topics:

• Replay attacks. From the specification perspective, only JWTs provide possible means to
protect against replay attacks, namely the expiration time and JWT ID claims. An analysis

Conclusions and Future Work 58

of the resistance of libraries and implementing applications against replay attacks might be
of public interest.

• Adaptive chosen-ciphertext attacks on CBC mode. Between draft 05 and draft 06 of the JWA
specification [24], the supported AES encryption algorithms using the Cipher Block Chaining
(CBC) mode of operation for use with JWEs changed to include message authentication. The
use of authenticated encryption prevents known attacks abusing the malleability of the CBC
mode, presented in 2002 by Serge Vaudenay [63] and practically applicable to, for instance,
XML Encryption [10]. The correctness of implementations and sufficiency of protection might
be an interesting area of further investigation.

• BERserk attack. “In 2006, Daniel Bleichenbacher described a signature forgery attack against
implementations of RSA signature verification which do not completely validate PKCS#1
v1.5 padding” [64] [65]. The exploitability of the PKCS#1 v1.5 weakness was successfully
proven within this thesis, thus investigating the BERserk attack could be considered in future
evaluations.

• Invalid Curve Attacks. Invalid curve attacks address Elliptic Curve Cryptography (ECC)
algorithms and abuse missing checks of the membership of the cyclic group for the provided
points. The paper Practical Invalid Curve Attacks on TLS-ECDH [66] gives an example
of the practical exploitability in TLS implementations. In November 2016, Cedric Staub
informed the security community about an invalid curve attack vulnerability for the ECDH-ES
algorithm within the go-jose [67] JOSE library12. The applicability of invalid curve attacks
on a variety of other libraries could be analyzed.

There exist many more known attacks against cryptographic systems and possible pitfalls between
theoretically secure and practically implemented systems. Apart from research, future work on the
JOSEPH Burp Suite extension will help penetration testers, library maintainers, developers and
other users to easily test their implementations. Feedback on desired enhancements and occurring
issues are likely to arise after publicizing JOSEPH as open source project. Addressing these requests
will be part of meaningful future work.

1Email to the Openwall security mailinglist, URL: http://www.openwall.com/lists/oss-security/2016/11/03/1
2Release information of the security fixes, URL: https://github.com/square/go-jose/releases/tag/v1.0.4

http://www.openwall.com/lists/oss-security/2016/11/03/1
https://github.com/square/go-jose/releases/tag/v1.0.4

A. Appendix

A.1. Base64 vs. Base64url
The following Listing A.1 gives a short example of the difference between base64 and base64url
encoding.

Input
<jose>Any difference?</jose>

Base64
PGpvc2U+QW55IGRpZmZlcmVuY2U/PC9qb3NlPg==

Base64url
PGpvc2U-QW55IGRpZmZlcmVuY2U_PC9qb3NlPg

Listing A.1: Example showing the difference between base64 and base64url encoding

A.2 Registered Header Parameter 60

A.2. Registered Header Parameter
The following three tables list the registered header parameters in the IANA registry, as described
in the JWK, JWS and JWE specifications.

Table A.1.: List of registered parameter available for use with JWE
Header
Param.

Name Description Required

alg Algorithm Identifies the cryptographic algorithm used to en-
crypt or determine the value of the CEK.

YES

enc Encryption Algorithm Identifies the content encryption algorithm used to
perform authenticated encryption on the plaintext.

YES

zip Compression Algorithm The compression algorithm applied to the plaintext
before being encrypted. The only value defined by
the specification is DEF, representing the DEFLATE al-
gorithm.

NO

jku JWK Set URL URI that refers to a resource for a set of JSON-
encoded public keys.

NO

jwk JSON Web Key Contains the public key. NO
kid Key ID Hint indicating which key was used. NO
x5u X.509 URL URI that refers to a resource for the X.509 public key

certificate or certificate chain.
NO

x5c X.509 Certificate Chain Contains the X.509 public key certificate or certificate
chain.

NO

x5t X.509 Certificate SHA-1
Thumbprint

base64url-encoded SHA-1 digest of the DER encoding
of the X.509 certificate.

NO

x5t#S256 X.509 Certificate SHA-256
Thumbprint

base64url-encoded SHA-256 digest of the DER encod-
ing of the X.509 certificate.

NO

typ Type Used by JWE applications to declare the media type
of this complete JWE.

NO

cty Content Type Used by JWE applications to declare the media type
of the secured content (payload).

NO

crit Critical Indicates that extensions (to JWE and/or JWA spec-
ifications) are being used that MUST be understood
and processed.

NO

A.2 Registered Header Parameter 61

Table A.2.: List of registered header parameter available for the JWS header
Header
Param.

Name Description Required

alg Algorithm Identifies the cryptographic algorithm used to secure
the JWS

YES

jku JWK Set URL URI that refers to a resource for a set of JSON-
encoded public keys.

NO

jwk JSON Web Key Contains the public key. NO
kid Key ID Hint indicating which key was used. NO
x5u X.509 URL URI that refers to a resource for the X.509 public key

certificate or certificate chain.
NO

x5c X.509 Certificate Chain Contains the X.509 public key certificate or certificate
chain.

NO

x5t X.509 Certificate SHA-1
Thumbprint

base64url-encoded SHA-1 digest of the DER encoding
of the X.509 certificate.

NO

x5t#S256 X.509 Certificate SHA-256
Thumbprint

base64url-encoded SHA-256 digest of the DER encod-
ing of the X.509 certificate.

NO

typ Type Used by JWS applications to declare the media type
of this complete JWS.

NO

cty Content Type Used by JWS applications to declare the media type
of the secured content (payload).

NO

crit Critical Indicates that extensions (to JWS and/or JWA spec-
ifications) are being used that MUST be understood
and processed.

NO

Table A.3.: List of registered parameter available for use with JWK
Header
Param.

Name Description Required

kty Key Type Identifies the cryptographic algorithm family used
with the key, such as RSA or EC.

YES

use Public Key Use Identifies the intended use of the public key and is
employed to indicate whether a public key is used for
encrypting data or verifying the signature on data.
Values defined by this specification are sig (signa-
tures) and enc (encryption).

NO

key_ops Key Operations Identifies the operation(s) for which the key is in-
tended to be used, e.g. sign, verify, encrypt.

NO

alg Algorithm Identifies the algorithm intended for use with the key. NO
kid Key ID Hint indicating which key was used. NO
x5u X.509 URL URI that refers to a resource for the X.509 public key

certificate or certificate chain.
NO

x5c X.509 Certificate Chain Contains the X.509 public key certificate or certificate
chain.

NO

x5t X.509 Certificate SHA-1
Thumbprint

base64url-encoded SHA-1 digest of the DER encoding
of the X.509 certificate.

NO

x5t#S256 X.509 Certificate SHA-256
Thumbprint

base64url-encoded SHA-256 digest of the DER encod-
ing of the X.509 certificate.

NO

A.3 Timing Attack 62

A.3. Timing Attack
The example in Listing 3.12, showing measurable timing differences when comparing two strings
by using native string comparison techniques, has been generated with the following sample python
script:

1 import time
2 from random import randint
3

4 ORIG = "73702 ca3cf26f97b69d6891bff8f93a06d0bcc68"
5

6 results = {
7 0: {"hex": "0", "t": []},
8 1: {"hex": "1", "t": []},
9 2: {"hex": "2", "t": []},

10 3: {"hex": "3", "t": []},
11 4: {"hex": "4", "t": []},
12 5: {"hex": "5", "t": []},
13 6: {"hex": "6", "t": []},
14 7: {"hex": "7", "t": []},
15 8: {"hex": "8", "t": []},
16 9: {"hex": "9", "t": []},
17 10: {"hex": "a", "t": []},
18 11: {"hex": "b", "t": []},
19 12: {"hex": "c", "t": []},
20 13: {"hex": "d", "t": []},
21 14: {"hex": "e", "t": []},
22 15: {"hex": "f", "t": []},
23 }
24

25 for a in range (10000000):
26 # Get random number between 0-15
27 rand = randint (0,15)
28 comp = results[rand]["hex"] + ("0" * 39)
29

30 # Get start time
31 start = time.clock ()
32 # Native string comparison
33 comp == ORIG
34 # Get end time
35 end = time.clock()
36 # Add time delta to result dictionary
37 results[rand]["t"]. append ((end -start))
38

39 print ("\t\t%s(Original)" % ORIG)
40

41 # Print results
42 for idx , val in results.iteritems ():
43 print "%.13f %s" % (
44 (reduce(lambda x, y: x + y, val["t"]) / float(len(val["t"]))),
45 str(val["hex"]) + ("0" * 39)
46)

Listing A.2: Python script to illustrate the possibility to measure timing differences of the native
string comparison.

A.3 Timing Attack 63

For unadulterated results, this script has been tested on a freshly booted mini-PC running Ubuntu
12.04.5 in headless1 mode, with 2 CPUs and 4 GB memory. The script itself has been run using
Python 2.7.

For comparability, the script has also been tested on:

• An iMac with OSX 10.11.6, Intel Core i5 and 12 GB memory, not in headless mode.

(Original) 73702ca3cf26f97b69d6891bff8f93a06d0bcc68
0.0000005887734 00
0.0000005894727 1000000000000000000000000000000000000000
0.0000005877479 2000000000000000000000000000000000000000
0.0000005863251 3000000000000000000000000000000000000000
0.0000005869497 4000000000000000000000000000000000000000
0.0000005883077 5000000000000000000000000000000000000000
0.0000005873364 6000000000000000000000000000000000000000
0.0000006251094 7000000000000000000000000000000000000000
0.0000005892808 8000000000000000000000000000000000000000
0.0000005907609 9000000000000000000000000000000000000000
0.0000005881786 a000000000000000000000000000000000000000
0.0000005892698 b000000000000000000000000000000000000000
0.0000005876023 c000000000000000000000000000000000000000
0.0000005878498 d000000000000000000000000000000000000000
0.0000005914318 e000000000000000000000000000000000000000
0.0000005917146 f000000000000000000000000000000000000000

• A newly created Ubuntu 16.04.1 x64 server VM instance, with 2 CPUs and 2 GB Memory,
in headless mode.

(Original) 73702ca3cf26f97b69d6891bff8f93a06d0bcc68
0.0000006659684 00
0.0000006634875 1000000000000000000000000000000000000000
0.0000006703510 2000000000000000000000000000000000000000
0.0000006721953 3000000000000000000000000000000000000000
0.0000006838214 4000000000000000000000000000000000000000
0.0000006565073 5000000000000000000000000000000000000000
0.0000006731525 6000000000000000000000000000000000000000
0.0000007237154 7000000000000000000000000000000000000000
0.0000006675485 8000000000000000000000000000000000000000
0.0000006669291 9000000000000000000000000000000000000000
0.0000006732856 a000000000000000000000000000000000000000
0.0000006700631 b000000000000000000000000000000000000000
0.0000006667463 c000000000000000000000000000000000000000
0.0000006707665 d000000000000000000000000000000000000000
0.0000006903125 e000000000000000000000000000000000000000
0.0000006622921 f000000000000000000000000000000000000000

1“A headless system is a computer that operates without a monitor, graphical user interface (GUI) or peripheral
devices, such as keyboard and mouse” [68].

A.4 CVE Overview 64

A.4. CVE Overview
The following Table A.4 gives an overview of the received CVE identifiers, along with short in-
formation about the vulnerability, affected library and its current status of publication at time of
writing. Screenshots of the published CVE entries are depicted in the following three figures.

Table A.4.: List of received CVE identifiers
CVE No. Vulnerability Library Published

CVE-2016-5429 Timing-attack on HMAC comparison jose-php by Nov Matake & Gree Inc. 3

CVE-2016-5430 Bleichenbacher MMA jose-php by Nov Matake & Gree Inc. 3

CVE-2016-5431 Key Confusion attack mitigation deac-
tivated by default

jose-php by Nov Matake & Gree Inc. 7

CVE-2016-6298 Bleichenbacher MMA jwcrypto by Simo Source 3

CVE-2016-7037 Timing-attack on HMAC comparison JWT by Malcolm Fell 7

CVE-2016-7036 Timing-attack on HMAC comparison python-jose by Michael Davis 7

Figure A.1.: Screenshot of the published CVE-2016-5429 entry2

Figure A.2.: Screenshot of the published CVE-2016-5430 entry3

2URL: http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-5429
3URL: http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-5430

http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-5429
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-5430

A.5 Burp Suite Feature Requests 65

Figure A.3.: Screenshot of the published CVE-2016-6298 entry4

A.5. Burp Suite Feature Requests
The Burp Suite contains a Decoder tab, which enables the user to use several algorithms for
encoding and decoding. For working with JOSE representations, the base64url-encoding is needed.
Unfortunately, there exists no API or other method to extend the existing Decoder algorithms and
add new ones. Therefore, a completely new and standalone Decoder tab had to be developed and
added to the JOSEPH extension. The related feature request to add such an API is shown in
Figure A.4.

Figure A.4.: Screenshot of the published Burp Suite feature request5

Additionally, extracting and working with HTTP headers from within the extension is not that easy
and requires custom parsing. For parameters, there exists the IParameter6 interface to operate on
a single object and several methods to aid in manipulation of parameters within a request. There
already existed a public feature request7 for better HTTP header support, which has been put back
on track with a comment of ours.

4URL: http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-6298
5URL: https://support.portswigger.net/customer/en/portal/questions/16719383-extender-api-to-add-

additional-decoder-algorithms?new=16719383
6PortSwigger Ltd., Interface IParameter, URL: https://portswigger.net/burp/extender/api/burp/IParameter.

html
7URL: https://support.portswigger.net/customer/portal/questions/15940213-irequestinfo-getheaders

http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-6298
https://support.portswigger.net/customer/en/portal/questions/16719383-extender-api-to-add-additional-decoder-algorithms?new=16719383
https://support.portswigger.net/customer/en/portal/questions/16719383-extender-api-to-add-additional-decoder-algorithms?new=16719383
https://portswigger.net/burp/extender/api/burp/IParameter.html
https://portswigger.net/burp/extender/api/burp/IParameter.html
https://support.portswigger.net/customer/portal/questions/15940213-irequestinfo-getheaders

List of Figures

2.1. Process of generating a JSON Web Signature . 12
2.2. Process of generating a JSON Web Encryption . 15

3.1. Attack scenario for the Key Confusion Attack . 22
3.2. Attack scenario for the Bleichenbacher Million Message Attack 27

4.1. Logo of the JOSEPH Burp Suite extension . 39
4.2. Screenhots of the marking feature and additional editor tabs 41
4.3. Screenshots showing the decoder and preferences tabs 42
4.4. Attack selection and configuration . 43
4.5. Error popup . 43
4.6. Attack result window . 44
4.7. Workflow of the MMA attack . 45
4.8. The Manual tab . 45
4.9. Package structure overview . 46
4.10. The GUI package structure . 47
4.11. General attack structure . 49
4.12. Class diagram of the Bleichenbacher PKCS1 attack package 50
4.13. Class diagram of the Bleichenbacher PKCS1 attack GUI sub-package 51

A.1. Screenshot of the published CVE-2016-5429 entry . 64
A.2. Screenshot of the published CVE-2016-5430 entry . 64
A.3. Screenshot of the published CVE-2016-6298 entry . 65
A.4. Screenshot of the published Burp Suite feature request 65

List of Listings

2.1. Example of a JSON array containing two objects . 5
2.2. Example JWK Set containing one symmetric and two public keys represented as JWKs 9
2.3. JSON Web Signature in its JWS Compact Serialization representation 10
2.4. JSON Web Signature in its General JWS JSON Serialization representation 11
2.5. JSON Web Signature in its Flattened JWS JSON Serialization representation 11
2.6. JSON Web Encryption in its JWE Compact Serialization representation 14
2.7. Example of a JWT payload containing six claims . 17

3.1. PHP JOSE getSigner() function (version 2.1.3). 20
3.2. Commit diff excerpt of the PHP JOSE library showing the changes to disable the

none algorithm by default. 20
3.3. Commit diff excerpt of the PHP JOSE library showing the changes to fix the case-

sensitivity of the algorithm value. 21
3.4. Signature of the verify function of jose-php . 24
3.5. Commit diff of the php-jose library addressing the disabled countermeasure to the

key confusion attack . 24
3.6. Exceptions thrown during the decryption process in the jose-php library 29
3.7. Excerpt of phpseclib’s _rsaes_pkcs1_v1_5_decrypt() function 29
3.8. Exceptions raised during the decryption process in the JWCrypto library 30
3.9. Fixed version of JWCrypto . 33
3.10. Excerpt of PHP’s zend_is_identical() function 34
3.11. Implementation of the memcmp() C function . 34
3.12. Example showing measurable timing differences on native string comparison 35
3.13. Excerpt of the vulnerable _verify() function of the jose-php library by Nov Matake

& Gree Inc. 36
3.14. Vulnerable verify() function of the JWT library by Malcolm Fell 36
3.15. Vulnerable verify() function of the python-jose library by Michael Davis 36
3.16. Source code of the MessageDigest.isEqual() function in Java 1.7 37
3.17. Exemplary use of the double HMAC strategy . 38

4.1. Command to compile the JOSEPH Burp Suite extension from source 39

A.1. Example showing the difference between base64 and base64url encoding 59
A.2. Python script to illustrate the possibility to measure timing differences of the native

string comparison. 62

List of Tables

2.1. List of available algorithms for use with JSON Web Signature 7
2.2. List of available algorithms to encrypt or determine the CEK for use with JSON Web

Encryption . 7
2.3. List of available algorithms to encrypt and integrity-protect the content for use with

JSON Web Encryption . 8

A.1. List of registered header parameter available for use with JWE 60
A.2. List of registered header parameter available for the JWS header 61
A.3. List of registered parameter available for use with JWK 61
A.4. List of received CVE identifiers . 64

List of Acronyms

AAD Additional Authenticated Data

ACME Automatic Certificate Management Environment

AEAD Authenticated Encryption with Associated Data

AES Advanced Encryption Standard

API Application Programming Interface

CBC Cipher Block Chaining Mode

CEK Content Encryption Key

CAPEC Common Attack Pattern Enumeration and Classification

CBC Cipher Block Chaining

CSRF Cross-Site Request Forgery

CVE Common Vulnerabilities and Exposures

CWE Common Weakness Enumeration

DTD Document Type Definitions

ECC Elliptic Curve Cryptography

ECDSA Elliptic Curve Digital Signature Algorithm

FIPS Federal Information Processing Standards

GCM Galois/Counter Mode

GUI Graphical User Interface

HMAC Keyed-Hash Message Authentication Code

HTTP Hypertext Transfer Protocol

IANA Internet Assigned Numbers Authority

IDE Integrated Development Environment

IETF Internet Engineering Task Force

IPSec Internet Protocol Security

IV Initialization Vector

JCE Java Cryptography Extension

JDK Java Development Kit

JOSE JavaScript Object Signing and Encryption

JSON JavaScript Object Notation

JWA JSON Web Algorithm

JWK JSON Web Key

JWS JSON Web Signature

JWE JSON Web Encryption

JWT JSON Web Token

MAC Message Authentication Code

MIME Multipurpose Internet Mail Extensions

MMA Million Message Attack

NIST National Institute of Standards and Technology

OAEP Optimal Asymmetric Encryption Padding

PEM Privacy Enhanced Mail

RFC Request for Comments

RSA Rivest-Shamir-Adleman

SAML Security Assertion Markup Language

SSL Secure Sockets Layer

SSO Single Sign-on

TLS Transport Layer Security

UI User Interface

URL Uniform Resource Locator

XML Extensible Markup Language

Bibliography

[1] Security Services Technical Committee, “Assertions and Protocols for the OASIS Security
Assertion Markup Language (SAML) V2.0.” [Online]. Available: https://docs.oasis-
open.org/security/saml/v2.0/saml-core-2.0-os.pdf

[2] World Wide Web Consortium (W3C), “Extensible Markup Language (XML) 1.0 (Fifth
Edition).” [Online]. Available: https://www.w3.org/TR/REC-xml/

[3] T. Bray, “The JavaScript Object Notation (JSON) Data Interchange Format,” RFC 7159
(Proposed Standard), Internet Engineering Task Force, Mar. 2014. [Online]. Available:
http://www.ietf.org/rfc/rfc7159.txt

[4] IETF jose Working Group. Javascript Object Signing and Encryption (jose). [Online].
Available: http://datatracker.ietf.org/wg/jose/

[5] J. Panzer, B. Laurie, and D. Balfanz, “Magic Signatures.” [Online]. Available:
https://salmon-protocol.googlecode.com/svn/trunk/draft-panzer-magicsig-01.html

[6] J. Bradley and N. Sakimura, “JSON Simple Sign 1.0 draft 01.” [Online]. Available:
http://jsonenc.info/jss/1.0/

[7] J. Bradley and N. Sakimura, “JSON Simple Encryptiono 1.0 draft 00.” [Online]. Available:
http://jsonenc.info/enc/1.0/

[8] D. Hardt and Y. Goland, “Simple Web Token.” [Online]. Available: https://msdn.microsoft.
com/de-de/library/azure/hh781551.aspx

[9] E. Rescorla and J. Hildebrand, “JavaScript Message Security Format,” Internet Engineering
Task Force, 2011. [Online]. Available: https://tools.ietf.org/html/draft-rescorla-jsms-00

[10] J. Somorovsky, “On the Insecurity of XML Security,” Ph.D. dissertation, Ruhr-Universität
Bochum, 2013.

[11] T. Jager and J. Somorovsky, “How To Break XML Encryption,” in The 18th ACM Conference
on Computer and Communications Security (CCS), 2011.

[12] D. Kupser, C. Mainka, J. Schwenk, and J. Somorovsky, “How to Break XML
Encryption – Automatically,” in 9th USENIX Workshop on Offensive Technologies
(WOOT 15). Washington, D.C.: USENIX Association, 2015. [Online]. Available:
https://www.usenix.org/conference/woot15/workshop-program/presentation/kupser

[13] T. Jager, S. Schinzel, and J. Smorovksy, “Bleichenbacher’s Attack Strikes Again: Breaking
PKCS#1 v1.5 in XML Encryption,” in Proceedings of the 17th European Symposium on Re-
search in Computer Security (ESORICS 2012), 2012.

https://docs.oasis-open.org/security/saml/v2.0/saml-core-2.0-os.pdf
https://docs.oasis-open.org/security/saml/v2.0/saml-core-2.0-os.pdf
https://www.w3.org/TR/REC-xml/
http://www.ietf.org/rfc/rfc7159.txt
http://datatracker.ietf.org/wg/jose/
https://salmon-protocol.googlecode.com/svn/trunk/draft-panzer-magicsig-01.html
http://jsonenc.info/jss/1.0/
http://jsonenc.info/enc/1.0/
https://msdn.microsoft.com/de-de/library/azure/hh781551.aspx
https://msdn.microsoft.com/de-de/library/azure/hh781551.aspx
https://tools.ietf.org/html/draft-rescorla-jsms-00
https://www.usenix.org/conference/woot15/workshop-program/presentation/kupser

[14] T. Jager, K. Paterson, and J. Somorovsky, “One Bad Apple: Backwards Compatibility Attacks
on State-of-the-Art Cryptography,” in 20th Annual Network & Distributed System Security
Symposium, 2013. [Online]. Available: http://nds.rub.de/media/nds/veroeffentlichungen/
2013/03/08/BackwardsCompatibilityAttacks.pdf

[15] J. Forshaw, “Exploiting XML Digital Signature Implementations,” in Hack In The Box - Kuala
Lumpur 2013, 2013.

[16] T. McLean, “Critical vulnerabilities in JSON Web Token libraries.” [Online]. Available:
https://auth0.com/blog/2015/03/31/critical-vulnerabilities-in-json-web-token-libraries/

[17] R. Bischofberger and E. Duss, “SAML Raider - SAML2 Burp Extension.” [Online]. Available:
https://github.com/SAMLRaider/SAMLRaider

[18] T. Guenther, “Extension for Processing and Recognition of Single Sign-On Protocols
(EsPReSSO).” [Online]. Available: https://github.com/RUB-NDS/BurpSSOExtension

[19] D. Crockford, “The application/json Media Type for JavaScript Object Notation (JSON),”
RFC 4627 (Informational), Internet Engineering Task Force, July 2006, obsoleted by RFC
7159. [Online]. Available: http://www.ietf.org/rfc/rfc4627.txt

[20] The Unicode Consortium, “The Unicode Standard.” [Online]. Available: http://www.unicode.
org/versions/latest/

[21] M. Jones, J. Bradley, and N. Sakimura, “JSON Web Signature (JWS),” RFC 7515
(Proposed Standard), Internet Engineering Task Force, May 2015. [Online]. Available:
http://www.ietf.org/rfc/rfc7515.txt

[22] M. Jones and J. Hildebrand, “JSON Web Encryption (JWE),” RFC 7516 (Proposed
Standard), Internet Engineering Task Force, May 2015. [Online]. Available: http:
//www.ietf.org/rfc/rfc7516.txt

[23] M. Jones, “JSON Web Key (JWK),” RFC 7517 (Proposed Standard), Internet Engineering
Task Force, May 2015. [Online]. Available: http://www.ietf.org/rfc/rfc7517.txt

[24] M. Jones, “JSON Web Algorithms (JWA),” RFC 7518 (Proposed Standard), Internet
Engineering Task Force, May 2015. [Online]. Available: http://www.ietf.org/rfc/rfc7518.txt

[25] M. Jones, J. Bradley, and N. Sakimura, “JSON Web Token (JWT),” RFC 7519
(Proposed Standard), Internet Engineering Task Force, May 2015. [Online]. Available:
http://www.ietf.org/rfc/rfc7519.txt

[26] HDKNR.COM, “JSON Web Encryption (JWE).” [Online]. Available: http://hdknr.github.io/
docs/identity/jwe.html#introduction

[27] OpenID Foundation, “What is OpenID Connect?” [Online]. Available: http://openid.net/
connect/

[28] R. Barnes, J. Hoffman-Andrews, and J. Kasten, “Automatic Certificate Management
Environment (ACME),” Internet Engineering Task Force, Internet-Draft draft-ietf-acme-
acme-04, Oct. 2016, work in Progress. [Online]. Available: https://tools.ietf.org/html/draft-
ietf-acme-acme-04

http://nds.rub.de/media/nds/veroeffentlichungen/2013/03/08/BackwardsCompatibilityAttacks.pdf
http://nds.rub.de/media/nds/veroeffentlichungen/2013/03/08/BackwardsCompatibilityAttacks.pdf
https://auth0.com/blog/2015/03/31/critical-vulnerabilities-in-json-web-token-libraries/
https://github.com/SAMLRaider/SAMLRaider
https://github.com/RUB-NDS/BurpSSOExtension
http://www.ietf.org/rfc/rfc4627.txt
http://www.unicode.org/versions/latest/
http://www.unicode.org/versions/latest/
http://www.ietf.org/rfc/rfc7515.txt
http://www.ietf.org/rfc/rfc7516.txt
http://www.ietf.org/rfc/rfc7516.txt
http://www.ietf.org/rfc/rfc7517.txt
http://www.ietf.org/rfc/rfc7518.txt
http://www.ietf.org/rfc/rfc7519.txt
http://hdknr.github.io/docs/identity/jwe.html#introduction
http://hdknr.github.io/docs/identity/jwe.html#introduction
http://openid.net/connect/
http://openid.net/connect/
https://tools.ietf.org/html/draft-ietf-acme-acme-04
https://tools.ietf.org/html/draft-ietf-acme-acme-04

[29] Internet Security Research Group (ISRG), “Let’s Encrypt.” [Online]. Available: https:
//letsencrypt.org/

[30] Atlassian, “What is Atlassian Connect?” [Online]. Available: https://developer.atlassian.
com/static/connect/docs/latest/guides/introduction.html

[31] IBM Deutschland GmbH, “IBM DataPower Gateway.” [Online]. Available: http://www-
03.ibm.com/software/products/de/datapower-gateway

[32] Apache Software Foundation, “JAX-RS JOSE.” [Online]. Available: http://cxf.apache.org/
docs/jax-rs-jose.html

[33] S. Josefsson, “The Base16, Base32, and Base64 Data Encodings,” RFC 4648 (Proposed
Standard), Internet Engineering Task Force, Oct. 2006. [Online]. Available: http:
//www.ietf.org/rfc/rfc4648.txt

[34] PortSwigger Ltd, “Burp Suite.” [Online]. Available: https://portswigger.net/burp/

[35] The Open Web Application Security Project, “Fuzzing.” [Online]. Available: https:
//www.owasp.org/index.php/Fuzzing

[36] National Institute of Standards and Technology, “FIPS General Information.” [Online].
Available: https://www.nist.gov/information-technology-laboratory/fips-general-information

[37] M. Jones, “JSON Web Algorithms (JWA) Draft 15,” RFC 7518 (Proposed Standard),
Internet Engineering Task Force, 2013. [Online]. Available: https://tools.ietf.org/html/draft-
ietf-jose-json-web-algorithms-15

[38] A. Nadalin, “JSON Object Signing and Encryption library for PHP.” [Online]. Available:
https://github.com/namshi/jose

[39] N. Matake and GREE Inc., “PHP JOSE (Javascript Object Signing and Encryption)
Implementation.” [Online]. Available: https://github.com/nov/jose-php

[40] P. Félix, “Some thoughts on the recent JWT library vulnerabilities.” [Online]. Available: https:
//pfelix.wordpress.com/2015/04/11/some-thoughts-on-the-recent-jwt-library-vulnerabilities/

[41] D. Bleichenbacher, “Chosen ciphertext attacks against protocols based on the rsa encryption
standard pkcs #1,” in Proceedings of the 18th Annual International Cryptology Conference
on Advances in Cryptology, ser. CRYPTO ’98. London, UK, UK: Springer-Verlag, 1998.
[Online]. Available: http://dl.acm.org/citation.cfm?id=646763.706320

[42] R. Bardou, R. Focardi, Y. Kawamoto, L. Simionato, G. Steel, and J.-K. Tsay,
“Efficient padding oracle attacks on cryptographic hardware,” in Proceedings of the 32Nd
Annual Cryptology Conference on Advances in Cryptology — CRYPTO 2012 - Volume
7417. New York, NY, USA: Springer-Verlag New York, Inc., 2012. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-32009-5_36

[43] V. Klíma, O. Pokorný, and T. Rosa, Attacking RSA-Based Sessions in SSL/TLS.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. [Online]. Available: http:
//dx.doi.org/10.1007/978-3-540-45238-6_33

https://letsencrypt.org/
https://letsencrypt.org/
https://developer.atlassian.com/static/connect/docs/latest/guides/introduction.html
https://developer.atlassian.com/static/connect/docs/latest/guides/introduction.html
http://www-03.ibm.com/software/products/de/datapower-gateway
http://www-03.ibm.com/software/products/de/datapower-gateway
http://cxf.apache.org/docs/jax-rs-jose.html
http://cxf.apache.org/docs/jax-rs-jose.html
http://www.ietf.org/rfc/rfc4648.txt
http://www.ietf.org/rfc/rfc4648.txt
https://portswigger.net/burp/
https://www.owasp.org/index.php/Fuzzing
https://www.owasp.org/index.php/Fuzzing
https://www.nist.gov/information-technology-laboratory/fips-general-information
https://tools.ietf.org/html/draft-ietf-jose-json-web-algorithms-15
https://tools.ietf.org/html/draft-ietf-jose-json-web-algorithms-15
https://github.com/namshi/jose
https://github.com/nov/jose-php
https://pfelix.wordpress.com/2015/04/11/some-thoughts-on-the-recent-jwt-library-vulnerabilities/
https://pfelix.wordpress.com/2015/04/11/some-thoughts-on-the-recent-jwt-library-vulnerabilities/
http://dl.acm.org/citation.cfm?id=646763.706320
http://dx.doi.org/10.1007/978-3-642-32009-5_36
http://dx.doi.org/10.1007/978-3-540-45238-6_33
http://dx.doi.org/10.1007/978-3-540-45238-6_33

[44] D. Eastlake, J. Reagle, T. Imamura, B. Dillaway, and E. Simon, “XML Encryption
Syntax and Processing,” W3C Recommendation, December 2002. [Online]. Available:
https://www.w3.org/TR/xmlenc-core/

[45] J. Jonsson and B. Kaliski, “Public-Key Cryptography Standards (PKCS) #1: RSA
Cryptography Specifications Version 2.1,” RFC 3447 (Informational), Internet Engineering
Task Force, Feb. 2003. [Online]. Available: http://www.ietf.org/rfc/rfc3447.txt

[46] T. Jager, S. Schinzel, and J. Somorovsky, “Bleichenbacher’s attack strikes again: Breaking
pkcs#1 v1.5 in xml encryption,” in ESORICS, ser. Lecture Notes in Computer Science,
S. Foresti, M. Yung, and F. Martinelli, Eds., vol. 7459. Springer, 2012. [Online]. Available:
http://dblp.uni-trier.de/db/conf/esorics/esorics2012.html#JagerSS12

[47] MITRE. CAPEC-463: Padding oracle crypto attack. [Online]. Available: http:
//capec.mitre.org/data/definitions/463.html

[48] B. Kaliski, “PKCS #1: RSA Encryption Version 1.5,” RFC 2313 (Informational),
Internet Engineering Task Force, Mar. 1998, obsoleted by RFC 2437. [Online]. Available:
http://www.ietf.org/rfc/rfc2313.txt

[49] C. Meyer, J. Somorovsky, E. Weiss, J. Schwenk, S. Schinzel, and E. Tews, “Revisiting
ssl/tls implementations: New bleichenbacher side channels and attacks,” in 23rd USENIX
Security Symposium (USENIX Security 14). San Diego, CA: USENIX Association,
2014. [Online]. Available: https://www.usenix.org/conference/usenixsecurity14/technical-
sessions/presentation/meyer

[50] S. Source, “JWCrypto – Implementation of JOSE Web standards.” [Online]. Available:
https://github.com/latchset/jwcrypto

[51] N. Matake, “JSON::JWT – JSON Web Token and its family (JSON Web Signature,
JSON Web Encryption and JSON Web Key) in Ruby.” [Online]. Available: https:
//github.com/nov/json-jwt

[52] latchset, “C-language implementation of Javascript Object Signing and Encryption.” [Online].
Available: https://github.com/latchset/jose

[53] E. Rescorla, “Preventing the Million Message Attack on Cryptographic Message Syntax,”
RFC 3218 (Informational), Internet Engineering Task Force, Jan. 2002. [Online]. Available:
http://www.ietf.org/rfc/rfc3218.txt

[54] B. Kaliski and J. Staddon, “PKCS #1: RSA Cryptography Specifications Version 2.0,” RFC
2437 (Informational), Internet Engineering Task Force, Oct. 1998, obsoleted by RFC 3447.
[Online]. Available: http://www.ietf.org/rfc/rfc2437.txt

[55] MITRE. CWE-385: Covert timing channel. [Online]. Available: https://cwe.mitre.org/data/
definitions/385.html

[56] D. Brumley and D. Boneh, “Remote timing attacks are practical,” Comput. Netw., vol. 48,
no. 5, Aug. 2005. [Online]. Available: http://dx.doi.org/10.1016/j.comnet.2005.01.010

[57] B. B. Brumley and N. Tuveri, Remote Timing Attacks Are Still Practical. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2011. [Online]. Available: http://dx.doi.org/10.1007/978-3-642-
23822-2_20

https://www.w3.org/TR/xmlenc-core/
http://www.ietf.org/rfc/rfc3447.txt
http://dblp.uni-trier.de/db/conf/esorics/esorics2012.html#JagerSS12
http://capec.mitre.org/data/definitions/463.html
http://capec.mitre.org/data/definitions/463.html
http://www.ietf.org/rfc/rfc2313.txt
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/meyer
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/meyer
https://github.com/latchset/jwcrypto
https://github.com/nov/json-jwt
https://github.com/nov/json-jwt
https://github.com/latchset/jose
http://www.ietf.org/rfc/rfc3218.txt
http://www.ietf.org/rfc/rfc2437.txt
https://cwe.mitre.org/data/definitions/385.html
https://cwe.mitre.org/data/definitions/385.html
http://dx.doi.org/10.1016/j.comnet.2005.01.010
http://dx.doi.org/10.1007/978-3-642-23822-2_20
http://dx.doi.org/10.1007/978-3-642-23822-2_20

[58] S. A. Crosby, D. S. Wallach, and R. H. Riedi, “Opportunities and limits of remote timing
attacks,” ACM Trans. Inf. Syst. Secur., vol. 12, no. 3, Jan. 2009. [Online]. Available:
http://doi.acm.org/10.1145/1455526.1455530

[59] M. Fell, “JWT – An implementation of the JSON Web Token (JWT) draft in PHP.” [Online].
Available: https://github.com/emarref/jwt

[60] M. Davis, “A JOSE implementation in Python.” [Online]. Available: https://github.com/
mpdavis/python-jose/

[61] NCC Group, “Double hmac verification.” [Online]. Available: https://www.nccgroup.trust/
us/about-us/newsroom-and-events/blog/2011/february/double-hmac-verification/

[62] S. Arciszewski, “Preventing timing attacks on string comparison with a double
hmac strategy.” [Online]. Available: https://paragonie.com/blog/2015/11/preventing-timing-
attacks-on-string-comparison-with-double-hmac-strategy

[63] S. Vaudenay, “Security flaws induced by cbc padding - applications to ssl, ipsec,
wtls ...” in Proceedings of the International Conference on the Theory and Applications of
Cryptographic Techniques: Advances in Cryptology, ser. EUROCRYPT ’02. London, UK, UK:
Springer-Verlag, 2002. [Online]. Available: http://dl.acm.org/citation.cfm?id=647087.715705

[64] Intel Security, “BERserk Vulnerability.” [Online]. Available: http://www.intelsecurity.com/
resources/wp-berserk-analysis-part-1.pdf

[65] H. Finney, “Bleichenbacher’s RSA signature forgery based on implementation error.” [Online].
Available: https://www.ietf.org/mail-archive/web/openpgp/current/msg00999.html

[66] T. Jager, J. Schwenk, and J. Somorovsky, Practical Invalid Curve Attacks on
TLS-ECDH. Cham: Springer International Publishing, 2015. [Online]. Available:
http://dx.doi.org/10.1007/978-3-319-24174-6_21

[67] Square, Inc., “An implementation of JOSE standards (JWE, JWS, JWT) in Go.” [Online].
Available: https://github.com/square/go-jose/

[68] TechTarget, “Definition: Headless System.” [Online]. Available: http://internetofthingsagenda.
techtarget.com/definition/headless-system

http://doi.acm.org/10.1145/1455526.1455530
https://github.com/emarref/jwt
https://github.com/mpdavis/python-jose/
https://github.com/mpdavis/python-jose/
https://www.nccgroup.trust/us/about-us/newsroom-and-events/blog/2011/february/double-hmac-verification/
https://www.nccgroup.trust/us/about-us/newsroom-and-events/blog/2011/february/double-hmac-verification/
https://paragonie.com/blog/2015/11/preventing-timing-attacks-on-string-comparison-with-double-hmac-strategy
https://paragonie.com/blog/2015/11/preventing-timing-attacks-on-string-comparison-with-double-hmac-strategy
http://dl.acm.org/citation.cfm?id=647087.715705
http://www.intelsecurity.com/resources/wp-berserk-analysis-part-1.pdf
http://www.intelsecurity.com/resources/wp-berserk-analysis-part-1.pdf
https://www.ietf.org/mail-archive/web/openpgp/current/msg00999.html
http://dx.doi.org/10.1007/978-3-319-24174-6_21
https://github.com/square/go-jose/
http://internetofthingsagenda.techtarget.com/definition/headless-system
http://internetofthingsagenda.techtarget.com/definition/headless-system

	Introduction
	Contribution
	Related Work
	Outline

	Fundamentals
	JavaScript Object Notation
	JavaScript Object Signing and Encryption
	JSON Web Algorithm
	JSON Web Key
	JSON Web Signature
	JSON Web Encryption
	JSON Web Token

	Burp Suite
	Library Level

	Attacks
	Signature Exclusion
	Library Analysis
	Test Cases
	Countermeasures

	Key Confusion
	Library Analysis
	Test Cases
	Countermeasures

	Bleichenbacher Million Message Attack
	Library Analysis
	Test Cases
	Countermeasures

	Timing Attack on Hash Comparison
	Library Analysis
	Countermeasures

	Implementation
	System Setup
	User Interface
	Internal Structure
	Extensibility

	Conclusions and Future Work
	Appendix
	Base64 vs. Base64url
	Registered Header Parameter
	Timing Attack
	CVE Overview
	Burp Suite Feature Requests

	List of Figures
	List of Listings
	List of Tables
	List of Acronyms
	Bibliography

