
Security of Instant Messaging: Implementation of
Asynchronous Ratcheted Key Exchange

Marco Smeets

Master’s Thesis – May 6, 2019.
Chair for Network and Data Security.

Supervisor: Prof. Dr. Jörg Schwenk
Advisor: M. Sc. Robert Merget
Advisor: M. Sc. Paul Rösler

Abstract

Asynchronous Ratcheted Key Exchange (ARKE) is a further development of Ratch-
eted Key Exchange (RKE), a cryptographic technique used in instant messaging
applications like Signal or WhatsApp. ARKE tries to resolve limitations of RKE by
developing alternative security notions that not only consider unidirectional RKE,
but also bidirectional RKE. So, the communication follows a human-like structure
where participants only send messages if they feel like they want to contribute. The
messages may also cross while transferring over the communication channel, thus,
the communication is asynchronous. In this thesis we implement the Bidirectionally
Ratcheted Key Exchange (BRKE) construction proposed by Poettering and Rösler
(CRYPTO 2018) in Java. The construction uses generic primitives like KEMs, one-
time signatures, and random oracles. Furthermore, the construction uses a modified
version of a KEM, the key-updateable Key Encapsulation Mechanism (kuKEM),
which is a Hierarchical Identity-Based Encryption (HIBE)-like component. We split
the implementation into two parts: a generic BRKE implementation that does not
rely on actual primitive implementations, and a BRKE instantiation in which we
instantiate the generic BRKE construction with actual primitives. We further dis-
cuss possible choices for the different primitives and provide overviews for suitable
algorithms for each primitive.
We implement the kuKEM by using the pairing-based Lewko-Waters HIBE. The
HIBE is implemented in C++ and uses the Relic library, a state-of-the-art pairing
library for C/C++, for pairing computations. We evaluate the BRKE implementa-
tion with four different pairing-friendly curves for two security levels. The evaluation
shows that the kuKEM and, thus, the HIBE has the most influence on the perfor-
mance of the BRKE implementation. We simulate four different communication
sequences and show that the flow of communication strongly determines the perfor-
mance of the BRKE implementation.

Official Declaration

Hereby I declare, that I have not submitted this thesis in this or similar form to any
other examination at the Ruhr-Universität Bochum or any other Institution of High
School.

I officially ensure, that this paper has been written solely on my own. I here-
with officially ensure, that I have not used any other sources but those stated by
me. Any and every parts of the text which constitute quotes in original word-
ing or in its essence have been explicitly referred by me by using official marking
and proper quotation. This is also valid for used drafts, pictures and similar for-
mats.

I also officially ensure, that the printed version as submitted by me fully confirms
with my digital version. I agree that the digital version will be used to subject the
paper to plagiarism examination.

Not this English translation, but only the official version in German is legally bind-
ing.

Eidesstattliche Erklärung

Ich erkläre, dass ich keine Arbeit in gleicher oder ähnlicher Fassung bereits für eine
andere Prüfung an der Ruhr-Universität Bochum oder einer anderen Hochschule
eingereicht habe.

Ich versichere, dass ich diese Arbeit selbstständig verfasst und keine anderen als die
angegebenen Quellen benutzt habe. Die Stellen, die anderen Quellen dem Wortlaut
oder dem Sinn nach entnommen sind, habe ich unter Angabe der Quellen kenntlich
gemacht. Dies gilt sinngemäß auch für verwendete Zeichnungen, Skizzen, bildliche
Darstellungen und dergleichen.

Ich versichere auch, dass die von mir eingereichte schriftliche Version mit der digita-
len Version übereinstimmt. Ich erkläre mich damit einverstanden, dass die digitale
Version dieser Arbeit zwecks Plagiatsprüfung verwendet wird.

Date author

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Related Work . 2
1.3 Contribution . 3
1.4 Organization of this Thesis . 3

2 Background 5
2.1 Notation . 5
2.2 Mathematical Background . 6

2.2.1 Finite Fields . 6
2.2.2 Discrete Logarithm Problem 8
2.2.3 Cryptographic Assumptions 9
2.2.4 Elliptic Curves . 10
2.2.5 Pairings . 11
2.2.6 Dual Pairing Vector Spaces (DPVS) 12

2.3 Cryptographic Primitives . 13
2.3.1 Message Authentication Code 13
2.3.2 Digital Signature . 14
2.3.3 Hash functions . 14
2.3.4 Chameleon Hash Functions 15
2.3.5 Key Encapsulation Mechanism 16
2.3.6 Key-Updateable Key Encapsulation Mechanism 17
2.3.7 Hierachical Identity Based Encryption 17

2.4 Asynchronous Ratcheted Key Exchange (ARKE) 19
2.4.1 Ratcheting . 20
2.4.2 Unidirectionally Ratcheted Key Exchange (URKE) 21
2.4.3 Sesquidirectionally Ratcheted Key Exchange (SRKE) 21
2.4.4 Bidirectionally Ratcheted Key Exchange (BRKE) 21

3 Algorithm Choices 23
3.1 Choosing Algorithms . 23
3.2 One-Time Signature . 24

3.2.1 Summary . 26
3.3 Hash Functions . 27

3.3.1 Summary . 27

vi Contents

3.4 Random Oracle . 27
3.4.1 Summary . 28

3.5 Key Encapsulation Mechanism . 28
3.5.1 Summary . 29

3.6 Key-Updateable Key Encapsulation Mechanism 30
3.6.1 Summary . 31

3.7 Hierarchical Identity Based Encryption 31
3.7.1 Lewko-Waters Unbounded HIBE (Prime Order Translation) . 33
3.7.2 CPA to CCA Transformation 36
3.7.3 Summary . 37

3.8 Conclusion . 38

4 Generic Implementation 39
4.1 Specifications . 39
4.2 General Approach . 39
4.3 The BRKE Ad-Hoc Construction . 40
4.4 Protocol Changes . 42
4.5 Queue-Based Algorithms . 44

4.5.1 Queued kuKEM . 45
4.6 The Modified BRKE Protocol . 47
4.7 Project Structure . 50
4.8 Unit Tests . 51
4.9 Conclusion . 52

5 Instantiation 53
5.1 Libraries . 53
5.2 Specifications . 53
5.3 General Approach . 54

5.3.1 Random Oracle . 54
5.3.2 Transcript . 54
5.3.3 Utility Classes . 55
5.3.4 Variables . 56
5.3.5 Key Encapsulation Mechanism 56

5.4 One-Time Signature . 56
5.5 Hierarchical Identity-Based Encryption 57

5.5.1 The C++ Part . 57
5.5.2 Java to C++ and Vice Versa 60
5.5.3 The Java Part . 61
5.5.4 Summary . 64

5.6 Key-Updateable Key Encapsulation Mechanism 64
5.7 Conclusion . 65

6 Evaluation 67
6.1 The Complete BRKE project . 67

Contents vii

6.2 Approach . 68
6.2.1 Communication Sequences . 69

6.3 Evaluation Results . 71
6.3.1 Lockstep Communication . 72
6.3.2 Asynchronous Communication without Crossing Messages . . 74
6.3.3 Asynchronous Communication with Crossing Messages 76
6.3.4 Worst-Case Communication 78

6.4 Conclusion . 80

7 Conclusion 81

Bibliography 84

Acronyms 91

1 Introduction

In this chapter we describe the topic and the structure of this thesis. In the first sec-
tion the motivation for this thesis is explained. After that, we mention some related
work and explain the contribution, which is achieved by our work.

1.1 Motivation

Nowadays more and more people are using Instant Messaging apps on their mobile
devices. In 2017 the instant messenger app Whats App announced they have one
billion daily active users with 55 billion messages being sent per day [2]. If we have
a look at statistics that try to estimate the number of messaging app users for the
coming years, we can easily see that the numbers are almost certainly rising every
year [1]. With such a high number of users and messages sent per day, it becomes
clear that security should not be neglected in an instant messaging context.
The Signal messaging protocol [79] is a security protocol for instant messaging which
provides end-to-end encryption. It uses a technique called ratcheting to establish up-
dated session keys with every message [64]. The Signal protocol or a modified version
of it is used by several messenger applications like WhatsApp [89] or the Facebook
Messenger [34]. Like a zip tie, a ratchet is constructed in a way that it only moves
forward. A simple example of such a construction could be a “hash chain”. We
have an initial symmetric key, and every time the key is used a one-way function
is applied to derive a new key from the old key. This ensures that a key never is
used more than once and that an attacker cannot compute old session keys. The
security of the Signal Messaging Protocol was recently analyzed by Cohn-Gordon
et al. [29]. There is also work by Bellare et al. [16] that formally analyzes the
security of RKE. They also provide syntax and security definitions for ratcheting.
However, the security model established by Bellare et al. [16] is quite restricted be-
cause, for example, it only considers unidirectional communication. Unidirectional
communication describes the communication in which only one user sends messages
to another user, so for two users Alice and Bob which communicate by exchanging
messages over a network (like the Internet), we only assume communication in the
Alice-to-Bob direction. Furthermore, Bellare et al. [16] only assume that Alice’s
state can be exposed. Problematic with this assumption is the fact that it is some-
times impossible to defend against state exposure because the state information
(which includes session keys, for example) kept in the memory might at one point

2 1 Introduction

be swapped to disk and then can be stolen from there. For this reason, Poettering
and Rösler [77] developed alternative security definitions to account for a more re-
alistic communication environment. They consider bidirectional communication (so
communication is possible in the Alice-to-Bob and the Bob-to-Alice direction) and
consider asynchronous communication. Asynchronous communication describes a
communication which represents a human-like conversation. So both Alice and Bob
contribute to the conversation when they feel like it. Furthermore, messages may
cross while transferring over the network.
So, Poettering and Rösler [77] introduce secure constructions for RKE in which two
communication partners can establish updated session keys in a unidirectional case
and a bidirectional case. While the construction for the unidirectional case called
Unidirectionally Ratcheted Key Exchange (URKE) is similar to previous proposed
RKE definitions, the construction of BRKE provides a primitive which is more suited
for a typical instant messaging context. In BRKE both participants of a conversation
can establish fresh session keys independently of each other. This means BRKE is
applicable to be used for natural instant messaging conversations in which messages
are sent asynchronously. The goal of this thesis is to develop a theoretically secure
implementation of BRKE. Theoretically because the main goal is finding primitives
that achieve the security requirements that are set by Poettering and Rösler [77] and
then use these primitives to implement the BRKE construction. We do not analyze
the implementation against side-channel attacks like timing attacks, for example.
Furthermore, the performance of the individual primitives is initially no concern.
In this thesis we implement the BRKE construction in two parts: a generic BRKE
implementation that does not rely on actual primitive implementations, and a BRKE
instantiation in which we instantiate the generic BRKE construction with actual
primitives. By using this approach the implementation is as flexible as possible, and
primitives that become insecure can easily be interchanged. With this implemen-
tation, we can perform first performance tests to see how the BRKE construction
performs compared to other ratcheting based schemes.

1.2 Related Work

Since the work by Poettering and Rösler [77] was released recently, we could not find
much work related to the actual implementation of ARKE. However, we could find
a GitHub repository, which includes a GO implementation of BRKE and several
other ratcheting protocols. This implementation suits as a benchmark and is used
to compare the performance aspects of different protocols. However, it seems that
the primitives used in this implementation do not fulfill the security requirements
set by Poettering and Rösler [77]. For example, the Gentry-Silverberg HIBE, which
is used in this implementation, does not use the CCA transformation described by
Gentry and Silverberg [37] and, thus, is only CPA secure. Durak and Vaudenay [32]
compare the complexity of different ratcheting protocols. They include the BRKE

1.3 Contribution 3

construction of Poettering and Rösler [77], but unfortunately do not describe how
they estimate the complexity.

1.3 Contribution

We implement the BRKE construction proposed by Poettering and Rösler [77] in
Java. We split the implementation into two parts. First, we develop an implemen-
tation of the BRKE construction that only uses interfaces and is completely generic.
If instantiated with working primitives, the BRKE protocol is executed and can es-
tablish session keys. We apply some formal changes to the construction so that we
can deploy the BRKE implementation in a real-world instant messaging application.
In the second part, we implement the primitives required for the BRKE construc-
tion. For this, we use primitives that achieve the security requirements that are
set by Poettering and Rösler [77]. With these primitives we can execute the BRKE
protocol and conclude a first performance analysis of the BRKE construction. We
also provide an overview of currently recommended cryptographic primitives that
achieve the specific security requirements. We can consult this overview if we want
to compare different primitives in their performance. For the instantiation, we im-
plement the kuKEM, a special kind of Key Encapsulation Mechanism (KEM) that
was proposed by Poettering and Rösler [77]. The kuKEM internally uses a CCA
secure HIBE which we implement in C++.

1.4 Organization of this Thesis

In Chapter 2 we give background information to all topics we address in this thesis.
We start by giving some mathematical background that is required to describe and
understand the different primitives. Then we describe the cryptographic primitives
and security notions we require for the BRKE construction. In the end, we de-
scribe ratcheting and the constructions proposed by Poettering and Rösler [77]. In
Chapter 3 we discuss the choices for the algorithms we use to implement the BRKE
instantiation. We elaborate possible choices for every required primitive and then
describe our choice. We always provide an overview of algorithms that are recom-
mended and achieve the security requirements set by Poettering and Rösler [77].
In Chapter 4 we describe the generic part of the implementation. We explain our
general approach in implementing the BRKE construction and describe the reasons
for applying formal changes. After that we describe the instantiation the BRKE
construction in Chapter 5. We describe the general ideas for the different algorithm
implementations and decisions we make throughout the development. We evaluate
the performance of the BRKE construction in Chapter 6. We consider two security
levels, 100 bit and 128 bit, and evaluate the performance of the BRKE construction
with the respective primitives. The reason for choosing two security levels is the

4 1 Introduction

performance influence of the elliptic curve that is used for the pairings in the HIBE.
We conclude the thesis in Chapter 7.

2 Background

In this chapter, we describe the cryptographic primitives, which are used to im-
plement the constructions proposed by Poettering and Rösler [77], and specify the
notations used throughout this thesis. We mostly give only short summaries of the
primitives, but we provide references that can be consulted by interested readers to
deepen their knowledge further.

2.1 Notation

We let 𝑆 = {𝑎0, ..., 𝑎𝑛} for 𝑛 ∈ Z denote a set of 𝑛 elements. If 𝑎 6 𝑏 we let
𝐼 = [𝑎, .., 𝑏] denote the set {𝑎, ..., 𝑏}. For this interval 𝐼, we write 𝐼⊢ for 𝑎 and 𝐼⊣

for 𝑏. Furthermore, we let 𝑎 ∘ 𝑏 denote an operation on 𝑎 and 𝑏 that connects both
values in a for now undefined way. We denote the boolean values true and false with
1 and 0, respectively.
For an (deterministic or randomized) algorithm 𝒜 we let 𝒜(𝑥) denote the invocation
of 𝒜 on input 𝑥. If we use the randomized algorithm, we write 𝑦 ⇐ 𝒜(𝑥) for the
case that 𝒜 returns 𝑦 on invocation with 𝑥. For a deterministic algorithm, we write
𝑦 ← 𝒜(𝑥). If we define a variable or algorithm to have a specific meaning we use
the operator “:=”.
Security Games: When describing the cryptographic primitives, we define the
security requirements for those primitives on some advantage for an adversary 𝒜
which is bound to some probability. In a security game, we have an adversary 𝒜
that has to accomplish a set goal. If the adversary achieves the goal, we say that
the adversary wins the game. We treat the adversary as a black box. We give 𝒜 a
specific input and 𝒜 returns a specific output. 𝒜 sometimes has access to specific
oracles. 𝒜 can make an arbitrary number of queries to the oracle, and the oracle
answers these queries. After 𝒜 returned his output, thus, his solution to the game,
the game outputs 1 if the adversary wins the game, and 0 otherwise.
In this thesis, we consider two types of games. Indistinguishability games where the
adversary has to distinguish between two inputs and games where the adversary has
to achieve a specific goal. In indistinguishability games, the adversary often has to
return 0 or 1 depending on the input, so we always have to subtract 1

2 of the winning
probability of the adversary, because the adversary can guess. In the other games,
we are concerned with the plain winning probability of the adversary. So, in other
words: “What is the probability that the adversary can achieve the set goal?”. To

6 2 Background

keep the notions consistent with the notions used by Poettering and Rösler [77] we
define 𝒜’s success probability as an advantage. So in other words: “The advantage
of an adversary 𝒜 is the probability that 𝒜 wins a specific game”.
Typically, the game simulates only one instance of a given algorithm, but Poettering
and Rösler [77] use a multi-instance version of the standard security notions. In this
approach, the adversary is allowed to create new instances, which run independently
and have their own uniformly random chosen secrets and expose them to learn those
secrets.
We assume a scheme to be secure if for every adversary 𝒜 carrying out an attack of
some specific type, the probability that 𝒜 succeeds in this attack is negligible [51].
Now it is left to describe how we prove that an adversary has a negligible probability
of success. For this we use reductions [51]. When using reductions, the strategy is to
assume some problem is hard to solve, and then prove that a given construction is
secure given this assumption [51]. This is done by reduction. Generally, a reduction
is showing “how to convert any efficient adversary 𝒜 that succeeds in breaking
the construction with non-negligible probability into an efficient algorithm 𝒜′ that
succeeds in solving the problem that was assumed to be hard” [51]. So, in other
words, we conclude something like this: “Given a scheme 𝑆 and a hard problem
𝑃 . We assume 𝑆 to be secure under the assumption that 𝑃 is a hard problem
because if there exists an adversary 𝒜 that would break 𝑆, we could solve problem
𝑃 .”

2.2 Mathematical Background

In this section, we describe some mathematical backgrounds that we need for the
cryptographic primitives and concepts we use and apply throughout this thesis.
Just as in the other background sections we try to keep the explanations simple
and reduced to the minimum while providing additional references for interested
readers.

2.2.1 Finite Fields

Cryptography very often relies on or utilizes finite structures. One can find excellent
explanations and descriptions in the literature [51, 52, 76], so we only describe the
basic concepts we utilize in this thesis.
We start with the definition of a mathematical group [52, 76], the most basic alge-
braic concept.

2.2 Mathematical Background 7

Definition 2.1 (Group) A (finite) group (𝐺, ∘) is a (finite) set of elements G
with a group operation ∘ which combines two elements of G. The group operation ∘
satisfies the following conditions:

Closure For all 𝑎, 𝑏 ∈ 𝐺, 𝑎 ∘ 𝑏 ∈ 𝐺.

Associativity For all 𝑎, 𝑏, 𝑐 ∈ 𝐺, (𝑎 ∘ 𝑏) ∘ 𝑐 = 𝑎 ∘ (𝑏 ∘ 𝑐)

Neutral Element There is an element 𝑒, such that 𝑎 ∘ 𝑒 = 𝑒 ∘ 𝑎 = 𝑎, ∀𝑎 ∈ 𝐺

Inverse Element For each 𝑎 ∈ 𝐺 there exists an element 𝑎−1 ∈ 𝐺, such that 𝑎 ∘
𝑎−1 = 𝑎−1 ∘ 𝑎 = 𝑒.

A group is called abelian or commutative group, if 𝑎 ∘ 𝑏 = 𝑏 ∘ 𝑎, ∀𝑎 ∈ 𝐺.

The next algebraic concept we describe is the (finite) Ring [52]:

Definition 2.2 (Ring) A (finite) ring (𝑅, +,×) is a (finite) set of elements R
with two group operations denoted + (addition) and × (multiplication). The group
operations satisfy the following axioms:

1. (𝑅, +) is an abelian group where the neutral element is denoted as 0. And
every element 𝑎 ∈ 𝑅 has an inverse element denoted −𝑎.

2. The operation × is associative. That means: ∀𝑎, 𝑏, 𝑐 ∈ 𝑅, (𝑎×𝑏)×𝑐 = 𝑎×(𝑏×𝑐).

3. There is a multiplicative identity denoted 1.

4. Distributivity ∀𝑎, 𝑏, 𝑐 ∈ 𝑅, 𝑎× (𝑏 + 𝑐) = (𝑎× 𝑏) + (𝑎× 𝑐) and (𝑎 + 𝑏)× 𝑐 =
(𝑎× 𝑐) + (𝑏× 𝑐).

The ring is called commutative if 𝑎× 𝑏 = 𝑏× 𝑐, ∀𝑎, 𝑏 ∈ 𝑅.

Note that the notations + and × not always describe the basic addition and multi-
plication we know from regular integers. That is especially important when working
with pairings on elliptic curves, as we see in later sections.
Now the only basic arithmetic operation that is missing in the described struc-
tures is the division. For this reason, we now describe the (finite) field [52, 76]:

8 2 Background

Definition 2.3 (Field) A (finite) field (𝐹, +,×) is a (finite) set of elements F
with two group operations denoted + (addition) and × (multiplication). The group
operations satisfy the following three axioms:

1. (𝐹, +) is an abelian group where the neutral element is denoted as 0, and every
element 𝑎 ∈ 𝐹 has an inverse element denoted −𝑎.

2. (𝐹 ∖{0},×) is an abelian group where the neutral element is denoted as 1, and
every element 𝑎 ∈ 𝐹 has an inverse element denoted 𝑎−1.

3. Distributivity ∀𝑎, 𝑏, 𝑐 ∈ 𝐹 , 𝑎× (𝑏 + 𝑐) = (𝑎× 𝑏) + (𝑎× 𝑐) and (𝑎 + 𝑏)× 𝑐 =
(𝑎× 𝑐) + (𝑏× 𝑐).

In other words, we can say that a (finite) field is a (finite) commutative ring in which
all non-zero elements have a multiplicative inverse [52]. The order of the group |𝐺|
denotes the number of elements in the group. Furthermore, every element in a group
has an order [52, 76]:

Definition 2.4 (Order of an element) The order ord(𝑎) of an element 𝑎 ∈ 𝐺 is
the smallest positive integer 𝑘 such that

𝑎𝑘 = 𝑎 ∘ 𝑎 ∘ ... ∘ 𝑎⏟ ⏞
𝑘 times

= 1

, where 1 denotes the identity element of 𝐺.

If an element of a group has a maximum order ord(𝑎)= |𝐺| then the group is called
cyclic. Elements with maximum order are called 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟𝑠 [52, 76]. Note that
these definitions also hold for fields, since they consist of groups (Def. 2.3).
The most important groups for cryptographic applications and the ones we are
mostly interested in are the ones constructed by a prime number [76]. Let us have
a look at a finite field of prime order 𝑝, for example, which is usually denoted by
𝐺𝐹 (𝑝) = (Z𝑝, +,×). This field consists of the elements {0, 1, ..., 𝑝 − 1}, and addi-
tion and multiplication are performed modulo 𝑝 [52]. In this finite field we have two
groups (Z𝑝, +) and (Z*

𝑝,×). Since 𝑝 is prime, (Z*
𝑝,×) is an abelian finite cyclic group

[76]. Note that Z*
𝑝 has the same meaning as Z𝑝 ∖ {0}. These multiplicative groups

of prime fields are prevalent to build discrete logarithm cryptosystems and have in-
teresting properties for cryptographic applications [76].

2.2.2 Discrete Logarithm Problem

As mentioned in Section 2.1 formal security proofs often rely on specific assumptions.
An example of those assumptions is the hardness to calculate a logarithm in a finite
cyclic group. This assumption is based on the Discrete Logarithm Problem (DLP)
[52, 68]:

2.2 Mathematical Background 9

Definition 2.5 (Discrete Logarithm Problem (DLP)) Given a prime 𝑝, a
generator 𝛼 of Z𝑝, and an element 𝛽 ∈ Z*

𝑝, find the integer 𝑥 such that

𝛼𝑥 ≡ 𝛽(mod 𝑝)

.

Of course, this problem is not hard if the prime is not very large, but with well-chosen
parameters computing a discrete logarithm modulo 𝑝 is very hard. In contrast to
that, exponentiation modulo 𝑝 is computationally easier, so this problem forms a
one-way function [76]. One-way functions help us build so-called chameleon hash
functions, which are described in a later section.

2.2.3 Cryptographic Assumptions

In the last section, we described the Discrete Logarithm Problem (DLP). Since
formal security proofs mostly rely on specific assumptions to hold, we now want to
describe three assumptions we use in this thesis. The first assumption we describe
is the discrete logarithm assumption [81] and is essentially only a reformulation of
the DLP:

Definition 2.6 (Discrete Logarithm Assumption) Given a group 𝐺 of prime
order 𝑝, a generator 𝑔 of 𝐺, and 𝑔𝑥 for some 𝑥 ∈ Z𝑝. The discrete logarithm
assumption says it is hard to calculate 𝑥.

So we could say that if the DLP problem is hard in a specific group 𝐺 the discrete
logarithm assumption holds for this group.
The next assumption we describe is the Computational Diffie-Hellman (CDH) as-
sumption [81, 87]. As the name indicates the assumption is based around the Diffie-
Hellmann protocol [31].

Definition 2.7 (Computational Diffie-Hellman (CDH) assumption) Given
a group 𝐺 of prime order 𝑝, a generator 𝑔 of 𝐺, 𝑔𝑥 for some 𝑥 ∈ Z𝑝, and 𝑔𝑦 for
some 𝑦 ∈ Z𝑝. The CDH assumption says is is hard to calculate 𝑔𝑥𝑦.

The last assumption we use in this thesis is the Decisional Diffie-Hellman (DDH)
assumption [81, 87]:

Definition 2.8 (Decisional Diffie-Hellman (DDH) assumption) Given a
group 𝐺 of prime order 𝑝, a generator 𝑔 of 𝐺, 𝑔𝑥 for some 𝑥 ∈ Z𝑝, 𝑔𝑦 for some
𝑦 ∈ Z𝑝, and 𝑔𝑧 for some 𝑧 ∈ Z𝑝. The DDH assumption says is is hard to determine
if 𝑔𝑥𝑦 = 𝑔𝑧.

10 2 Background

There are many more assumptions (and mathematical problems), which can be used
to prove that a specific protocol or algorithm is secure. We need these three assump-
tions to construct a secure One-Time signature, but indirectly we rely on many more
assumptions, which we do not describe in this thesis, but provide references.
Note that we can translate those assumptions into security games. Examples for
game-based definitions of those assumptions are described by Katz [51].

2.2.4 Elliptic Curves

An elliptic curve is an abelian group, where the members of the set are defined by
points (𝑥, 𝑦) that are a solution to a special polynomial equation. For cryptographic
uses, we are mostly interested in curves over a finite field. For this, the most popular
choice is prime fields 𝐺𝐹 (𝑝), for a prime 𝑝 [76].

Definition 2.9 (Elliptic Curve) An elliptic curve 𝐸 over Z𝑝 ,𝑝 > 3 is defined by
an equation of the form

𝑦2 = 𝑥2 + 𝑎𝑥 + 𝑏

where 𝑎, 𝑏 ∈ Z𝑝 satisfy the condition

4𝑎3 + 27𝑏2 ̸= 0 mod 𝑝

The group operation in elliptic curves is addition, and the identity element, the
point at infinity, is denoted 𝒪.
In practice, elliptic curves are used as a primitive to build public key cryptosystems.
One of the most well-known problems used in those cryptosystems is the Elliptic
Curve Discrete Logarithm Problem (ECDLP) [76]:

Definition 2.10 (Elliptic Curve Discrete Logarithm Problem (ECDLP))
Given an elliptic curve 𝐸, and two points 𝑃, 𝑄 ∈ 𝐸. The elliptic curve discrete
logarithm problem is finding the smallest integer 𝑘, such that

𝑃 + 𝑃 + ... + 𝑃⏟ ⏞
𝑘 times

= 𝑘 * 𝑃 = 𝑇

This definition could easily be transformed into an assumption or game-based defi-
nition as described in Section 2.2.3, as well. We do not directly use this definition in
this thesis, but we want to show an important characteristic when working with el-
liptic curves. Usually, DL-based cryptography is denoted in multiplicative notation,
but since the group operation in elliptic curves is addition we cannot, e.g., multiply
an elliptic curve point. However, as we can see in Definition 2.10, we can still use
multiplicative notation to describe operations on elliptic curves. If we use pairings,
operations on elliptic curves are often denoted in multiplicative notation despite

2.2 Mathematical Background 11

describing additive operations. In Table 2.11 we can see a comparison between ellip-
tic curve cryptography operations and the corresponding discrete logarithm-based
operations. We use the notation as it is usual in the literature. So we use multi-
plicative notation, but use the corresponding additive operation on elliptic curves.

Elliptic Curve Cryptography DL-Based Cryptography
Point Addition Multiplication
Point Doubling Squaring
Point Multiplication Exponentiation
Point Subtraction Division

Table 2.11: Comparison between ECC and DL-Based Cryptography [42]

2.2.5 Pairings

In this thesis we only describe the general view on bilinear pairings, so we omit the
underlying mathematical foundations because they are beyond the scope of this the-
sis. A bilinear pairing can be defined as follows [63, 69]:

Definition 2.12 (Symmetric Pairing) Let G and G𝑇 be two cyclic groups of
prime order 𝑝 and let 𝑔 be a generator of G. A bilinear pairing or bilinear map
𝑒 is an efficiently computable function

𝑒 : G×G→ G𝑇

such that

1. (Nondegeneracy) 𝑒(𝑔, 𝑔) ̸= 1

2. (Bilinearity) 𝑒(𝑔𝑎, 𝑔𝑏) = 𝑒(𝑔, 𝑔)𝑎𝑏, ∀ 𝑎, 𝑏 ∈ Z𝑝

Typically, G is an additive group with identity 𝒪 and G𝑇 is a multiplicative group
with identity 1 [69]. So G could be an elliptic curve and the target group G𝑇 a finite
field. If we only have one source group, namely G, which is mapped to the target
group we call the pairing symmetric.
There is also another kind of pairing called asymmetric pairing which is more practi-
cal, because it is easier to find families of elliptic curves that satisfy the requirements
of the following definition [63]:

12 2 Background

Definition 2.13 (Asymmetric Pairing) Let G1, G2 and G𝑇 be cyclic groups of
prime order 𝑝. Let 𝑔1 be a generator of G1 and 𝑔2 be a generator of G2. A bilinear
pairing or bilinear map 𝑒 is an efficiently computable function

𝑒 : G1 ×G2 → G𝑇

such that

1. (Nondegeneracy) 𝑒(𝑔1, 𝑔2) ̸= 1

2. (Bilinearity) 𝑒(𝑔𝑎
1 , 𝑔𝑏

2) = 𝑒(𝑔1, 𝑔2)𝑎𝑏, ∀ 𝑎, 𝑏 ∈ Z𝑝

Furthermore, if we use the pairings from Definition 2.13, we can set different re-
quirements on the groups G1 and G2. For example, we could require that the CDH
assumption holds in G1, but not in G2.
There are also pairings on elliptic curves with a composite group order [36, 63], but
they tend to have worse performance over regular elliptic curves, so they are not
that interesting for practical use, either [36].

2.2.6 Dual Pairing Vector Spaces (DPVS)

We now have a look at the concept of Dual Pairing Vector Spaces (DPVS) proposed
by Okamoto and Takashima [74, 75]. Let G1, G2 and G𝑇 be groups of prime order
𝑝 with a bilinear map 𝑒 : G1 × G2 → G𝑇 . Instead of only referring to individual
elements of G1 and G2 we now also consider vectors of group elements. For a 𝑛-
dimensional vector #»𝑣 = {𝑣1, 𝑣2, ..., 𝑣𝑛} ∈ Z𝑛

𝑝 and 𝑔 ∈ G1 (respectively G2), we write
𝑔

#»𝑣 to denote a 𝑛-tuple of elements [58, 74, 75]:

𝑔
#»𝑣 := (𝑔𝑣1 , 𝑔𝑣2 , ..., 𝑔𝑣𝑛)

We can also perform scalar multiplication and vector addition in the exponent [58].
For any 𝑎 ∈ Z𝑝 and #»𝑣 , #»𝑤 ∈ Z𝑛

𝑝 , we have:

𝑔𝑎 #»𝑣 := (𝑔𝑎𝑣1 , 𝑔𝑎𝑣2 , ..., 𝑔𝑎𝑣𝑛), 𝑔
#»𝑣 + #»𝑤 := (𝑔𝑣1+𝑤1 , 𝑔𝑣2+𝑤2 , ..., 𝑔𝑣𝑛+𝑤𝑛)

And 𝑒𝑛 is the product of the component-wise pairings [58]:

𝑒𝑛(𝑔
#»𝑣 , 𝑔

#»𝑤) :=
𝑛∏︁

𝑖=1
𝑒(𝑔𝑣𝑖 , 𝑔𝑤𝑖) = 𝑒(𝑔, 𝑔)

#»𝑣 * #»𝑤

The dot product is taken modulo 𝑝.
Now let 𝑔𝑖 be a generator of G𝑖. We have a look at two vector spaces V :=

𝑛⏞ ⏟
G1 × ...×G1 and V* :=

𝑛⏞ ⏟
G2 × ...×G2 whose elements consist of 𝑛-dimensional vec-

tors 𝑏 = 𝑔
#»
𝑏

1 = (𝑔𝑏1
1 , 𝑔𝑏2

1 , ..., 𝑔𝑏𝑛
1) and 𝑏* = 𝑔

#»
𝑏 *

2 = (𝑔𝑏*
1

2 , 𝑔
𝑏*

2
2 , ..., 𝑔

𝑏*
𝑛

2), respectively. Let

2.3 Cryptographic Primitives 13

B := (#»

𝑏 1,
#»

𝑏 2, ...,
#»

𝑏 𝑛) of V and B* := (#»

𝑏 *
1,

#»

𝑏 *
2, ...,

#»

𝑏 *
𝑛) of V* be two random bases

up to the constraint that they are dual orthonormal. These bases form a 𝑛 × 𝑛
matrix consisting of elements from 𝐺1 and 𝐺2, respectively. If we now compute the
pairing 𝑒𝑛(𝑏𝑖, 𝑏*

𝑗) the result is 𝑒𝑛(𝑔1, 𝑔2)𝑏𝑖*𝑏𝑗 , which is 𝑒(𝑔1, 𝑔2)1 ̸= 1 for 𝑖 = 𝑗 and
𝑒(𝑔1, 𝑔2)0 = 1 for 𝑖 ̸= 𝑗 [74, 75]. We show how to generate those bases in Section
3.7.1.

2.3 Cryptographic Primitives

In this section, we describe the cryptographic primitives required to implement
the constructions proposed by Poettering and Rösler [77]. For this, we first de-
scribe the general functionality of the primitive and then describe security notions
that are important in the context of ARKE. To keep the security notions consis-
tent with the notions used by Poettering and Rösler [77] we use the same defini-
tions.

2.3.1 Message Authentication Code

Message Authentication Codes (MACs) are used to authenticate a message. This
means it confirms that the message came from the stated sender (Authenticity) and
that its content has not been changed (Integrity). A MAC is a tuple of algorithms
MAC = (tag, vrfy). The algorithm 𝜏 ⇐ tag𝑘(𝑚) takes as input a symmetric key 𝑘
and a message 𝑚, and outputs a tag 𝜏 . The algorithm vrfy𝑘(𝑚, 𝜏) takes as input a
symmetric key 𝑘, a message 𝑚, and a tag 𝜏 and outputs 1 if 𝜏 is a valid tag for 𝑚
and 0 otherwise. The most commonly used designs to implement MACs are based
on block ciphers, hash functions, or universal hash functions [4].
Security
The security requirement for MACs used by Poettering and Rösler [77] is a multi-
instance version of (strong) unforgeability. In this security game, the adversary
has to produce a fresh and valid tag for a message of its choosing. For this the
adversary is supported by tag generation and verification oracles, meaning the ad-
versary can generate tags and verify tags. Since Poettering and Rösler [77] use a
multi-instance version of the standard notion for unforgeability the adversary is also
allowed to create new instances or learn their keys. So for a Message Authentication
Code MAC = (tag, vrfy), an adversary 𝒜 has a strong unforgeability advantage
Advsuf

MAC(𝒜) := Pr[SUF(𝒜) ⇒ 1]. If this advantage is negligible for all practical
adversaries, we define the MAC as secure. For the full description of the security
game SUF, we refer to [77].

14 2 Background

2.3.2 Digital Signature

Just as MACs, digital signatures are used to authenticate a message [52]. However,
in addition to providing Authenticity and Integrity, digital signatures also provide
Non-Repudiation which means that the sender of a message can not deny having
sent the message. A digital signature is a tuple of algorithms Sig = (gen, sgn, vrfy).
The algorithm (sgk, vfk) ⇐ gen generates a random signer key sgk and verifier key
vfk. The algorithm 𝜎 ⇐ sgn(sgk, m) takes as input a signer key sgk and a message
𝑚 and outputs a signature 𝜎. The algorithm vrfy(vfk, 𝑚, 𝜎) takes as input a verifier
key vfk, a message 𝑚, and a signature 𝜎, and outputs 1 if 𝜎 is a valid signature for 𝑚
signed with the matching signer key of vfk, and 0 otherwise. Digital Signatures are
realized by the use of asymmetric cryptography. For this reason, the signer key and
verifier key are an asymmetric key pair and represent the private key (sgk) and the
public key (vfk) explaining why the vrfy algorithm only outputs 1 if we use the cor-
rect verifier key, matching the signer key used for the signature creation. Poettering
and Rösler [77] require a special kind of signature for their constructions, namely,
one-time Signatures. One-time Signatures are digital signatures that can only be
used to sign one message. Otherwise, a signature can be forged by an adversary
[52].
Security
The security requirement for Signatures used by Poettering and Rösler [77] is similar
to the security requirements for MACs. The security notion is (strong) unforgeabil-
ity for one-time signatures. In this security game, the adversary has to produce a
message-signature pair that is accepted by the verifier and was not processed by the
signer. So there is a signer oracle which the adversary can use to sign messages and
a verifier oracle which can be used to verify signatures. The signer oracle records all
message-signature pairs given to the adversary, and if the adversary makes the veri-
fier accept a message-signature pair, which is not stored by the signer, the adversary
wins the game. For a one-time Signature Sig = (gen, sgn, vrfy), an adversary 𝒜 has
a strong unforgeability advantage Advsuf

Sig(𝒜) := Pr[SUF(𝒜)⇒ 1]. If this advantage
is negligible for all practical adversaries, we define the Signature as secure. For the
full description of the security game SUF, we refer to [77]. In the literature, the
game SUF is often referred to as SUF-CMA [48, 72]. We need to keep that in mind
when we choose a signature scheme in Chapter 3.

2.3.3 Hash functions

Hash functions are functions that can efficiently compute a mapping from an ar-
bitrary length input to a fixed output. They are also sometimes called one-way
functions. In cryptography, they have many different applications [52]. For exam-
ple, hash functions can be used in digital signatures to reduce the size of the message
to be signed.
The constructions proposed by Poettering and Rösler [77] do not explicitly require

2.3 Cryptographic Primitives 15

hash functions but can be used to realize the random oracle used in the construc-
tions. Before continuing with the description of hash functions, we give a short
introduction to random oracles.

Random Oracle

A random oracle 𝑅𝑂(·) is a black box that outputs truly random values [14]. Call-
ing a random oracle with a specific input of arbitrary length nets a specific random
output of fixed length. Since we assume a random oracle only outputs truly random
values, random oracles cannot be realized in the “real world”. However, a random
oracle can be used to prove a scheme on the assumption that a hash function only
returns random values. By definition, a random oracle provides Collision-Resistance
meaning we cannot find two inputs 𝑚, 𝑚′ such that 𝑅𝑂(𝑚) = 𝑅𝑂(𝑚′). Further-
more, a random oracle is a One-Way Function meaning given an output 𝑟 we cannot
efficiently find an input such that 𝑅𝑂(𝑚) = 𝑟. Random oracles are used in the Ran-
dom Oracle Model (ROM) [14, 27]. If a scheme uses a hash function the security
proof of the scheme can be carried out in the ROM. In these security proofs calls to
the hash function are replaced by calls to a random oracle, so in general, we assume
that the hash function behaves like a real random function.

Now that we know what the hash function in the constructions proposed by Poet-
tering and Rösler [77] is used for we define hash functions and describe the security
properties which a hash function should achieve. A hash function 𝐻(·) is a function
that takes an input 𝑚 ∈ {0, 1}* of arbitrary size and computes an output ℎ ∈ {0, 1}𝑛
of fixed length 𝑛 ∈ N. Since the security proof of the constructions uses the ROM,
the hash function should, in a best-case scenario, behave like a random function.
Security
There are mainly three security properties a hash function should achieve to be
considered cryptographically secure [3, 52]:

Collision Resistance A Hash function 𝐻(·) is collision resistant if we cannot effi-
ciently find two inputs 𝑚, 𝑚′ such that 𝐻(𝑚) = 𝐻(𝑚′).

Second Preimage Resistance A Hash function 𝐻(·) is second preimage resistant
if given an input 𝑚 we cannot efficiently find a second input 𝑚′ such that
𝐻(𝑚) = 𝐻(𝑚′).

One-Way Function A Hash function 𝐻(·) is a one-way function if given a value ℎ
we cannot efficiently find an input such that 𝐻(𝑚) = ℎ.

2.3.4 Chameleon Hash Functions

A chameleon hash function is a special kind of hash function which utilizes a one-
way function (or trapdoor) to compute a specific output for a given input [48, 72].

16 2 Background

A chameleon hash function is a tuple of algorithms CH = (gen, 𝐻, 𝐻−1) [72]. The
algorithm (ek,td) ⇐ 𝑔𝑒𝑛() generates a pair of random keys named evaluation key
and trapdoor key. The algorithm ℎ(𝑒𝑘, 𝑚, 𝑟)← 𝐻(ek,m,r) takes the evaluation key
𝑒𝑘, a message 𝑚, and randomness 𝑟 and outputs a hash value ℎ(𝑒𝑘, 𝑚, 𝑟). The al-
gorithm 𝑟′ ← 𝐻−1(td, 𝑚, 𝑟, 𝑚′) takes as input the trapdoor key 𝑡𝑑, messages 𝑚, 𝑚′,
and randomness 𝑟 and outputs 𝑟′ such that ℎ(𝑒𝑘, 𝑚, 𝑟) = ℎ(𝑒𝑘, 𝑚′, 𝑟′). We utilize
these chameleon hash functions to build strong-unforgeable One-Time Signatures as
described by Mohassel [72] or Jager [48].
Security
The only security requirement we require a chameleon hash function to fulfill is
collision resistance [48, 72]. So an adversary that does not know the trapdoor key
𝑡𝑑 should not be able to find a collision for a given 𝐻 [48]. For a chameleon hash func-
tion CH = (gen, 𝐻, 𝐻−1) an adversary𝒜 has the advantage [72]

Advcolres
CH (𝒜) := Pr[(𝑚, 𝑟) ̸= (𝑚′, 𝑟′) ∧ ℎ(𝑒𝑘, 𝑚, 𝑟) = ℎ(𝑒𝑘, 𝑚′, 𝑟′) :

(ek,td)← 𝑔𝑒𝑛();
(𝑚, 𝑟, 𝑚′, 𝑟′)← 𝒜(𝑒𝑘, 𝐻)]

If this advantage is negligible for all practical adversaries, we define the chameleon
hash function as secure.

2.3.5 Key Encapsulation Mechanism

A KEM is an asymmetric protocol, which can be used to exchange a symmetric key
over an unsecure channel. For this the KEM generates a random symmetric key and
encrypts it using the recipient’s public key. So in general, a KEM works like a public
key encryption scheme, but the encryption, which is also called encapsulation, takes
only the recipient’s public key as an input [84]. A KEM is a tuple of algorithms
KEM = (gen, enc, dec). The algorithm (sk, pk) ⇐ gen generates a random secret
key sk and public key pk. The algorithm (𝑘, 𝑐) ⇐ enc(𝑝𝑘) takes as input a public
key pk and outputs a random symmetric key 𝑘, and ciphertext 𝑐. The algorithm
𝑘 ← dec(𝑠𝑘, 𝑐) takes as input a secret key sk and a ciphertext 𝑐, and outputs a
symmetric key 𝑘, if sk is the matching secret key to the public key used for the
encapsulation.
Security
The security requirement for KEMs used by Poettering and Rösler [77] is a multi-
user version of one-way security. In this security game the adversary obtains chal-
lenge ciphertexts and has to recover any of the encapsulated symmetric keys. For
this the adversary is supported by a key-checking oracle. For a provided pair
of ciphertext and (candidate) symmetric key, the oracle tells whether the cipher-
text decapsulates to the symmetric key. Since Poettering and Rösler [77] use a
multi-user version of the standard notion for one-way security the adversary is
also allowed to create new receivers or learn their keys. So for a Key Encapsu-
lation Mechanism KEM = (gen, enc, dec), an adversary 𝒜 has a one-way advantage

2.3 Cryptographic Primitives 17

Advow
KEM(𝒜) := Pr[OW(𝒜) ⇒ 1]. If this advantage is negligible for all practical

adversaries, we define the KEM as secure. For the full description of the security
game OW, we refer to [77].

2.3.6 Key-Updateable Key Encapsulation Mechanism

A kuKEM is a special type of KEM introduced by Poettering and Rösler [77]. Like
a KEM a kuKEM generates random symmetric keys and is able to encapsulate and
decapsulate the keys. Furthermore, the kuKEM provides a key update algorithm,
which derives new (‘updated’) keys from old ones. Using an auxiliary input called
the associated data a secret key is updated to a new secret key, and a public key is
updated to a new public key, respectively. If a secret key and public key pair was
updated compatibly, meaning with matching associated data, the key pair remains
functional, so a symmetric key encapsulated under a public key can be recovered by
decapsulating to the matching secret key [77]. A kuKEM is a tuple of algorithms
kuKEM = (gen, enc, dec, up). The algorithms gen, enc, dec are the same as for
regular KEMs. There are two kinds of the key-update algorithm up. The first up-
date algorithm 𝑝𝑘′ ← up(𝑝𝑘, 𝑎𝑑) takes as input a public key pk and an associated
data ad, and outputs an updated public key 𝑝𝑘′. The second update algorithm
𝑠𝑘′ ← up(𝑠𝑘, 𝑎𝑑) takes as input a secret key sk and an associated data ad, and out-
puts an updated secret key 𝑠𝑘′. Using a HIBE we can directly construct a kuKEM
[77].
Security
The security requirement for kuKEMs is similar to the security requirement of
KEMs. It is also a multi-user version of one-way security, but also reflects for-
ward security in a case of secret key updates [77]. This characteristic is realized
by allowing the adversary to update public keys and secret keys held by the re-
spective user. So for a key-updateable Key Encapsulation Mechanism kuKEM =
(gen, enc, dec, up), an adversary 𝒜 has a one-way advantage Advkuow

kuKEM(𝒜) :=
Pr[KUOW(𝒜) ⇒ 1]. If this advantage is negligible for all practical adversaries, we
define the kuKEM as secure. For the full description of the security game KUOW,
we refer to [77].

2.3.7 Hierachical Identity Based Encryption

A Hierarchical Identity-Based Encryption (HIBE) is a special kind of public key
encryption scheme. HIBE are based on Identity-Based Encryption (IBE), for this
reason we briefly describe IBE to obtain a better idea of the motivation and purposes
of IBE and HIBE. The main motivation for IBE was to simplify certificate manage-
ment in a closed group, e.g., companies, especially for the e-mail systems of such
groups [83]. Instead of generating random public-secret key pairs and distributing
the public key via certificates, the public key can be derived from the name or some

18 2 Background

identifying information like an e-mail address. So if Alice wants to send an encrypted
message to Bob, she does not need to look up Bob’s public key, which would require
a secure channel to a public key directory, for example, but can directly use Bob’s
e-mail address as a public key [19, 83]. If Bob receives this message, he contacts a
trusted third party, which is called the Private Key Generator (PKG), to obtain his
private key. IBE has a few disadvantages, which are simultaneously the motivation
for HIBE [19]. For Bob to obtain his private key, he has to authenticate himself
at the PKG and establish a secure channel for communication. Furthermore, Bob’s
PKG has to publish public parameters, which need to be obtained by Alice before
she is able to encrypt messages for Bob. And lastly, in IBE key escrow is inherent
because the PKG knows the secret keys of all users. Looking at the disadvantages,
we can easily see that the PKG is the bottleneck of an IBE scheme. Secret key
generation is computationally expensive and the PKG has to establish secure au-
thenticated channels with every user to transmit secret keys [37].
HIBE tries to solve those problems by distributing the workload of a root PKG to
lower-level PKGs [37, 44]. This means in a HIBE we have different levels of PKG.
We have a root-level PKG, which is able to extract keys for its domain-level PKGs.
These domain level PKGs are able to extract keys for their domains in the next level.
So an advantage of a HIBE scheme is that Bob only needs to communicate with his
root PKG. Equally, Alice only needs to obtain the public parameters of Bob’s root
PKG [37]. Because of this structure, the inherent problem with key escrow is less
hazardous. If a domain-level PKG is disclosed, higher level PKGs are usually not
affected [37].
A Hierarchical Identity-Based Encryption (HIBE) is a tuple of algorithms HIBE =
(gen, enc, dec, extract). The algorithm (sk, pk) ⇐ gen generates a random secret
key sk and public key pk. Note that the secret key sk is the secret key of the root-
level PKG and the public key contains the public parameters needed for encryption.
The algorithm 𝑐⇐ enc(𝑝𝑘, 𝑚, 𝑖𝑑) takes as input the public key (public parameters)
𝑝𝑘, a message 𝑚, and an identity 𝑖𝑑 and outputs a ciphertext 𝑐. The algorithm
𝑚 ← dec(𝑠𝑘, 𝑐) takes as input a secret key 𝑠𝑘, and a ciphertext 𝑐 and outputs the
message 𝑚, if the secret key belongs to the identity used for encryption. The al-
gorithm 𝑠𝑘′ ← extract(𝑠𝑘, 𝑖𝑑) takes as input a secret key 𝑠𝑘, and a identity 𝑖𝑑 and
outputs a secret key 𝑠𝑘′ for the identity 𝑖𝑑. Note that a PKG can only extract a
secret key for an identity that lies in a lower-level than itself. Furthermore, some-
times in the literature there is a difference between the root PKG that generates a
secret key for a domain-level PKG and a domain-level PKG that generates a key for
a lower-level PKG. The former algorithm is then called extract or keygen and the
latter delegate [58]. Throughout this thesis, we make the same distinction, because
this makes the descriptions more clear. In this thesis we focus on HIBE that are
realized through bilinear pairing groups, but there are HIBEs that are based on
other primitives, e.g., lattices [5, 28], as well.
Security
In the constructions proposed by Poettering and Rösler [77] we need a HIBE to re-
alize the kuKEM. So the security requirements for the HIBE are directly correlated

2.4 Asynchronous Ratcheted Key Exchange (ARKE) 19

to the security requirements for the kuKEM. There are mainly two security defi-
nitions for HIBEs that are interesting in our context. The first security definition
is indistinguishability against hierarchical ID-based adaptive chosen ciphertext at-
tacks (IND-HID-CCA) proposed by Gentry and Silverberg [37]. A slightly different
name for the same security definition, which is also often used in literature, is indis-
tinguishability against ID-based adaptive chosen ciphertext attacks (IND-ID-CCA)
proposed by Boneh et al. [20]. In the second security definition a HIBE is defined
as an one-way encryption (OWE) [37]. This leads to the name hierarchical ID-based
one-way encryption (HID-OWE). A slightly different way to name this definition is
one-way identity-based chosen ciphertext attack (OW-ID-CCA). In this thesis, we
use the names IND-ID-CCA and OW-ID-CCA, since they are used more often in
the literature.
In the security game IND-ID-CCA, an adversary chooses an identity ID and two
messages 𝑚0, 𝑚1 from which one is randomly selected and encrypted under the pub-
lic key of the selected ID. The adversary than receives the challenge ciphertext 𝑐
and has to guess the message that got encrypted. For this, the adversary is sup-
ported by three oracles. A public key oracle, which the adversary can query with
an ID to obtain the public key of ID. An extraction oracle, which the adversary can
query with an ID to obtain the secret key of ID. And a decryption oracle, which
the adversary can query with an ID and a ciphertext c to obtain the plaintext 𝑚.
Any of those three oracles can be queried before or after the adversary has chosen
the two messages. To exclude trivial wins for the adversary, the adversary is not
allowed to query the extraction oracle with the selected ID or any of its ancestors.
Furthermore, he is not allowed to call the decryption oracle with ID or any of this
ancestors with the challenge ciphertext 𝑐. The game OW-ID-CCA is very similar,
with the only difference being that the message used to produce the challenge ci-
phertext 𝑐 is generated randomly. The ID used to encrypt the challenge ciphertext
is still picked by the adversary [37]. Apart from that, the adversary has access to
the same oracles under the same conditions.
So for a Hierarchical Identity-Based Encryption HIBE = (gen, enc, dec, extract) an
IND-ID-CCA (resp. OW-ID-CCA) adversary𝒜 has an advantage

AdvIND-ID-CCA
HIBE (𝒜) := |Pr[IND-ID-CCA(𝒜)⇒ 1]− 1

2 |

(resp. AdvOW-ID-CCA
HIBE (𝒜) := Pr[OW-ID-CCA(𝒜) ⇒ 1]). If this advantage is neg-

ligible for all practical adversaries, we define the HIBE as secure. For the full
description of the security games IND-ID-CCA and OW-ID-CCA, we refer to [20,
37].

2.4 Asynchronous Ratcheted Key Exchange (ARKE)

In this section, we describe the constructions proposed by Poettering and Rösler [77]
and describe ratcheting as it is used today. We only give brief summaries of URKE

20 2 Background

and Sesquidirectionally Ratcheted Key Exchange (SRKE), because the main focus
of this thesis is the BRKE construction.

2.4.1 Ratcheting

Ratcheting is a cryptographic technique often used in an instant messaging context
[29, 64]. A ratchet is constructed in a way that it only moves forward. This means we
cannot go back to old states. Similar to a zip tie the ratchet always moves one step
at a time. As described in the introduction a simple example of such a construction
could be a “hash chain” in which we have an initial symmetric key, and every time
the key is used a one-way function is applied to derive a new key from the old key
[77]. Ratcheting aims to provide security against two types of attack: compromise
of long-term secrets or session states. Security against the compromise of long-term
secrets is also referred to as forward secrecy. So if an adversary is able to obtain a
copy of the long-term secrets of a user the adversary is still not able to reveal later
communication contents of that user. Security against the compromise of session
states is a security goal of modern chat protocols [77] and it means that users can
recover from session state leakages. The recovery is desired because messaging ses-
sions are often kept alive for a long time. Furthermore, it is sometimes impossible to
defend against state exposure because the state information (which includes session
keys, for example) kept in the memory might at one point be swapped to disk and
then can be stolen from there.
In the Double Ratchet Algorithm [64], for example, the initial key is evolved by us-
ing a symmetric-key ratchet and a Diffie-Hellman (DH) ratchet. The symmetric-key
ratchet consists of a so-called Key Derivation Function (KDF)-chain and is used so
a key is never used twice. The DH-ratchet is a DH key pair which is updated when-
ever possible and is used to recover from state exposure. Bellare et al. [16] formally
analyze the security of RKE. They also provide syntax and security definitions for
ratcheting. The security model established by Bellare et al. [16] is quite restricted
because the model assumes only unidirectional communication (in the Alice-to-Bob
direction) and also assumes that only Alice’s state can be exposed. Unfortunately,
this is a counter-intuitive assumption, since usually instant messaging is a commu-
nication protocol which is performed bidirectionally and asynchronous. This means
for two users A and B which communicate over a network (like the Internet) we
consider communication in both directions. From Alice-to-Bob and Bob-to-Alice
(bidirectional). Furthermore, we assume that the conversation is human-like which
means that each of the users contributes to the conversation when they feel like it.
The messages can even cross while transferring over the network (asynchronous).
For this reason, Poettering and Rösler [77] developed alternative security defini-
tions to account for a more realistic communication environment. This lead to the
three constructions URKE, SRKE, and BRKE where BRKE ultimately considers full
asynchronous and bidirectional communication between two parties.

2.4 Asynchronous Ratcheted Key Exchange (ARKE) 21

2.4.2 Unidirectionally Ratcheted Key Exchange (URKE)

Unidirectionally Ratcheted Key Exchange is the first of three proposed constructions
by Poettering and Rösler [77]. Similar to Bellare et al. [16] this construction also only
considers unidirectional communication, but also consider state exposure attacks on
Bob. This approach leads to a security model, which better represents the real world
and thus to a stronger security notion. Poettering and Rösler [77] also provide a
construction only using standard cryptographic primitives like MAC, KEM, and
Hashes. There are two involved parties in the URKE construction, A and B, which
communicate over an insecure network. Every message from A to B establishes a new
session key, which can safely be transmitted to B via ciphertexts. One specialty of the
construction is that the sending and receiving algorithms process an associated data
string, which has to match on both A and B. We do not go into more detail in this
thesis, but note that all three constructions (URKE, SRKE, BRKE) are somewhat
based on each other and every construction takes more attack vectors into account
to better represent a real-world application.

2.4.3 Sesquidirectionally Ratcheted Key Exchange (SRKE)

Sesquidirectionally Ratcheted Key Exchange (SRKE) is the second of the proposed
constructions by Poettering and Rösler [77]. SRKE provides the same functionality
as the URKE construction, but also lets B generate and send ciphertexts to A. These
ciphertexts are not used to establish new session keys, but to let B recover from state
exposure attacks. For this, the construction uses a MAC, a one-time signature, a
hash function, and a new type of primitive called the kuKEM. A kuKEM is a special
type of KEM which allows key updates. We explain the details of the kuKEM in
Section 2.3.6.

2.4.4 Bidirectionally Ratcheted Key Exchange (BRKE)

Bidirectionally Ratcheted Key Exchange (BRKE) is the third of the proposed con-
structions by Poettering and Rösler [77]. BRKE extends the functionality of SRKE
by now establishing new session keys with every message that is sent by either A
or B. This construction now provides security in a real-world instant messaging
communication scenario. For this, the BRKE construction uses a one-time signa-
ture, a hash function, and the kuKEM. Poettering and Rösler [77] propose two
constructions of BRKE. One is constructed by using two SRKE schemes linked
with a one-time signature, and the other one is an ad-hoc construction directly
adopting the SRKE construction. The ad-hoc construction is shown in Figure 4.2.
The goal of this thesis is to implement the ad-hoc construction of the BRKE pro-
tocol. We analyze the functionality of the BRKE ad-hoc construction in Section
4.3.

3 Algorithm Choices

In this section, we explain the choices for the algorithms we chose for the realization
of the BRKE construction. We first describe how those algorithms are used in the
context of BRKE, discuss the reasoning of our choices, and show possible alterna-
tives. Before we start describing the algorithm choices, we explain our approach to
choosing secure and state-of-the-art algorithms.

3.1 Choosing Algorithms

Instead of just randomly looking for algorithms that fulfill the requirements we set
in Section 2.3, we want to have a guideline with recommendations, which we can
consult when choosing an algorithm and corresponding parameters. The starting
point for this is the website keylength.com [17], which summarizes several govern-
mental and non-governmental recommendation papers on cryptographic algorithms
and key sizes. The website is mostly concerned with choosing secure key lengths
for several primitives, but also provides a small overview for recommended algo-
rithms. From this website, we choose the two most recent publications and use
them for the choice of our algorithms and parameters. These two publications are
the ECRYPT-CSA report on “Algorithms, Key Size and Protocols” [4], and the re-
port “Cryptographic Techniques: Recommendations and Key Lengths” [3] from the
German Federal Office for Information Security (BSI), both from 2018. Since these
reports are the most conservative from the reports summarized on keylength.com
[17], we think that choice is well suited for our purpose.
The next step in finding algorithms that fulfill our purpose is checking if the rec-
ommended algorithms provide the security level we need. For example, we have
to find proof that the KEM is OW-CCA secure. For this, we have a look at the
proposals and security proofs of the specific algorithms. After that, we check if we
can find an implementation of the algorithm. Preferably this implementation is pro-
vided by bouncy castle [86] for Java, since we choose to implement the construction
and the instantiation in Java (see Chapters 4 and Chapter 5). So the general steps
are:

1. Consult recommendations from ECRYPT-CSA [4] and BSI [3].

2. Check if the algorithm meets the security requirements we set in Section 2.3.

24 3 Algorithm Choices

3. Check if there is an implementation of the algorithm in Java (preferably in
bouncy castle [86]).

Since initially we are not concerned with performance, we only check if the security
requirements are met and not which algorithm is the most efficient. If two algorithms
are equally suited, but one is said to have better performance, we may directly choose
the latter algorithm.

3.2 One-Time Signature

As described in Section 2.3.2 a one-time signature is a special kind of signature,
which is only used to sign one message. In the BRKE construction we only need
a one-time signature instead of a regular digital signature, because the keys are
changed after every signing or verification operation. In fact, we could use a reg-
ular digital signature, which fulfills the same security requirement as our one-time
signature. This means we could also use a signature for that the SUF advantage
for an adversary is negligible. Intuitively, such a signature scheme implies a SUF
secure one-time signature scheme. This is important, because if we have a look at
the recommended signatures by ECRYPT-CSA [4] and BSI [3] we see that neither
considers one-time signatures.
In Table 3.1 we can see recommended signature schemes and their security assump-
tion. Furthermore, we provided a reference for the security proof. As we can see

Scheme Security Reference
RSA-PSS EUF-CMA Jonsson [50]
ISO-9796-2 RSA-DS2 EUF-CMA Jonsson [50]
PV Signatures EUF-CMA Pointcheval and Vaudenay [78]
(EC)Schnorr SUF-CMA Kiltz et al. [54]
(EC)KDSA EUF-CMA Brickell et al. [24]
XMSS EUF-CMA Buchmann et al. [26]

Table 3.1: Recommended signature schemes and their security assumption.

from Table 3.1 there is only one recommended signature scheme that fits our secu-
rity requirement of SUF-CMA security. Unfortunately, as of writing this thesis, we
found no well-documented and referenced implementation of the Schnorr signature
in Java, so we have a look at other possibilities to realize a SUF-CMA secure (one-
time) signature.
As a first alternative, we consider signatures which use pairings as the underlying
primitive. BLS and BBS signatures [82] for example are both EUF-CMA secure and
unique, which implies that they are SUF-CMA secure [82]. However, as of writing
this thesis, there are no suitable pairing libraries for Java (see Section 5.1), so we
do not consider them for now.

3.2 One-Time Signature 25

Now we have a look at “real” one-time signatures. One way to build SUF-CMA
secure one-time signatures is through Lamport constructions [53, 57]. One-time sig-
natures build via the Lamport construction are based on hash functions. Examples
for such SUF-CMA one-time signatures are W-OTS [25] and W-OTS+ [46]. How-
ever, again we could not find any implementation of those algorithms. Though the
implementation of XMSS in bouncy-castle [86] internally uses W-OTS+, the imple-
mentation is not public, and we therefore cannot use it. There are more proposals
for SUF-CMA (one-time) signatures and even transformations from EUF-CMA se-
cure signatures to SUF-CMA signatures [22, 45], but ultimately we did not find any
implementation of these schemes.
Another option to build one-time signatures are via chameleon hash functions [48,
72]. With a generic transformation via signatures [48] or hash functions [72] the re-
sulting one-way signatures can be shown to be SUF-CMA secure. As of writing this
thesis we cannot find implementations of these schemes either, but since they seem
to be the most straight forward constructions and performance is no concern, we
choose to implement a SUF-CMA secure one-time signature based on a chameleon
hash function.
We choose to implement the one-time signature with a chameleon hash function
based on the DLP problem. In particular, we implement the construction proposed
by Mohassel [72], since it only requires a hash function for the transformation to
SUF-CMA security instead of an additional signature scheme as described by Jager
[48]. Now we have to find parameters for a group in which the DLP problem is
hard. We propose to not generate parameters from scratch, but use recommended
and, thus, well-studied parameters instead. So we propose to use a group that is
recommended for the use in the TLS Diffie-Hellman Ephemeral key exchange mode
[38]. The Diffie-Hellman key exchange is secure under the assumption that the DDH
assumptions holds in the used group [51]. It easy to show that the DDH assumption
can be reduced to the CDH assumption and the CDH assumption can be reduced
to the DLP problem [67, 87]. For this reason, we can assume that if the DDH
assumption in the recommended groups hold, the DLP problem is hard. The last
parameter we have to discuss is the size of the prime of the finite field. ECRYPT-
CSA recommends at least a prime size of 3072 Bit [4], and the BSI recommends a
prime size of at least 2000 Bit [3] for the finite field DLP. If we have a look at the
group “ffdhe3072” [38] it has a prime size of 3072 Bit, and an estimated symmetric-
equivalent strength of 125 bits [38]. We decide to use this group to construct the
DLP-based chameleon hash one-time signature.
DLP-Based Chameleon Hash One-Time Signature Since we have to imple-
ment the one-time signature ourselves, we will shortly introduce and describe the
construction proposed by Mohassel [72]. To construct the signature, we need a
collision-resistant hash function and the chameleon hash function based on the DLP
problem. Note that Mohassel [72] actually requires only a target collision hash
function, which is a weaker notion, but since we already require collision resis-
tant hash functions (see Section 2.3.3), we directly use a collision-resistant hash
function. For the description of the chameleon hash function we refer to Mohas-

26 3 Algorithm Choices

sel [72] or Jager [48], we directly show the resulting one-time signature scheme
[72]:

Key Generation:

1. Let 𝑔1 be a generator for a group 𝐺 of size 𝑝. Let T be a collision resistant
hash function that maps elements of 𝐺 to a subset of Z𝑝.

2. Generate random 𝑥, 𝑥′ ∈ Z𝑝 and compute 𝑔2 = 𝑔𝑥
1 and 𝑔3 = 𝑔𝑥′

1 .

3. Compute 𝑧0 = 𝑇 (𝑔1𝑔𝑟
2) and 𝑧1 = 𝑇 (𝑔1𝑔𝑟′

3) for random 𝑟, 𝑟′ ∈ Z𝑝

4. The verification key is vk := (𝑔1, 𝑔2, 𝑔3, 𝑧0) and the signing key is sk :=
(𝑦 := 𝑥−1, 𝑦′ := 𝑥′−1, 𝑟, 𝑟′, 𝑧1)

Signing: For a message 𝑚, compute and return signature 𝜎 = (𝜎0, 𝜎1) with 𝜎0 =
𝑦′(1−𝑚) + 𝑟′ and 𝜎1 = 𝑦(1− 𝑧1) + 𝑟.

Verification: For a message 𝑚 and signature 𝜎 = (𝜎0, 𝜎1), accept if 𝑇 (𝑔𝑇 (𝑔𝑚
1 𝑔

𝜎0
3)

1 𝑔𝜎1
2) =

𝑧0 and reject otherwise.

3.2.1 Summary

Table 3.2 shows possible candidates for the required SUF secure signature we dis-
cussed in this section. Note that there are more signature schemes which are SUF
secure and, thus, could be used in the BRKE construction. We choose to implement

Scheme Primitive
(EC)Schnorr Elliptic Curve, Finite Field
BLS Bilinear Pairings
BBS Bilinear Pairings
W-OTS One-Way Function
W-OTS+ One-Way Function
Chameleon Hash Based DLP, RSA Problem
Any + transformation [22, 45] -

Table 3.2: Possible candidates for the SUF secure signature discussed in this section.

a DLP-Based Chameleon Hash One-Time Signature with the group “ffdhe3072”
from RFC7919 [38] which has a prime size of 3072 Bit and an estimated symmetric-
equivalent strength of 125 bits [38].

3.3 Hash Functions 27

3.3 Hash Functions

Several times throughout the implementation we need hash functions. As discussed
in Section 2.3.3 we want to use cryptographically secure hash functions. Sometimes it
would be sufficient to use a hash function that only achieves a weaker security notion,
e.g., target collision hash function, but in those cases, we still use a cryptographically
secure hash function. Recommended hash functions are shown in Table 3.3. Bouncy-

Primitive Output Length
SHA-2 256, 384, 512, 512/256
SHA-3 256, 384, 512
SHA-3 SHAKE128, SHAKE256

Whirlpool 512
BLAKE 256, 384, 512

Table 3.3: Recommended hash functions that are considered cryptographically se-
cure [3, 4].

castle [86] implements all of those hash functions so that we can use any of those.
Most of the time we use SHA256, but we if we have to choose a hash function we
explain our choice in the specific section.

3.3.1 Summary

We only use hash functions that are considered cryptographically secure throughout
this thesis, even if a weaker hash function is sufficient. All in Table 3.3 shown hash
functions can be used. Most of the time we use SHA256, but we address the choice
of the hash function if necessary in the specific sections.

3.4 Random Oracle

As described in Section 2.3.3 the random oracle is a theoretical primitive that is
used to assume a function has random output. Furthermore, we described that a
random oracle is often realized by a hash function in real-world applications. In the
BRKE construction the random oracle is used to produce key material (Line 28/57,
BRKE construction, Figure 4.2). Thus, we do not directly use a hash function to
realize the random oracle, but a KDF that we instantiate with a hash function. A
KDF is used to derive cryptographic keys from a source of keying material [4]. Table
3.4 shows all recommended (hash-based) KDFs. We could also use none hash-based
KDF, since KDFs are often modelled as a random oracle [4], whether instantiated
with a hash function or not. However, since we defined to realize the random oracle
with a hash function, we limit our choice to the KDFs shown in Table 3.4. It is left

28 3 Algorithm Choices

Scheme Building Block
X9.63-KDF Hash
NIST-800-56-KDF-A/B Hash
HKDF HMac
IKE-v2-KDF HMac
TLS-v1.2-KDF HMac
KDFs described in ISO 18033-2 Hash

Table 3.4: Recommended (hash-based) KDFs schemes.

to find secure hash functions to instantiate the KDF. For this, we can use any of the
hash functions described in Section 3.3.
Of these KDFs HKDF and the ISO 18033-2 KDFs are implemented in bouncy-castle
[86]. We choose to use HKDF [56] with SHA256.

3.4.1 Summary

Instead of directly using a hash function to realize the random oracle, we choose to
use a KDF. The reason for this is that the random oracle in the BRKE construction
is used to generate keys. Recommended (hash-based) KDFs are shown in Table
3.4. These can be instantiated with any hash function discussed in Section 3.3. We
choose to use HKDF [56] with SHA256.

3.5 Key Encapsulation Mechanism

The security requirement for the KEM is OW security. A different notion for this is
OW-CCA security (one-way chosen ciphertext attack). Furthermore, we can use a
IND-CCA [51] (indistinguishability against chosen ciphertext attack) secure KEM,
because intuitively IND-CCA implies OW-CCA security. In Table 3.5 we can see
recommended KEM schemes and their security assumption. All three schemes are

Scheme Security Reference
RSA-KEM IND-CCA Shoup [47, 85]
PSEC-KEM IND-CCA Shoup [47, 85]
ECIES-KEM IND-CCA Shoup [47, 85]

Table 3.5: Recommended KEM schemes and their security assumption.

IND-CCA secure under the assumption that the underlying KDF is a random oracle.
For this reason, we also have to choose a secure KDF. Which means the KDF should
ideally behave like a random function. Recommended KDFs are shown in Table 3.6.
All in all, we can take any combination of a KEM shown in Table 3.5 and a KDF

3.5 Key Encapsulation Mechanism 29

Scheme Building Block
NIST-800-108-KDF(all modes) PRF
X9.63-KDF Hash
NIST-800-56-KDF-A/B Hash
NIST-800-56-KDF-C Mac
HKDF HMac
IKE-v2-KDF HMac
TLS-v1.2-KDF HMac
KDFs described in ISO 18033-2 Hash

Table 3.6: Recommended KDFs schemes and the underlying building block.

shown in Table 3.6. Furthermore, the KDF has to be instantiated with a secure
primitive [4]. If we use a hash-based KDF we can take any of the hash functions
discussed in Section 3.3.
Of the three KEMs two are implemented in bouncy-castle [86] namely the ECIES-
KEM and the RSA-KEM. We choose to use the ECIES-KEM. This means we have
to find suitable parameters for the elliptic curve used in the ECIES-KEM. Again
we will use a recommended elliptic curve and do not generate a curve from scratch.
The BSI recommends using one of the following elliptic curves for the use with an
ECIES scheme:

∙ brainpoolP256r1 [61]

∙ brainpoolP320r1 [61]

∙ brainpoolP384r1 [61]

∙ brainpoolP512r1 [61]

ECRYPT-CSA recommends at least 256 Bit for the size of the group order [4]
but does not recommend any specific curves. We choose to use the curve “brain-
poolP256r1” since it is recommended by the BSI and complies to the recommenda-
tions of ECRYPT-CSA. KDFs that are supported by the ECIES-KEM implementa-
tion in bouncy-castle are KDF1 and KDF2 described in ISO 18033-2 [47]. Since both
KDFs are among the recommended KDFs we can choose either of those instantiated
with a hash function discussed in Section 3.3. We use KDF2 with SHA256 in our
implementation.

3.5.1 Summary

Possible candidates for the OW secure KEM are shown in Table 3.5. All schemes are
secure with the assumption that the underlying KDF is a random oracle. Possible
candidates for the KDF are shown in Table 3.6. These have to be instantiated with a

30 3 Algorithm Choices

secure primitive [4]. We choose to use the ECIES-KEM with KDF2 instantiated with
SHA256. As the elliptic curve we use “brainpoolP256r1” [61].

3.6 Key-Updateable Key Encapsulation Mechanism

As we described in Section 2.3.6 the kuKEM can be constructed by a HIBE. Before
discussing the choices for the HIBE we want to analyze the use the of HIBE by the
kuKEM. This helps explaining and understanding the choices for the HIBE. First,
we analyze the functionality of the kuKEM and what this means for the HIBE.
The kuKEM has four algorithms that we need to analyze and compare to the HIBE
functionality. The kuKEM algorithms gen𝐾 , enc𝐾 , and dec𝐾 have mostly the same
functionality as the HIBE algorithms gen𝐻 , enc𝐻 , and dec𝐻 with the difference
being that the kuKEM encapsulates a symmetric key and the HIBE encrypts a mes-
sage. But this difference is trivial, since we can simply generate the key inside the
kuKEM and use it as a message, or even generate the key inside the HIBE and
directly encrypt it. The algorithm which sets the requirements on the HIBE is the
update algorithm of the kuKEM keys. Before we have a look at the two update
algorithms, we analyze the use of the associated data 𝑎𝑑 which the kuKEM uses
for key updates. It turns out that 𝑎𝑑 is interpreted as the identity for the HIBE.
And as described in Section 2.4.4 in the BRKE construction the kuKEM receives 𝑎𝑑
and a ciphertext as parameters for the key update algorithms. For this reason we
call combination of the parameters the kuKEM receives for key updates “identity
information”. So no matter if we refer to 𝑎𝑑 or 𝑎𝑑|𝑐𝑖𝑝ℎ𝑒𝑟𝑡𝑒𝑥𝑡 we think of it as the
identity information that is used in the HIBE. Now we have a look at the two kinds
of key updates: public key updates and secret key updates.
Public key updates: The public key update algorithm takes a public key pk and
associated data ad, and outputs an updated public key pk ′. As described by Poetter-
ing and Rösler [77] the public key for the kuKEM consists of the public key (public
parameters) of the HIBE and an identity. Thus, updating a public key is simply
appending ad to the identity of the public key. This sets no specific requirements
on the HIBE, but we have to ensure that we can process ad (and ultimately the
ciphertext) as an identity for the HIBE.
Secret key updates: The secret key update algorithm takes a secret key sk and
associated data ad, and outputs an updated secret key sk ′. As described by Poet-
tering and Rösler [77] the secret key is updated by extracting a secret key for the
“identity” 𝑎𝑑 (This helps to understand why we also call 𝑎𝑑 identity information).
In the context of the HIBE a domain-level PKG generates a key for a lower-level
PKG. So for two associated data ad0 and ad1, and a secret key 𝑠𝑘0 (generated for
𝑎𝑑0) we update the secret key 𝑠𝑘1 = 𝑢𝑝(𝑠𝑘0, 𝑎𝑑1) by delegating a HIBE secret key
from 𝑎𝑑0 to 𝑎𝑑1.
This means for every key update we informally add one level to the HIBE. This sets
an important requirement on the HIBE choice, since as we discuss in Section 3.7

3.7 Hierarchical Identity Based Encryption 31

most HIBE are bounded in their depth. Furthermore, we do not need every function
of a HIBE. When we update a key, we always update it for the next lower level,
thus, we do not need to extract a secret key with the root level secret key more than
once. It is also unnecessary to be able to generate two keys for one hierarchy level,
which is possible in a HIBE. So we might be able to optimize an existing HIBE by
omitting specific functions.

3.6.1 Summary

The functionality of the kuKEM sets some requirements on the HIBE and also
does not need some (usually supported) features of the HIBE. The input param-
eters for the update algorithm of the kuKEM are used as the identity informa-
tion in the HIBE. Thus we refer to them under that name. The main aspects
are:

∙ Identity information has to be usable by the HIBE.

∙ Every key update adds one level to the depth of the HIBE.

∙ The kuKEM does only require to be able to delegate keys to the next lower
hierarchy level.

∙ The kuKEM does not require to be able to generate more than one key for
each hierarchy level.

The first two aspects set some hard requirements on the implementation of the HIBE,
and the last two aspects may enable us to optimize the implementation.

3.7 Hierarchical Identity Based Encryption

The HIBE is used to realize the kuKEM. As the security requirement, we set OW-
ID-CCA security. Again we can use IND-ID-CCA secure HIBE, as well, because
IND-ID-CCA implies OW-ID-CCA security. Unlike the other schemes and prim-
itives HIBE is no “standard” algorithm used in many applications and protocols.
For this reason, there are no recommendations from either ECRYPT-CSA [4] or the
BSI [3]. This means we have to research manually to find suitable candidates for
the choice of the HIBE and try to obtain a broad overview so that we can make
an elaborate choice. Besides the requirement that the HIBE is OW-ID-CCA secure,
the kuKEM sets some requirements as well. These are discussed in Section 3.6.
Table 3.7 shows a overview over seven HIBE that are based on pairings. We also
specify the security assumption, and the indication if a HIBE is unbounded. If a
HIBE is specified as unbounded we do not need to set the maximum hierarchy depth
when generating the HIBE. As described in Section 3.6 we set the requirement that
the HIBE should be unbounded so that we can update the kuKEM keys unlimited

32 3 Algorithm Choices

Scheme Security Unbounded
Gentry-Silverberg [37] IND-ID-CPA X
Boneh-Boyen-Goh [20] IND-sID-CPA -
Li-Zhang-Wang [60] IND-sID-CPA -
Waters [88] IND-sID-CPA -
Boneh-Boyen [18] IND-sID-CPA -
Lewko-Waters [59] IND-ID-CPA X
Ryu-Lee-Park-Lee [80] IND-sID-CPA X

Table 3.7: Comparison of different HIBE

times. We evaluate the effects of this decision on performance and key sizes in Chap-
ter 6.
As we can see from Table 3.7 there are only three HIBE that fulfill the requirement
of being unbounded. The HIBE proposed by Ryu et al. [80] is only selective-ID
(sID) CPA secure, so we do not consider it for our purpose. Zhang et al. [91]
compare the security of twelve HIBE and only consider two unbounded HIBE, as
well. One of those two HIBE is proposed by Zhang et al. [91] themselves, but we
do not consider this HIBE in this thesis, too, because it provides anonymity, which
we do not require for our HIBE. This means there are only two HIBE to choose
from. Furthermore, both unbounded HIBE that are left are only IND-ID-CPA se-
cure, whereby we require the HIBE to be IND-ID-CCA secure. This means we have
to use a transformation from IND-ID-CPA to IND-ID-CCA security like described
by Boneh et al. [21]. Gentry and Silverberg [37] also provide a transformation from
CPA to CCA security.
To our knowledge there are no implementations of the Gentry-Silverberg [37] HIBE
as of writing this thesis. The Lewko-Waters [59] HIBE is implemented in the jPBC
[30] (in Java) and the Charm crypto library [6] (in Python). More precisely, the
implementation in the Charm crypto library implements the prime order transla-
tion of the Lewko-Waters [58] HIBE. Both implementations use the PBC library by
Lynn [62] internally. Unfortunately, this library is outdated and does not provide
implementations for secure pairings based on current research [8]. For this reason,
we decide to implement the Lewko-Waters HIBE with the CPA to CCA transfor-
mation described by Boneh et al. [21] ourselves. Like the Charm crypto library, we
implement the prime-order translation of the HIBE described by Lewko [58]. Firstly
because the recommended pairings are not of a composite order [8], and secondly
because as shown by Guillevic [41] the prime-order translation is way more efficient,
e.g., 192 times more efficient for key delegation. Now we need to find a suitable
pairing group for the implementation.
To find suitable pairing groups we use a different approach than we use for the other
primitives. So instead of primarily consulting the recommendations by ECRYPT-
CSA and the BSI, we search for pairing groups, which are proven to have a specific
security level. The reason for that are recently found attacks against the security of

3.7 Hierarchical Identity Based Encryption 33

pairing groups [8, 10, 70]. This means even if a pairing fulfills the recommendation
set by the ECRYPT-CSA, e.g., the order of both elliptic curves have to be greater
than 256 Bit [4], the pairing still might be insecure because of other parameters. We
estimate the security of a pairing according to the estimated symmetric-equivalent
strength. Table 3.8 shows four pairing-friendly curves and their corresponding esti-
mated symmetric-equivalent strength. The reason that the table shows two BLS12

Curve Estimated Symmetric-Equivalent Strength
BN-P256 100 [10, 90]
B12-381 127 [23, 70, 90]
B12-461 132 [10]

KSS16-340 128 [10]

Table 3.8: Comparison of Pairing Friendly Curves and Their Estimated Symmetric-
Equivalent Strength

curves is that Barbulescu and Duquesne [10] state that the B12-381 curve has only
an estimated symmetric-equivalent strength of about 110 bits, because of a spe-
cific attack, the extended tower number field sieve (exTNFS) [55]. However, there
is currently no efficient method which achieves the computational time described
by Barbulescu and Duquesne [10], so often the B12-381 curve is denoted as the
optimistic choice for the 128-bit security level, and the B12-461 is denoted as the
conservative choice for the 128-bit security level [8, 90]. The BSI recommends a
symmetric key length of 100 Bits up to 2022, and 128 bits after that. ECRYPT-
CSA recommends 128 bit for all applications. This means that according to the
recommendations of the BSI we could use any of the curves shown in Table 3.8 and
according to the ECRYPT-CSA we could not use the BN-P256 curve. We do not
decide to use a specific curve, but we compare the different curves in the implemen-
tation because the choice of the curve has significant impacts on the performance of
the construction.

3.7.1 Lewko-Waters Unbounded HIBE (Prime Order Translation)

Now we describe the prime order translation of the Lewko-Waters HIBE [58] and
the CCA transformation described by Boneh et al. [21]. Lewko [58] describes the
scheme with a symmetric pairing. As described in Section 2.2.5, a symmetric pair-
ing is a pairing in which there is only one source group 𝐺. We use an asymmetric
pairing, thus, a pairing in which there are two source groups 𝐺1 and 𝐺2. Most of
the time elements from 𝐺1 have around half the size of elements from 𝐺2. If we use
an asymmetric pairing in the Lewko-Waters HIBE we can let one group represent a
specific part of the HIBE, e.g., public keys, and the other group represent another
part. This way we can influence the size of the resulting HIBE parts. We can use
two possible strategies: Set the ciphertexts in 𝐺1 and the secret keys in 𝐺2. This

34 3 Algorithm Choices

shortens the ciphertexts but leads to larger secret keys. Alternatively, we can set
the secret keys in 𝐺1 and the ciphertexts in 𝐺2. This makes the secret keys smaller
but leads to larger ciphertexts. We choose the first strategy because we are more
interested in shorter ciphertexts than smaller secret keys. The last thing we have to
decide before describing the scheme is the size of the dimensions for the Dual Pairing
Vector Spaces (DPVS). Lewko [58] uses a dimension of 10. Similar to Guillevic [41]
we set the dimension to 6. This is possible because Lewko [58] uses dimensions 7-10
only for the semi-functional space and the ephemeral semi-functional space. These
semi-functional objects are only used in the security proof and Lewko [58] stresses
‘that these algorithms are used for definitional purposes, and are not part of the real
system.’ [58] For this reason, the semi-functional and the ephemeral semi-functional
objects are not part of the actual HIBE algorithms which further emphasizes that
they are not needed.
The algorithms of the HIBE are performed as follows [41, 58]:
PP,MSK ⇐ Setup(): Let 𝐺1, 𝐺2, 𝐺𝑇 be groups of prime order 𝑝 with a bilin-
ear map 𝑒 : 𝐺1 × 𝐺2 → 𝐺𝑇 . Let 𝑔𝑖 be a generator of 𝐺𝑖. We set the dimen-
sion 𝑛 = 6. The algorithm samples random dual orthonormal bases (D,D*) ←
Dual(Z6

𝑝). Let #»

𝑑 1, ...,
#»

𝑑 6 denote the elements of D, and #»

𝑑 *
1, ...,

#»

𝑑 *
1 the elements of

D*. It also chooses random exponents 𝛼1, 𝛼2, 𝜃, 𝜎, 𝛾, 𝜉 ∈ Z𝑝. The public parameters
are

PP := {𝐺1, 𝐺2, 𝐺𝑇 , 𝑝, 𝑒(𝑔1, 𝑔2)𝛼1
#»
𝑑 1

#»
𝑑 *

1 , 𝑒(𝑔1, 𝑔2)𝛼2
#»
𝑑 2

#»
𝑑 *

2 , 𝑔
#»
𝑑 1
1 ..., 𝑔

#»
𝑑 6
1 }

and the master secret key is

MSK := {𝛼1, 𝛼2, 𝑔
#»
𝑑 *

1
2 , 𝑔

#»
𝑑 *

2
2 , 𝑔

#»
𝑑 *

1𝛾
2 , 𝑔

#»
𝑑 *

2𝜉
2 , 𝑔

#»
𝑑 *

3𝜃
2 , 𝑔

#»
𝑑 *

4𝜃
2 , 𝑔

#»
𝑑 *

5𝜎
2 , 𝑔

#»
𝑑 *

6𝜎
2 }.

SKID ⇐ KeyGen(MSK,(ID1, ...ID𝑗)): The key generation algorithm chooses
random values 𝑟𝑖

1, 𝑟𝑖
2 ∈ Z𝑝 for each 𝑖 from 1 to 𝑗. It also chooses random values

𝑦1, ..., 𝑦𝑗 ∈ Z𝑝 and 𝑤1, ..., 𝑤𝑗 ∈ Z𝑝 up to the constraints that 𝑦1+𝑦2+...+𝑦𝑗 = 𝛼1 and
𝑤1+𝑤2+...+𝑤𝑗 = 𝛼2. For each i from 1 to j, it computes:

𝐾𝑖 := 𝑔
𝑦𝑖

#»
𝑑 *

1+𝑤𝑖
#»
𝑑 *

2+𝑟𝑖
1ID𝑖𝜃

#»
𝑑 *

3−𝑟𝑖
1𝜃

#»
𝑑 *

4+𝑟𝑖
2ID𝑖𝜎

#»
𝑑 *

5−𝑟𝑖
2𝜃

#»
𝑑 *

6
2 .

The secret key is formed as:

SKID := {𝑔
#»
𝑑 *

1𝛾
2 , 𝑔

#»
𝑑 *

2𝜉
2 , 𝑔

#»
𝑑 *

3𝜃
2 , 𝑔

#»
𝑑 *

4𝜃
2 , 𝑔

#»
𝑑 *

5𝜎
2 , 𝑔

#»
𝑑 *

6𝜎
2 , 𝐾1, ..., 𝐾𝑗}.

SKID|ID𝑗+1 ← Delegate(SKID, ID𝑗+1): The delegation algorithm chooses ran-
dom values 𝜔𝑖

1, 𝜔𝑖
2 ∈ Z𝑝 for each 𝑖 from 1 to 𝑗 + 1. It also chooses random values

𝑦′
1, ..., 𝑦′

𝑗+1 ∈ Z𝑝 and 𝑤′
1, ..., 𝑤′

𝑗+1 ∈ Z𝑝 subject to the constraints that 𝑦′
1, ..., 𝑦′

𝑗+1 =

3.7 Hierarchical Identity Based Encryption 35

0 = 𝑤′
1, ..., 𝑤′

𝑗+1. With the elements from SKID SKID|ID𝑗+1 is formed as:

SKID|ID𝑗+1 := {𝑔
#»
𝑑 *

1𝛾
2 , 𝑔

#»
𝑑 *

2𝜉
2 , 𝑔

#»
𝑑 *

3𝜃
2 , 𝑔

#»
𝑑 *

4𝜃
2 , 𝑔

#»
𝑑 *

5𝜎
2 , 𝑔

#»
𝑑 *

6𝜎
2

𝐾1 * 𝑔
𝑦′

1
#»
𝑑 *

1+𝑤′
1

#»
𝑑 *

2+𝜔1
1ID1𝜃

#»
𝑑 *

3−𝜔1
1𝜃

#»
𝑑 *

4+𝜔1
2ID1𝜎

#»
𝑑 *

5−𝜔1
2𝜃

#»
𝑑 *

6
2 ,

..., 𝐾𝑗 * 𝑔
𝑦′

𝑗

#»
𝑑 *

1+𝑤′
𝑗

#»
𝑑 *

2+𝜔𝑗
1ID𝑗𝜃

#»
𝑑 *

3−𝜔𝑗
1𝜃

#»
𝑑 *

4+𝜔𝑗
2ID𝑗𝜎

#»
𝑑 *

5−𝜔𝑗
2𝜃

#»
𝑑 *

6
2 ,

𝑔
𝑦′

𝑗+1
#»
𝑑 *

1+𝑤′
𝑗+1

#»
𝑑 *

2+𝜔𝑗+1
1 ID𝑗+1𝜃

#»
𝑑 *

3−𝜔𝑗+1
1 𝜃

#»
𝑑 *

4+𝜔𝑗+1
2 ID𝑗+1𝜎

#»
𝑑 *

5−𝜔𝑗+1
2 𝜃

#»
𝑑 *

6
2 }.

CT ⇐ Encrypt(PP,M,(ID1, ...ID𝑗)): The encryption algorithm chooses random
values 𝑠1, 𝑠2 ∈ Z𝑝, as well as random values 𝑡𝑖

1, 𝑡𝑖
2 for each 𝑖 from 1 to 𝑗. It com-

putes:
𝐶0 := 𝑀𝑒(𝑔1, 𝑔2)𝛼1𝑠1

#»
𝑑 1

#»
𝑑 *

1𝑒(𝑔1, 𝑔2)𝛼2𝑠2
#»
𝑑 2

#»
𝑑 *

2 ,

as well as
𝐶𝑖 := 𝑔

𝑠1
#»
𝑑 1+𝑠2

#»
𝑑 2+𝑡𝑖

1* #»
𝑑 3+ID𝑖𝑡

𝑖
1

#»
𝑑 4+𝑡𝑖

2
#»
𝑑 5+ID𝑖𝑡

𝑖
2

#»
𝑑 6

1

for each 𝑖 from 1 to 𝑗. The ciphertext is CT := {𝐶0, 𝐶1, ..., 𝐶𝑗}.
M←Decrypt(CT, SKID): The decryption algorithm computes

𝐵 :=
𝑗∏︁

𝑖=1
𝑒6(𝐶𝑖, 𝐾𝑖)

and computes the message as
𝑀 := 𝐶0/𝐵.

Now we describe the algorithm to generate random dual orthonormal bases as de-
scribed by Zhang [92] and Okamoto and Takashima [74, 75]:
(D,D*) ← Dual(Z𝑛

𝑝): Let 𝐺1, 𝐺2, 𝐺𝑇 be groups of prime order 𝑝 with a bilinear
map 𝑒 : 𝐺1 × 𝐺2 → 𝐺𝑇 . Let 𝑔𝑖 be a generator of 𝐺𝑖. To generate random dual
orthonormal bases D and D* perform:

1. Create canonical bases A and A*:
A := #»𝑎 1, ..., #»𝑎 𝑛 where #»𝑎 1 := (𝑔1, 1, ..., 1), #»𝑎 2 := (1, 𝑔1, 1, ..., 1),..., #»𝑎 𝑛 :=
(1, ..., 1, 𝑔1). A* := #»𝑎 *

1, ..., #»𝑎 *
𝑛 where #»𝑎 *

1 := (𝑔2, 1, ..., 1), #»𝑎 *
2 := (1, 𝑔2, 1, ..., 1),...,

#»𝑎 *
𝑛 := (1, ..., 1, 𝑔2).

2. Generate randomly chosen linear transformation:
Choose 𝑋 := (𝒳𝑖,𝑗) ←$ 𝐺𝐿(𝑛,Z𝑝) and compute 𝜗𝑖,𝑗 := (𝑋𝑇)−1. Note that
𝐺𝐿(𝑛,Z𝑝) denotes the general linear group of dimension 𝑛 over Z𝑝 [9]. In
other words 𝑋 is a 𝑛 × 𝑛 matrix filled with random elements in Z𝑝 and 𝜗 is
the inverse of the transposed matrix 𝑋.

3. Perform a base change on A and A*:
Canonical base A is changed to D by computing #»

𝑑 𝑖 :=
∑︀𝑛

𝑖=1𝒳𝑖,𝑗𝑎𝑗 and canon-
ical base A* is changed to D* by computing #»

𝑑 *
𝑖 :=

∑︀𝑛
𝑖=1 𝜗𝑖,𝑗𝑎*

𝑗 .
Output : (D, D*)

36 3 Algorithm Choices

Note that if we generate the dual orthonormal bases this way #»

𝑑 1 = 𝑔
#»
𝑑 1
1 , ...,

#»

𝑑 6 = 𝑔
#»
𝑑 6
1

and #»

𝑑 *
1 = 𝑔

#»
𝑑 *

1
2 , ...,

#»

𝑑 *
6 = 𝑔

#»
𝑑 *

6
2 . So the public parameters for the Lewko-Waters HIBE

look like this:

PP := {𝐺1, 𝐺2, 𝐺𝑇 , 𝑝,

𝑒(#»

𝑑 1,
#»

𝑑 *
1)𝛼1 = 𝑒(𝑔1, 𝑔2)𝛼1

#»
𝑑 1

#»
𝑑 *

1 ,

𝑒(#»

𝑑 2,
#»

𝑑 *
2)𝛼2 = 𝑒(𝑔1, 𝑔2)𝛼2

#»
𝑑 2

#»
𝑑 *

2 ,
#»

𝑑 1...,
#»

𝑑 6}

This applies to all parameters.

3.7.2 CPA to CCA Transformation

Now it is left to describe the CPA to CCA transformation described by Boneh et
al. [21]. We directly describe the more efficient transformation using a MAC and an
encapsulation scheme [21]. Note that there is also a transformation using a one-time
signature. Since this transformation is only required for our specific choice of the
HIBE, we do not discuss the choices for the algorithms used in the transformation,
but simply list the requirements on the algorithms and our choice of the algorithm.
Note that there might be several (more efficient) alternatives for the choices we
make.
For the transformation we need a strong one-time message authentication code and
an encapsulation scheme that is binding and hiding [21]. As for the other algorithms
we can also choose a general strong MAC instead of an one-time MAC. We choose to
use HMAC which is proven to be a Pseudo Random Function (PRF) if it is instanti-
ated with a hash function that has a (weak) collision resistance [13] and thus is SUF
secure [15]. Since all hash functions described in Section 3.3 are considered cryp-
tographically secure, we can choose any of those hash functions. We choose SHA256.
The encapsulation scheme is based on any universal one-way hash function (UOWHF)
family {𝐻𝑠 : {0, 1}𝑘1 → {0, 1}𝑘} (where 𝑘1 > 3𝑘 is a function of the parameter 𝑘).
It is described as follows [21]:

Init(k) chooses a hash function ℎ from a family of pairwise-independent hash func-
tions mapping 𝑘1 bit strings to 𝑘 bit strings, and also chooses a random key 𝑠
defining 𝐻𝑠. It outputs pub := (ℎ, 𝑠).

Encapsulation S(pub) chooses a random 𝑥 ∈ {0, 1}𝑘1 and then outputs (𝑟 :=
ℎ(𝑥), com := 𝐻𝑠(𝑥), dec := 𝑥)

Recovery R(pub,com,dec) outputs ℎ(𝑑𝑒𝑐) if 𝐻𝑠(dec) = com, and ⊥ otherwise.

This scheme is binding and hiding under the assumption that 𝐻𝑠 is a UOWHF family.
As described by Boneh et al. [21] and, Naor and Yung [73] we can use a second-
preimage resistant hash function to construct a UOWHF family. This means we

3.7 Hierarchical Identity Based Encryption 37

can use any hash function from Section 3.3 (with modifications to support the input
length) to construct a encapsulation scheme. Now we describe the transformation
to obtain a CCA secure HIBE from any CPA secure HIBE. Note that Boneh et al.
[21] only show this transformation for an IBE, we apply this transformation to the
HIBE:
Let H=(Setup, KeyGen, Delegate, Enc, Dec) be a CPA secure HIBE, M=(Mac,
Vrfy) be a strong MAC, and E=(Init,S,R) be a binding and hiding encapsulation
scheme. For an identity # »ID := (𝑖𝑑1, ...𝑖𝑑𝐿) ∈ ({0, 1}𝑛)𝐿 in 𝐻, let the procedure
encode(# »ID) denote:

encode(# »ID) := {0id0,, 0id𝐿} ∈ ({0, 1}𝑛+1)𝐿

The construction for a CCA secure HIBE 𝐻 ′ is shown in Figure 3.9.

1 Setup:
2 (PP,MSK)⇐H.setup()
3 pub ⇐E.Init()
4 return (MSK, PP’=(PP,pub))
5

6 KeyGen(MSK, ID1, ..., ID𝑗)
7 for i = 0 to j
8 ID′

𝑖 ← 𝐸𝑛𝑐𝑜𝑑𝑒(ID𝑖)
9 return H.KeyGen(MSK,ID′

1, ..., ID′
𝑗)

10

11 Delegate(SK𝐼𝐷, ID𝑗+1)
12 ID′

𝑗+1 ← 𝐸𝑛𝑐𝑜𝑑𝑒(ID𝑗+1)
13 return H.Delegate(SK𝐼𝐷,ID′

𝑗+1)

13 Encrypt(PP,M,(ID1, ...ID𝑗)):
14 (PP’,pub) ⇐ PP
15 (r ,com,dec) ⇐ E.S(pub)
16 for i = 0 to j
17 ID′

𝑖 ← 𝐸𝑛𝑐𝑜𝑑𝑒(ID𝑖)
18 ID′

𝑗+1 := ’1com’
19 C ⇐ H.Encrypt(PP’, M ∘ dec, ID1, ...ID𝑗+1)
20 tag ⇐ M.Mac(r, C)
21 ret CT = (C, com, tag)
22

23 Decrypt(CT, SK𝐼𝐷)
24 (C, com, tag) ← CT
25 ID := ’1com’
26 ID’ ← Encode(ID)
27 SK𝐼𝐷′ ⇐ H.delegate(SK𝐼𝐷, ID’)
28 M ∘ dec ← H.decrypt(CT, SK𝐼𝐷′)
29 r ← E.R(pub,com,dec)
30 if r ̸= 0 and M.Vrfy(C,tag,r)=1
31 ret M

Figure 3.9: CCA secure HIBE 𝐻 ′ from CPA secure HIBE 𝐻, MAC 𝑀 , and encap-
sulation scheme 𝐸

3.7.3 Summary

To our knowledge there are no directly usable OW-CCA secure HIBE. Both un-
bounded HIBE, namely the Gentry-Silverberg HIBE [37] and the Lewko-Waters
HIBE [59], we discussed in this section are only CPA secure. However, we can use
transformations [21, 37] to make them CCA secure. We choose to implement the
prime-order translation of the Lewko-Waters HIBE [58] (described in Section 3.7.1)
and use the transformation described by Boneh et al. [21] (described in Section

38 3 Algorithm Choices

3.7.2).
Recommended pairing friendly curves and their corresponding estimated symmetric-
equivalent strength are shown in Table 3.8. We compare their efficiency and their
impact on the performance in Chapter 6.

3.8 Conclusion

In this chapter, we discussed the possible choices for the algorithms which we use to
instantiate the BRKE construction. Except for the one-time signature and the HIBE
we rely on external implementations that provide the algorithms. Unfortunately, we
have to implement the signature and the HIBE ourselves because to our knowledge
there are no implementations of those schemes suitable for our purpose. Table
3.10 shows the final choice of all schemes. There exists at least one alternative to

Primitive Chosen Algorithm
One-Time Signature DLP-Based Chameleon Hash OT Signature

Key Encapsulation Mechanism ECIES-KEM
Random Oracle HKDF

HIBE Lewko-Waters HIBE + CCA Transformation
Hash SHA256, SHA512

Table 3.10: Set of algorithms we chose in this chapter

every algorithm. This might be interesting if we want to compare the efficiency and
performance between different algorithm sets.

4 Generic Implementation

In this chapter, we explain the implementation of the generic BRKE construction.
The motivation for implementing BRKE in two parts is modularity and flexibility
of the implementation. It should be possible to replace any of the used primitives
without affecting the functionality of the construction. This approach enables us to
replace an algorithm if it becomes insecure, or change algorithm parameters without
affecting other parts of the construction. We start by providing the specifications
of the used programs to compile and run the implemented code. After that, we
explain the general approach to the implementation. We then explain the reasoning
for some formal changes to the BRKE construction and describe those modifica-
tions.

4.1 Specifications

The implementation is configured to run on Linux and to be buildable by Maven
[71], a software tool for Java project management and build automation. The goal
for the generic BRKE implementation is that it does not rely on external libraries
so that it is as flexible as possible. The only external library we use in the generic
part of the implementation is the JUnit library to perform unit tests. The im-
plementation is tested on the operating system Ubuntu 18.04.2 with Maven ver-
sion 3.5.2 and Java version 1.8.0_201. All code is uploaded to a Github reposi-
tory.

4.2 General Approach

Figure 4.1 shows the general idea behind the generic implementation. The idea is
to provide the BRKE construction with an algorithm set which holds all primitives.
More precisely the algorithm set holds a factory for each primitive which creates an
object of the corresponding primitive. This way we can easily replace any of the
primitives. In the generic implementation, all of those objects are implemented as
interfaces to ensure that the actual instantiation provides the desired functional-
ity. Now we start by explaining changes we applied to the BRKE construction to
represent an actual real-world application.

40 4 Generic Implementation

Figure 4.1: Rough structure for the generic BRKE implementation.

4.3 The BRKE Ad-Hoc Construction

To better understand the BRKE construction we analyze its functionality in this sec-
tion (for readability we assume communication in the A-to-B direction, but of course
everything can be applied to the B-to-A direction, as well):

States: Each participant has a sending state 𝑆 and a receiving state 𝑅. When both
users are in sync (have received all messages) the sending state 𝑆𝐴 (of user
A) reflects the receiving state 𝑅𝐵 (of user B) and vice versa. This means, for
example, that the public keys that are saved in 𝑆𝐴 match the secret keys in
𝑅𝐵. Each state consists of the following elements: kuKEM keys (public keys
in 𝑆, secret keys in 𝑅), the epoch variable (each consisting of first supported
epoch 𝐸⊢, and last supported epoch 𝐸⊣), message counter (sent messages 𝑠,
and received messages 𝑟), state variables 𝐿 (which contain past transcript frag-
ments), a signature key (verification key in 𝑆, signing key in 𝑅), chaining key
𝐾 (which is used in the random oracle), and a transcript (sending transcript
𝑡𝑆 , and receiving transcript 𝑡𝑅).

Epochs: One of the main difficulties in an asynchronous communication setting
is that A cannot be sure which messages are received by B and how many
messages B sent after B’s last sent message. For this reason, A and B each
have an epoch variable 𝐸 (𝐸𝑆 in the sending state, and 𝐸𝑅 in the receiving
state) that keeps track of the supported epochs. Roughly speaking the epochs
keep track of ‘floating’ ciphertexts, so ciphertexts for which A cannot be sure
that B has received them, and ‘active’ kuKEM keys. A and B include the
information of their last supported epoch (Fig. 4.2, L.20) and the number of
the total received messages 𝑟 (Fig. 4.2, L.18) in the ciphertext. So every time
A receives a message, A has the information what messages were received by
B and can update the state accordingly. So the purpose of the epochs is to
keep track of sent and received messages so that the states can be updated in

4.3 The BRKE Ad-Hoc Construction 41

sync with the communication partner.
Every time a message is sent an epoch starts in 𝐸𝑅 (so for each saved kuKEM
secret key there is an epoch), and this epoch is active as long as A did not
get the information that B has received the ciphertext. An epoch in 𝐸𝑅 ends
if B used the corresponding kuKEM key. Moreover, every time a message is
received an epoch starts in 𝐸𝑆 (so for each kuKEM public key there is an
epoch), and this epoch is active as long as A does not send any messages. As
soon as A sends a message and uses the kuKEM public key the epoch ends.

Key Updates: Key updates are only performed in the receiving algorithm of the
BRKE construction (Fig. 4.2, L.43/60). Every kuKEM public key A receives
in a ciphertext is updated from the state variable 𝐿𝑆 which contains cipher-
texts sent by A (concatenated with the corresponding associated data). The
public key is updated one time for each message B did not receive yet. If B is
in sync the public key is not updated. Secret keys are updated with the cur-
rent ciphertext received by A (concatenated with the corresponding associated
data). For every message B did not receive yet A updates a secret key. All
secret keys for which A can be sure that B received the messages (ensured by
the epochs) are discarded. So in general, for every ‘floating’ ciphertext there
exists a kuKEM key pair and every time a message is received, A updates its
keys for every additional ‘floating’ ciphertext. As it turns out every kuKEM
key that is the first of an epoch can be a KEM key [77].

Transcripts: Both user maintain a sending transcript 𝑡𝑆 and a receiving transcript
𝑡𝑅. 𝑡𝑆 represents 𝑡𝑅 of the communication partner and vice versa. For this
reason, Poettering and Rösler [77] introduced labels ▷ and ◁ to keep track of
the direction of the ciphertext. These transcripts are included in the input
for the random oracle to ensure further that both users only can generate the
correct keys if they update their state correctly.

State Variables 𝐿: The state variables 𝐿𝑆 and 𝐿𝑅 store information that is needed
at a later point in the BRKE construction. The variable 𝐿𝑆 stores cipher-
text associated data pairs for public key updates (Fig. 4.2, L.31/43) and the
variable 𝐿𝑅 stores transcript fragments which are used to update the receiv-
ing transcript 𝑡𝑟 (Fig. 4.2, L.25/49). So the state variables are used to store
information until A can be sure that the B has received the corresponding
ciphertexts.

This concludes the description of the key points of the BRKE construction. Every
other operation in the BRKE construction in Figure 4.2 should be straightforward.

42 4 Generic Implementation

Figure 4.2: Description of the ad hoc BRKE construction [77].

4.4 Protocol Changes

In Section 4.3 we described the BRKE construction as it is proposed by Poettering
and Rösler [77]. We apply some formal changes to the construction to represent a
real-world application for the protocol:
General: Instead of using BRKE as an algorithm as described by Poettering and
Rösler [77] we use the BRKE construction as an object. This better represents the

4.4 Protocol Changes 43

principle of object-oriented programming in Java. Furthermore, this enables us to
better structure the program. The general idea is to keep the information where it
is used. An example of this is the user state. In our implementation the user state
is saved inside the BRKE object instead of having a user state class which holds all
variables.
Another big change is the general approach to updates and storing past commu-
nication fragments. It would be unpleasant to have endlessly growing arrays and
transcripts because memory is limited. For this reason, we have to change how we
handle transcripts and the general approach to the epochs (which are always grow-
ing in the ad-hoc BRKE construction).
States: As already mentioned we omitted the user states described by Poettering
and Rösler [77] and replaced them with a BRKE state.

1 private SignatureManager signatureAlgorithm;
2 private KeyedRandomOracle randomOracleAlgorithm;
3 private QueuedKuKem queuedKuKemAlgorithm;
4 private int numberOfUnsynchronizedSentMesssages;
5 private int numberOfUnsynchronizedReceivedMessages;
6 private Transcript receivingTranscript;
7 private Transcript sendingTranscript;
8 private boolean initiator;

Listing 4.3: New BRKE ‘User State’

Listing 4.3 shows the new state of a BRKE object. We shortly address some changes
but elaborate them further in their respective paragraph. All keys are now managed
by the algorithm which uses the keys (Lines 1-3). So the classes SignatureManager,
KeyedRandomOracle, and QueuedKuKem contain keys of the user itself and the
corresponding keys of the communication partner. Furthermore, these classes are
responsible for updating the keys according to the BRKE description. We explain
this approach further in Section 4.5.
The variables in Lines 4 and 5 combine the epoch variables 𝐸𝑅 and 𝐸𝑆 , and the
variables 𝑟 and 𝑠 from the BRKE construction (Fig. 4.2).
Every user still has two transcripts 𝑇𝑅 and 𝑇𝑆 , but their use is changed a little bit
(Lines 6-7). Lastly, every user has an initiator variable (Line 8) which stores the
information if a user is the initiator of a conversation.
Epochs: In the ad-hoc BRKE construction the values in the epochs are always
growing. Since we want to avoid this, so we do not have endlessly growing ar-
rays, we have to rework the approach to epochs a little bit. For this reason we
introduce the variables numberOfUnsynchronizedSentMesssages and numberOfUn-
synchronizedReceivedMessages (Lines 4,5). As mentioned in Section 4.3 one function
of the epochs is to keep track of the ‘floating’ ciphertexts. The two variables do the
same thing. The other function, keeping track of kuKEM keys, is now managed by
the queued kuKEM so we do not need this functionality outside of it.
Key Updates: Key updates are now directly managed by the queued kuKEM al-
gorithm which we explain in Section 4.5. So the BRKE construction does not need

44 4 Generic Implementation

to handle these.
State Variables 𝐿: As described in Section 4.3 the state variables 𝐿𝑆 and 𝐿𝑅 are
used to store information that is needed at a later time. These functions are also
taken care of by the use of queued algorithms. Instead of storing the information
in a separate class and obtaining it if we need it, we directly store the information
where it is needed and trigger the update from a queue.

4.5 Queue-Based Algorithms

In this section, we explain the idea behind the queue based algorithms and the
queued kuKEM. As already introduced in Section 4.4, we use the queued algorithms
to avoid the epochs and lists of the ad-hoc brke construction (Fig. 4.2). The epochs
and the two state variables 𝐿𝑆 and 𝐿𝑅 handle the state updates. For this reason,
we have to be able to ensure correct state updates without using either of those. We
have a look at three examples for the use of the epochs:

∙ Fig. 4.2, Line 17: We add the generated kuKEM secret key to the kuKEM
secret key list as the last key of the supported epoch 𝐸𝑅. So this means we
add a secret key to the secret key list.

∙ Fig. 4.2, Line 20/21: We put the last supported epoch 𝐸⊣
𝑆 in the ciphertext and

then use the kuKEM keys of the supported epoch 𝐸𝑆 for the encapsulation.
In other words, we save the number of used keys in the ciphertext and then
use all currently stored keys for the encapsulation.

∙ Fig. 4.2, Line 25: We add the currently generated transcript fragment in the
state variable 𝐿𝑅 as the last transcript fragment of the supported epoch 𝐸𝑅.
Similar to the secret key we add the transcript fragment to the state variable
𝐿𝑅.

So, in general, we use the epochs 𝐸𝑆 and 𝐸𝑅 to determine which position of the
different lists we have to access. This also means the lists only contain elements
from 𝐸⊢ to 𝐸⊣. Also, except for the public key updates, all accesses to lists start at
𝐸⊢ and the content is deleted after the access. As result queues are an ideal data
structure to manage state updates.
For this reason, we replace all lists except 𝐿𝑆 by queues. 𝐿𝑆 is used for public key
updates, and we do not delete the elements of 𝐿𝑆 after we accessed them, so we
keep it a regular list. We also move the state variables 𝐿𝑆 and 𝐿𝑅 inside the objects
where they are required. So we move 𝐿𝑅 inside the transcript object and 𝐿𝑆 inside
the kuKEM object. We also introduce a special kind of kuKEM for the use inside
the BRKE object, the queued kuKEM.

4.5 Queue-Based Algorithms 45

4.5.1 Queued kuKEM

The queued kuKEM is used to manage queued key updates, encapsulations, and de-
capsulations. The state of a queued kuKEM is shown in Listing 4.4.

1 private KeyUpdateableKem kuKemAlgorithm;
2 private KeyEncapsulationMechanism kemAlgorithm;
3 private KuKemAssociatedDataFactory associatedDataFactory;
4 private KemSecretKey kemSecretKey;
5 private KemPublicKey communicationPartnerKemPublicKey;
6 private Queue<KuKemSecretKey> secretKeys;
7 private Queue<KuKemPublicKey> communicationPartnerPublicKeys;
8 private LinkedList<KuKemAssociatedData> publicKeyUpdateInformationList;

Listing 4.4: Queued kuKEM state

Internally it uses a KEM algorithm and a kuKEM algorithm. As described in
Section 4.3 the first key of an epoch can be a KEM key. The publicKeyUpdateInfor-
mationList represents the state variable 𝐿𝑆 and stores KuKemAssociatedData. We
use KuKemAssociatedData instead of a ciphertext associated data pair so that the
kuKEM implementation can be used outside of the BRKE project.
Listing 4.5 shows the encapsulation procedure of the queued kuKEM.

1 KemOutput kemOutput = kemAlgorithm.encapsulate(communicationPartnerKemPublicKey)
2 communicationPartnerKemPublicKey = null;
3 int numberOfEncapsulations = 1;
4 SymmetricKey generatedKey = kemOutput.getKey();
5 if (!communicationPartnerPublicKeys.isEmpty()) {
6 Queue<KuKemCiphertext> ciphertext = new LinkedList<KuKemCiphertext>();
7 while (!communicationPartnerPublicKeys.isEmpty()) {
8 KuKemOutput kuKemOutput = kuKemAlgorithm.encapsulate(communicationPartnerPublicKeys.

poll());
9 numberOfEncapsulations++;

10 generatedKey.mixToKey(kuKemOutput.getKey());
11 ciphertext.add(kuKemOutput.getCiphertext());
12 }

Listing 4.5: Queued kuKEM encapsulation (shortened)

Lines 1-3: Encapsulate a key using the regular KEM. Delete the KEM public key
afterward. Also initialize the numberOfEncapsulations variable with 1.

Line 5: If there are saved kuKEM keys this means we have floating ciphertexts and
have to encapsulate more than one time.

Lines 6-12: Encapsulate a key with every saved kuKEM public key. Since we poll
the keys from the queue, they are deleted afterward. The symmetric key is
constructed by mixing all keys (Line 9). Ciphertexts are saved in a queue
(Lines 5,10).

46 4 Generic Implementation

The final ciphertext always consists of at least a KEM ciphertext and the vari-
able numberOfEncapsulations. If numberOfEncapsulations>1 then the ciphertext
also contains a kuKEM ciphertext queue of size numberOfEncapsulations-1. This
procedure implements Lines 20-23 and Line 30 of the ad hoc BRKE construc-
tion.

1 if (numberOfUsedKeysForEncapsulation == 1) {
2 SymmetricKey generatedKey = kemAlgorithm.decapsulate(kemSecretKey, ciphertext.

getKemCiphertext());
3 kemSecretKey = null;
4 return generatedKey;
5 } else {
6 Queue<KuKemCiphertext> ciphertexts = new LinkedList<KuKemCiphertext>(ciphertext.

getKuKemCiphertexts());
7 SymmetricKey generatedKey = kemAlgorithm.decapsulate(kemSecretKey, ciphertext.

getKemCiphertext());
8 kemSecretKey = null;
9 for (int i = 0; i < numberOfUsedKeysForEncapsulation - 1; i++) {

10 generatedKey.mixToKey(kuKemAlgorithm.decapsulate(secretKeys.remove(), ciphertexts.
remove()));

11 }
12 return generatedKey;

Listing 4.6: Queued kuKEM decapsulation (shortened)

The decapsulation is shown in Listing 4.6. If the numberOfUsedKeysForEncapsulation=1
we only need to decapsulate using the regular KEM (Lines 2-4). Otherwise we de-
capsulate numberOfUsedKeysForEncapsulation-1 times. This procedure implements
Lines 51-55 and Line 58 of the ad hoc BRKE construction.
Listing 4.7 shows the update public key procedure. The procedure receives three
inputs: the public key to add and update, the variable messagesReceivedByPartner,
and the variable numberOfUpdates.

1 while (messagesReceivedByPartner > 0) {
2 publicKeyUpdateInformationList.remove();
3 messagesReceivedByPartner--;
4 }
5 for (int i = 0; i < numberOfUpdates; i++) {
6 publicKey = kuKemAlgorithm.updatePublicKey(publicKey, publicKeyUpdateInformationList.get

(i));
7 }
8 communicationPartnerPublicKeys.add(publicKey);

Listing 4.7: Queued kuKEM public key update (shortened)

The variable messagesReceivedByPartner is used to determine how many elements
from the public key update information list we can delete. If the communication
partner has a received a message we can safely delete the corresponding update
information, because it is not needed anymore. The variable numberOfUpdates is
used to determine how many floating ciphertexts there are left because we have to
update the public key for every floating ciphertext. After the key is updated, it is

4.6 The Modified BRKE Protocol 47

saved in the public key queue. This procedure implements Lines 40-44 of the ad hoc
BRKE construction.

1 kemSecretKey = kemAlgorithm.gen(seed).getSecretKey();
2 Queue<KuKemSecretKey> updatedSecretKeys = new LinkedList<KuKemSecretKey>();
3 KuKemAssociatedData kuKemAssociatedData = associatedDataFactory.createAssociatedData(ad,

ciphertext);
4 while (!secretKeys.isEmpty()) {
5 updatedSecretKeys.add(kuKemAlgorithm.updateSecretKey(secretKeys.remove(),

kuKemAssociatedData));
6 }

Listing 4.8: Queued kuKEM secret key update (shortened)

Listing 4.8 shows the update secret key procedure. It receives a secret key seed,
and a ciphertext associated data pair. The procedure then generates a regular KEM
secret key and updates all secret keys in the kuKEM secret key queue using the
ciphertext associated data pair. This procedure implements Lines 58-61 of the ad
hoc BRKE construction.

4.6 The Modified BRKE Protocol

Now that we described the queued algorithms and reasons for our modifications
we describe the modified BRKE protocol. When initializing a BRKE object the
user needs to provide a source of randomness and the information if the user is
the initiator of the conversation or not. The source of randomness has to match
on the user’s and its communication partner’s side. This way we can ensure that
the user and the communication partner generate matching keys. The source of
randomness can be seeded with keying material from an initial key agreement
protocol, for example. Listing 4.9 shows the send procedure of the BRKE ob-
ject.

1 public BrkeSendOutput send(SecureRandom randomness, AssociatedData ad) {
2 KuKemPublicKey kuKemPublicKey = queuedKuKemAlgorithm.gen(randomness);
3 SignatureVerificationKey signatureVerificationKey = signatureAlgorithm.gen(randomness);
4 int numberOfUsedKeysForEncapsulation = queuedKuKemAlgorithm.getNumberOfSavedPublicKeys();
5 QueuedKuKemOutput kuKemOutput = queuedKuKemAlgorithm.encapsulate();
6 BrkeCiphertext ciphertext = new BrkeCiphertext(numberOfUnsynchronizedReceivedMessages,

kuKemPublicKey,
7 signatureVerificationKey, numberOfUsedKeysForEncapsulation, kuKemOutput.getCiphertext

());
8 ciphertext.computeSignature(signatureAlgorithm, ad);
9 receivingTranscript.addToTranscriptQueue(initiator, ad, ciphertext);

10 sendingTranscript.updateTranscript(initiator, ad, ciphertext);
11 KeyedRandomOracleOutput randomOracleOutput = randomOracleAlgorithm
12 .querySendRandomOracle(kuKemOutput.getGeneratedKey(), sendingTranscript);
13 queuedKuKemAlgorithm.addMatchingPublicKey(randomOracleOutput.getSecretKeySeed());
14 queuedKuKemAlgorithm.addToPublicKeyUpdateInformationQueue(ad, ciphertext);

48 4 Generic Implementation

15 numberOfUnsynchronizedSentMesssages++;
16 numberOfUnsynchronizedReceivedMessages = 0;
17 return new BrkeSendOutput(randomOracleOutput.getSessionKey(), ciphertext);

Listing 4.9: Send Operation of the modified BRKE protocol

In the following we describe the modified send procedure. We always provide the cor-
responding lines in the ad hoc BRKE construction shown in Figure 4.2.

Lines 2-3 Generate a kuKEM public key, and a verification key. The corresponding
secret keys are directly saved in the algorithm objects. (Fig. 4.2, Lines 15-17)

Line 4 Obtain the number of currently saved public keys in the queued kuKEM.
(Fig. 4.2, Line 20)

Line 5 Encapsulate a key using the queued kuKEM. (Fig. 4.2, Lines 21-23)

Lines 6-8 Create the ciphertext and sign it. The signature object internally uses
the correct signing key and deletes it afterwards. (Fig. 4.2, Lines 18,20,24,25)

Lines 9-10 Update the sending transcript and add the current communication frag-
ment to the receiving transcript update queue. (Fig. 4.2, Lines 25,27)

Line 11 Query the random oracle. (Fig. 4.2, Line 28)

Line 13-14 Generate a new public key in the queued kuKEM and add the current
communication fragment to the public key update list. (Fig. 4.2, Lines 29-31)

Lines 15-16 Update numberOfUnsynchronizedSentMesssages and numberOfUnsyn-
chronizedReceivedMessages to keep track of the current communication state.
(Fig. 4.2, Line 31)

Similar to the modified send procedure we describe the modified receive procedure in
the following. The modified receive procedure is shown in Listing 4.10.

1 public SymmetricKey receive(AssociatedData ad, BrkeCiphertext ciphertext) {
2 if (!signatureAlgorithm.verify(ad, ciphertext)) {
3 return null;
4 }
5 sendingTranscript.updateTranscript(!initiator, ad, ciphertext);
6 int communicationPartnerReceivedMessages = ciphertext.getNumberOfReceivedMessages();
7 KuKemPublicKey ciphertextKuKemPublicKey = ciphertext.getPublicKey();
8 SignatureVerificationKey ciphertextSignatureVerificationKey = ciphertext.

getVerificationKey();
9 numberOfUnsynchronizedSentMesssages -= communicationPartnerReceivedMessages;

10 if (numberOfUnsynchronizedSentMesssages < 0) {
11 return null;
12 }
13 queuedKuKemAlgorithm.addUpdatedPublicKey(ciphertextKuKemPublicKey,

communicationPartnerReceivedMessages, numberOfUnsynchronizedSentMesssages);
14 signatureAlgorithm.setVerificationKey(ciphertextSignatureVerificationKey);
15 receivingTranscript.updateTranscriptfromQueue(ciphertext.getNumberOfUsedKeys());
16 SymmetricKey generatedKey = queuedKuKemAlgorithm.decapsulate(ciphertext.

getNumberOfUsedKeys(), ciphertext.getCiphertext());

4.6 The Modified BRKE Protocol 49

17 receivingTranscript.updateTranscript(!initiator, ad, ciphertext);
18 KeyedRandomOracleOutput randomOracleOutput = randomOracleAlgorithm.

queryReceiveRandomOracle(generatedKey, receivingTranscript);
19 queuedKuKemAlgorithm.updateSecretKeys(randomOracleOutput.getSecretKeySeed(), ad,

ciphertext);
20 numberOfUnsynchronizedReceivedMessages++;
21 return randomOracleOutput.getSessionKey();

Listing 4.10: Send Operation of the modified BRKE protocol

Lines 2-4 Check the signature inside the ciphertext, return null if the signature is
invalid. In contrast to the ad hoc BRKE construction, we move the signature
verification to the beginning of the procedure. This way a faulty ciphertext can
not invalidate a user’s state. In the ad hoc BRKE construction the transcript
is updated before the signature verification. (Fig. 4.2, Line 38)

Line 5 Update the sending transcript. (Fig. 4.2, Line 37)

Line 6-8 Unpack the ciphertext. (Fig. 4.2, Line 39)

Lines 9-12 Update numberOfUnsynchronizedSentMesssages. We increase this vari-
able for every sent message by one. The ciphertext contains the variable
communicationPartnerReceivedMessages which we then subtract from num-
berOfUnsynchronizedSentMesssages. This way we can keep track of floating
ciphertexts. So in a honest BRKE run the variable cannot become < 0, because
the communication partner cannot receive more messages than the user has
sent. For this reason we abort if numberOfUnsynchronizedSentMesssages < 0,
because this means the user is no longer part of a honest protocol run.

Lines 13-14 Add and update the kuKEM public key and add the verification key.(Fig.
4.2, Lines 40-45)

Line 15 Update the receiving transcript from the queue. (Fig. 4.2, Lines 49-50)

Line 16 Decapsulate a symmetric key using the queued kuKEM. (Fig. 4.2, Lines
51-55)

Line 17 Update the receiving transcript. (Fig. 4.2, Line 56)

Lines 18-19 Query the random oracle and update the secret keys of the queued
kuKEM. (Fig. 4.2, Lines 57-61)

Lines 20-21 Increase numberOfUnsynchronizedReceivedMessages by one and return
the generated symmetric session key. (Fig. 4.2, Lines 61,64)

We can see that the modified BRKE procedures rely on the algorithms itself to
perform correct state updates. The BRKE object only keeps track of unsynchronized
sent and received messages to keep track of floating ciphertexts and trigger correct
state updates.

50 4 Generic Implementation

4.7 Project Structure

The structure of the generic BRKE project is shown in Figure 4.1. In this sec-
tion, we explain the purpose of the different packages. To keep the implementation
as generic as possible, we often use interfaces that specify how a class should be-
have. Furthermore, we create interfaces for all parts of an algorithm. So for a, e.g.,
KEM, we have an interface for the key pair, the individual keys, the output, the
ciphertext, and the algorithm itself. This way the implementation is as flexible as
possible.

Figure 4.11: Project structure of the generic BRKE construction.

The purpose of the different packages is:

brke The brke package contains the classes that are specific to the BRKE construc-
tion.

factories The factories package contains interfaces for the factories for each of the
algorithms. Factories are used to create an instance of a specific algorithm.

kem The kem package contains interfaces for all parts of a KEM implementation.
The KEM implementation should provide the functionality of a regular KEM.
It does not need to handle keys itself.

kukem The kukem package contains interfaces for all parts of a kuKEM implemen-
tation. Similar to the KEM the implementation of the kuKEM does not need
to handle keys itself. The queued kuKEM is responsible for this.

queuedkukem The queuedkukem package contains the implementation of the queued
kuKEM, the ciphertext produced by the queued kuKEM, and the output pro-
duced by the queued kuKEM.

randomoracle The randomoracle package contains interfaces for all parts of a ran-
dom oracle implementation. The random oracle needs to provide a query-
SendRandomOracle and a queryReceiveRandomOracle function. In each func-
tion, it needs to use the corresponding chaining key 𝐾𝑆 or 𝐾𝑅.

4.8 Unit Tests 51

signature The signature package contains interfaces for all parts of a signature im-
plementation. The signature needs to provide the functionality to sign and
verify a ciphertext associated data pair. For this, the signature needs to store
its own signing keys and the verification keys for the communication partner.

variables The variables package contains interfaces for associated data, symmetric
keys, key seeds, and the transcript. We use interfaces for these classes to enable
the use of different kinds of symmetric keys, associated data, and so on.

In General, the interfaces are used to set requirements on the actual implementation
and ensure that the BRKE object can use these classes to perform the protocol. As
an example for test implementations of those interfaces, we can consult the mock
implementations for the Unit tests.

4.8 Unit Tests

To test the generic BRKE implementation, we have to use actual implementations of
the several interfaces. Since we avoid using actual implementations of the algorithms,
we implement the algorithms as mock objects [66]. In this section, we explain the
approach and the idea of the mock implementations.

∙ Instead of implementing the functionality of the specific algorithms we instead
check if inputs were matching. So for a, e.g., KEM, we implement encapsula-
tion by generating a key and then saving it with the inputs to the procedure
as a ciphertext. If we decapsulate the ciphertext, we check if the inputs to the
decapsulation are matching the inputs saved in the ciphertext. This way we
can ensure that a real KEM would decapsulate the key.

∙ Keys are identified by an integer. If we generate a key, we generate a ran-
dom integer and save it in the respective object. This way we can simulate
symmetric keys and asymmetric keys without any modification. One integer
generates two matching symmetric keys, and an asymmetric key pair is also
generated by the same integer.

∙ We test each mock algorithm individually to ensure that the algorithms provide
the required functionality.

With the mock classes, we can test the generic BRKE construction and ensure that
it works if provided with actual algorithms.
To simulate asynchronous communication, we randomize if a user receives a message
or not. We let each user send 20 messages, but randomize if the other user receives
a message before sending another message. Basic pseudocode for this approach is
shown in Listing 4.12. If all 40 generated keys 𝑘𝑖

𝐴 = 𝑘𝑖
𝐵 and 𝑙𝑖𝐴 = 𝑙𝑖𝐵 ∀ 0 6 𝑖 < 20,

then we assume the BRKE object works as intended.

52 4 Generic Implementation

1 for(int i=0; i<20; i++)
2 (𝑐𝑖

𝐴, 𝑘𝑖
𝐴) ⇐ brkeUserA.send(ad)

3 if (rng.nextBoolean)
4 𝑘𝑖

𝐵 ← brkeUserB.receive(next unreceived 𝑐𝑖
𝐴)

5 (𝑐𝑖
𝐵 , 𝑙𝑖

𝐵) ⇐ brkeUserB.send(ad)
6 if (rng.nextBoolean)
7 𝑙𝑖

𝐴 ← brkeUserA.receive(next unreceived 𝑐𝑖
𝐵)

Listing 4.12: Pseudocode for the BRKE unit test

4.9 Conclusion

In this Chapter, we described the generic BRKE implementation. The motivation
for splitting the implementation into two parts is to have a BRKE construction
that functions independently from any real cryptographic primitives. If the BRKE
construction is provided with actual working primitives, it achieves its purpose and
can be used to generate secure session keys for two users. This way we can eas-
ily interchange different primitives to compare the performance or remove insecure
primitives. To better represent the BRKE construction in a real-world applica-
tion, we apply some formal changes to the construction described by Poettering and
Rösler [77]. We replace the epochs and lists with queued algorithms. This enables
us two omit the endlessly growing lists and arrays of the ad hoc BRKE construction.
We also introduce a special kind of kuKEM, the queued kuKEM, which handles all
key updates, encapsulations, and decapsulations. We test the generic BRKE imple-
mentation with Unit tests. For the test, we use mock implementations of the various
interfaces.

5 Instantiation

In this chapter, we describe the implementation of the BRKE instantiation. We
start by discussing the choices of the external libraries. After that, we describe the
general approach to the implementation of the instantiation. Then we describe the
key points of the different algorithm implementations.

5.1 Libraries

Our goal is to use already existing and established libraries to implement the classes
for the BRKE instantiation. The first library we use is the bouncy castle library [86].
The bouncy castle API provides many implementations of various cryptographic
algorithms. Unfortunately, bouncy castle does not provide an implementation of
pairing-based cryptography. For this reason, we have to use an additional library
for the pairings to implement the HIBE. The most known library for Java is the
jPBC [30] library, which is a Java implementation of the PBC Library by Lynn
[62]. However, this library is outdated and does not support (at least not efficiently)
current state of the art pairing-friendly curves. As it turns out there are no pairing
libraries for Java that fulfill our purpose. For this reason, we choose to use the
Relic library [7], which is the current state of the art pairing implementation library
[8, 39]. Furthermore, Relic is still in development, so it receives regular patches
and Relic supports some of the pairing-friendly curves we described in Section 3.7.
Unfortunately, Relic is a C/C++ library. For this reason, we have to use Java Native
Interface (JNI) [40] to be able to use the code in Java.

5.2 Specifications

Similar to the generic BRKE implementation we use Maven to manage to build the
project. We use bouncy castle version 1.61, and the relic library commit 𝑏984𝑒90.
The implementation is tested on the operating system Ubuntu 18.04.2 with Maven
version 3.5.2 and Java version 1.8.0_201. The C++ compiler version is gcc 7.3.0.
We use CMake [65] version 3.10.2 to build the relic library. All code is uploaded to
a Github repository.

54 5 Instantiation

5.3 General Approach

Before we start describing specifics we give some general information for our im-
plementation of the BRKE instantiation. Although, we chose specific algorithms in
Chapter 3 we try to keep the actual implementations as generic as possible. This
way we can easily change parameters without affecting the functionality of the algo-
rithms. So we try to avoid hard coding parameters whenever possible. We provide
the classes with the actual parameters, e.g., elliptic curves, when creating the object,
thus, calling the constructor. This is the purpose of the factory classes. They create
objects and provide the actual parameters. With this approach, we can easily test
other parameters, because we can add another factory procedure which creates an
object with different parameters.
When initializing the BRKE object, we have to make sure that two users can gen-
erate the corresponding keys of their partner. For this reason we most of the time
generate the keys for both users and then discard the keys the algorithms do not
need. We give an example of this approach in Section 5.4 in which we describe
the One-Time Signature implementation. Since we use algorithms provided by
bouncy castle some algorithm objects are straightforward, so we do not go into
very much detail. For those algorithms we provide a short description in the follow-
ing:

5.3.1 Random Oracle

As described in Section 3.4 we decide to implement the random oracle by the use
of HKDF. The implementation is independent of the size of the internal keys and
the generated keys, and the choice of the internal hash function. We use Digest
class from bouncy castle and set the hash function as well as the key sizes when
creating a random oracle object. The internal key size specifies the size of the
chaining keys 𝐾𝑆 and 𝐾𝑅. The generated key size specifies the size of the session
key and key seed which are generated by the random oracle. Since we use the
HKDFBytesGenerator class from bouncy castle the implementation of the random
oracle is straightforward. If the random oracle is queried, we use the input to the
random oracle and the corresponding chaining key (𝐾𝑆 for the query in the sending
procedure, 𝐾𝑅 for the query in the receiving procedure) as input to the HKDF and
then generate a session key and a key seed. Furthermore, we update the chaining
key.

5.3.2 Transcript

The transcript keeps track of received and sent messages and is used as one input of
the random oracle. In the ad hoc BRKE description the transcript is a concatenation
of all past ciphertext associated data pairs. As described in Chapter 4 we avoid

5.3 General Approach 55

using endlessly growing lists, so we have to establish a way to store all ciphertext
associated data pairs without actually storing them individually. The most intuitive
way to achieve this is by using a hash function. By using a cryptographic hash
function, we can ‘link’ the ciphertext associated data pairs. For this reason, we
implement the transcript by using SHA256. The receiving transcript has a queue
for transcript updates, the list 𝐿𝑅 of the ad hoc BRKE construction (Figure 4.2), so
as described 4.5 we have to include an update queue in the transcript class. In order
that we do not have to store all individual ciphertext associated data pairs, we hash
the individual pairs before updating the transcript or storing the hash in the queue.
Listing 5.1 shows the update procedure of the transcript.

1 if (state != null) {
2 hashFunction.reset(state);
3 }
4 byte[] hashedInput = CiphertextEncoder.hashAdCiphertext(ad, ciphertext);
5 hashFunction.update(sender ? (byte) 1 : (byte) 0);
6 hashFunction.update(hashedInput, 0, hashedInput.length);
7 state = hashFunction.copy();

Listing 5.1: Updating the transcript

First, we check if we have an active state. This is always the case after the first
transcript update. Then we let the CiphertextEncoder class hash the ciphertext
associated data pair. After that, we update the transcript with one byte. This byte
is 1 if the user is the sender of the message, and 0 otherwise. This byte represents
the labels ▷ and ◁. In the end, we update the transcript with the hashed ciphertext
associated data pair and save the state. If we add a ciphertext associated data pair to
the update queue, we perform the steps from Lines 4-6, but save the hash in a queue
instead of updating the transcript state. If the update from the queue is triggered
we update the transcript using the hashes of the ciphertext associated data pairs,
this way we do not have to store the individual pairs.

5.3.3 Utility Classes

We introduce three utility classes for our BRKE instantiation. The CiphertextEn-
coder, SecureRandomBuilder, and SymmetricKeyCombiner :

CiphertextEncoder: The CiphertextEncoder provides functions to encode and de-
code a ciphertext generated with our proposed algorithm set. It has a function
to hash a ciphertext associated data pair for the signing and verifying proce-
dure of the signature. Additionally, it provides a function to hash a ciphertext
associated data pair including the signature. Lastly, it provides a function
to convert a ciphertext to Base64 and back. For this function, we utilize the
Jackson API [35] which is a JSON parser for Java. The functions convert the
ciphertext to JSON and encode it in Base64 and vice versa. We implement
this function so that ciphertexts can be sent between different users.

56 5 Instantiation

SecureRandomBuilder: The SecureRandomBuilder is used to create SecureRandom
objects that are seedable. Sometimes we need seedable SecureRandom objects
to ensure that both users generate matching keys. Usually, Java picks the
SecureRandom instance which is not seedable on some architectures. So we
have to create seedable SecureRandom objects reliably.

SymmetricKeyCombiner The SymmetricKeyCombiner is used to mix two symmet-
ric keys as needed by the queued kuKEM which requires the ability to mix
several keys. To mix two keys, we use a KDF, namely HKDF.

5.3.4 Variables

The implementations of interfaces of the variables package are straightforward. We
explained the transcript implementation in a previous Section, thus, the only miss-
ing classes of the variables package are: BrkeAssociatedData, BrkeKeySeed, and
BrkeSymmetricKey. All three classes have an internal byte array which represents
their content. This way we can process their content where needed. Furthermore,
we can use the BrkeSymmetricKey to create a CipherParameters object which is
used in bouncy castle as a key for symmetric ciphers.

5.3.5 Key Encapsulation Mechanism

We decided to implement the ECIES-KEM. The implementation is independent of
the choice of the elliptic curve, and the internal KDF. The only requirement on the
KDF is the functionality inside the ECIES-KEM implementation of bouncy castle.
As described in Section 3.5 we found that only KDF1 and KDF2 described in ISO
18033-2 [47] are working inside the ECIES-KEM implementation. Furthermore, we
can set the generated key size when creating a KEM object. Since the KEM is used
inside the queued kuKEM and thus does not store any keys internally the implemen-
tation is straight forward. There are no changes to the functionality of the KEM. All
classes are implemented as an interface between the ECIES-KEM implementation
of bouncy castle and the queued kuKEM.

5.4 One-Time Signature

As a quick recap: We decided to implement the DLP-Based Chameleon Hash One-
Time Signature described by Mohassel [72]. In general, we directly implement the
algorithms we describe in Section 3.2 so we only describe some specific decisions. The
actual implementation is independent of the choice of the group and hash function,
so we easily can change those later. For this we use the DHParameters and Digest
classes from bouncy castle.

5.5 Hierarchical Identity-Based Encryption 57

Key Generation: For the key generation, we make use of the DHKeyPairGenerator
class from bouncy castle. We use the DHKeyPairGenerator to generate 𝑥1 and
𝑥2. The reason for that is that the DHKeyPairGenerator not only picks a random
value but makes sure that the value fulfills some requirements. For example, the
DHKeyPairGenerator ensures the generated 𝑥 has a high weight (contains many 1
bits) and is at least of a specific bit size. Those requirements are set in the group
we provide the signature algorithm with.

1 if (initiator) {
2 signingKeys.add(signingKey[0]);
3 communicationPartnerVerificationKey = verificationKey[1];
4 } else {
5 signingKeys.add(signingKey[1]);
6 communicationPartnerVerificationKey = verificationKey[0];
7 }

Listing 5.2: Signature Key Generation - Storing the Keys

Listing 5.2 shows how the signature object saves the keys when initializing the
object. At this point we generated two keypairs saved in signingKey[0] and verifica-
tionKey[0], and signingKey[1] and verificationKey[1]. So depending on the initiator
variable, we save the own signing key and the communication partners verification
key. We use this approach in all of the algorithm objects.
Sign and Verify: We perform the sign and verify algorithm as described in Section
3.2. The signature algorithm is used to sign a ciphertext associated data pair, so
we have to make sure to be able to map this pair to an element in Z𝑝. For this
reason, we hash the input to the signature before computing the signature. We use
the CiphertextEncoder class (one of the utility classes we describe in Section 5.3)
which provides the procedure hashAdCiphertextPartsForSigning that takes a cipher-
text and associated data and produces a hash. We then use this hash to construct
an element we can use for signing.

5.5 Hierarchical Identity-Based Encryption

In this section, we describe the implementation of the prime order version of the
Lewko-Waters HIBE [58] as described in Section 3.7.1. We start by describing the
C++ code. Then we describe how the Java and C++ parts are interacting. Lastly,
we describe the implementation of the CCA transformation. The HIBE is also imple-
mented so that the underlying curves can be exchanged.

5.5.1 The C++ Part

Since this is the most complex part of the implementation and there are very few
implementations of the Lewko-Waters HIBE, we explain the implementation of the

58 5 Instantiation

HIBE a bit more thorough. We use the Relic library to compute pairings, so we try
to adapt the general structure of a scheme written with Relic. Now we have a look
at every algorithm of the HIBE and explain the key points starting with the setup
algorithm as described in Section 3.7.1:
Setup: The setup algorithm consists of two steps: Generating random dual or-
thonormal bases and generating the keys. We first describe generating random
dual orthonormal bases. Listing 5.3 shows the first step of the generation pro-
cess.

1 g1_get_ord(modulus);
2 for(int i = 0; i<dimension; i++){
3 for(int j = 0;j<dimension; j++){
4 bn_rand_mod(linearTrans[i][j], modulus);
5 bn_copy(tempArray[j][i], linearTrans[i][j]);
6 }
7 }

Listing 5.3: Generating random dual orthonormal bases - Choosing random matrix
X

We obtain the order of the elliptic curve and generate random values which we save
in the array linearTrans, which is the matrix 𝑋. At the same time, we create the
transposed matrix and save it in tempArray.

1 for(int i=0; i<dimension; i++){
2 bn_set_dig(tempArray[i][i+dimension],1);
3 }
4 for(int i=0; i<dimension; i++){
5 bn_gcd_ext_basic(elementB, elementA, elementC, tempArray[i][i], modulus);
6 for(int j = 0; j<dimension*2; j++){
7 bn_mul_basic(tempArray[i][j], tempArray[i][j], elementA);
8 bn_mod_basic(tempArray[i][j], tempArray[i][j], modulus);
9 }

10 for(int k=0; k<dimension; k++){
11 if((k-i)!=0){
12 bn_copy(elementB, tempArray[k][i]);
13 for(int j=0; j<dimension*2;j++){
14 bn_mul_basic(elementC, elementB, tempArray[i][j]);
15 bn_mod_basic(elementC, elementC, modulus);
16 bn_sub(tempArray[k][j], tempArray[k][j], elementC);
17 bn_mod_basic(tempArray[k][j], tempArray[k][j], modulus);
18 }
19 }
20 }
21 }

Listing 5.4: Generating random dual orthonormal bases - Inverting X

The next step is to invert the array X. This is shown in Listing 5.4. We prepare the
tempArray for the inversion and then use the gauss jordan elimination [43] in Z𝑝 to
invert the array. Now we create the canonical bases 𝐴 and 𝐴* as shown in Listing
5.5. Note that instead of 0 we use the point at infinity.

5.5 Hierarchical Identity-Based Encryption 59

1 for(int i=0 ; i<dimension; i++){
2 for(int j=0; j<dimension; j++){
3 if(i==j){
4 g1_get_gen(basisA1[i][i]);
5 g2_get_gen(basisA2[i][i]);
6 } else {
7 g1_set_infty(basisA1[i][j]);
8 g2_set_infty(basisA2[i][j]);
9 }

10 }
11 }

Listing 5.5: Generating random dual orthonormal bases - Creating canonical bases

Now it is left to create the dual orthonormal bases. We show how to compute basis
𝐵 in Listing 5.6. The corresponding orthonormal base 𝐵* is computed the same,
but uses 𝐴* instead of 𝐴.

1 for(int i=0; i<dimension; i++){
2 g1_mul(basisB[0][i], basisA1[0][0], linearTrans[i][0]);
3 g1_mul(basisB[1][i], basisA1[1][0], linearTrans[i][0]);
4 g1_mul(basisB[2][i], basisA1[2][0], linearTrans[i][0]);
5 g1_mul(basisB[3][i], basisA1[3][0], linearTrans[i][0]);
6 g1_mul(basisB[4][i], basisA1[4][0], linearTrans[i][0]);
7 g1_mul(basisB[5][i], basisA1[5][0], linearTrans[i][0]);
8 for(int j=1; j<dimension; j++){
9 g1_mul(intermediateResult1[0], basisA1[0][j], linearTrans[i][j]);

10 g1_mul(intermediateResult1[1], basisA1[1][j], linearTrans[i][j]);
11 g1_mul(intermediateResult1[2], basisA1[2][j], linearTrans[i][j]);
12 g1_mul(intermediateResult1[3], basisA1[3][j], linearTrans[i][j]);
13 g1_mul(intermediateResult1[4], basisA1[4][j], linearTrans[i][j]);
14 g1_mul(intermediateResult1[5], basisA1[5][j], linearTrans[i][j]);
15 g1_add(basisB[0][i], basisB[0][i],intermediateResult1[0]);
16 g1_add(basisB[1][i], basisB[1][i],intermediateResult1[1]);
17 g1_add(basisB[2][i], basisB[2][i],intermediateResult1[2]);
18 g1_add(basisB[3][i], basisB[3][i],intermediateResult1[3]);
19 g1_add(basisB[4][i], basisB[4][i],intermediateResult1[4]);
20 g1_add(basisB[5][i], basisB[5][i],intermediateResult1[5]);
21 }
22 }

Listing 5.6: Generating random dual orthonormal bases - Computing dual
orthonormal bases

Now the columns of B and BStar consist of the elements #»

𝑑 1, ...,
#»

𝑑 6,
#»

𝑑*
1, ...,

#»

𝑑*
6.

These can be directly used to generate the keys of the HIBE. The actual key gener-
ation is straightforward and exactly performs as described in Section 3.7.1.
KeyGen: The key generation algorithm takes as input: a master secret key, an
identity, the identity length, and the level. We handle the identities as a byte array.
That lets us easily map any data to an identity. The identity length denotes the
length of one identity, and the level denotes the depth of the identity. The identity
byte array has to be identitylength * level large. So for each level of the HIBE we

60 5 Instantiation

add one identity to the identity array. Using this approach we are flexible in the
choice of the actual identity information.

1 uint8_t identity[idLength];
2 for(int i=0; i < idLength; i++){
3 identity[i] = id[i];
4 }
5 bn_read_bin(encodedId, identity, idLength);
6 bn_mod_basic(encodedId, encodedId, modulus);

Listing 5.7: Mapping an identity to a field element.

Listing 5.7 shows how we map an identity to an element of Z𝑝. We read idLength
bytes from the id array and then use it as a field element. The remaining algorithm
is performed as described in Section 3.7.1.
Key Delegation: The key delegation algorithm works very similarly to the key
generation algorithm. It receives a secret key, an identity, the identity length, and
the level as an input and outputs a secret key. Otherwise, it performs the key dele-
gation as described in Section 3.7.1.
Encryption: The encryption algorithm takes as input: public parameters, a mes-
sage, an identity, the identity length, and the level. The identity is handled as in
the other algorithms. The message has to be an element of 𝐺𝑇 , which sets some
requirements on the data that is encrypted. The remainder of the algorithm is per-
formed as described in Section 3.7.1.
Decryption: The decryption algorithm takes as input a ciphertext and a secret
key and outputs the message. Like the rest of the algorithms, we perform all com-
putations as described in Section 3.7.1.

5.5.2 Java to C++ and Vice Versa

We implement a wrapper class in C++ that acts as an interface between the Java
code and the HIBE implementation. For this, we use the functionality of JNI. All
data that is transferred between Java and C++ is handled as byte arrays. So if we
call an HIBE function from Java, we provide all input as bytes. For this reason, we
implement encoding and decoding procedures for the parts of the HIBE like keys,
parameters, and ciphertexts. These procedures encode, e.g., a secret key to a byte
array and vice versa. This way we can transfer the structs of the C++ code via
Java. Furthermore, we provide functions that return the size of a specific element,
so that we can easily calculate the size of the parameters inside Java.
The wrapper class only provides the functions we need for the kuKEM described
in Section 3.6. For this reason, we are only able to delegate a key to the next
hierarchy level, and we directly generate a secret key for an initial identity when
calling the setup procedure. The master secret key is directly discarded. Since
we need to be able to seed the HIBE so that we can generate matching keys for
both user, we have to disable the seeding of the Relic library. For this reason, we

5.5 Hierarchical Identity-Based Encryption 61

always have to provide a secure seed to the procedures of the wrapper class. Listing
5.8 shows how we initialize the Relic library at every function call to the wrapper
class.

1 if (core_init() != STS_OK) {
2 core_clean();
3 return NULL;
4 }
5 if (ep_param_set_any_pairf() == STS_ERR) {
6 THROW(ERR_NO_CURVE);
7 core_clean();
8 return NULL;
9 }

Listing 5.8: Initialization of the Relic library.

The procedure core_init initializes the Relic library and enables us to use its func-
tions. The procedure ep_param_set_any_pairf() sets the pairing curve according
to the prime size that is specified when compiling the library. So the function always
picks the curve specific to the prime size used when compiling the library. For this
reason, we indirectly specify the curve at compile time.

5.5.3 The Java Part

The Java part of the HIBE implementation is used as a KEM. So we generate a
symmetric key in the HIBE class and then encrypt it using the C++ implementation.
The reason for that is that the message that is encrypted in the HIBE has to be
an element of 𝐺𝑇 . So we obtain a random element from 𝐺𝑇 and use this element
to derive a key. The CCA transformation is directly applied in the HIBE class
itself. We do not implement a further encapsulation class. Listing 5.9 shows the
native functions we use in the Java code. These are the functions that call the C++
wrapper class.

1 private static native int getSizeOfBnModZp();
2 private static native int getSizeOfG1();
3 private static native int getSizeOfG2();
4 private static native int getSizeOfGT();
5 private static native int getSizeOfuncompressedGT();
6 private static native byte[] getRandomGtElement(byte[] seed);
7 private static native byte[] setup(byte[] identity, int identityLength, byte[] seed);
8 private static native byte[] encrypt(byte[] publicParameter, byte[] message, byte[]

identity, int identityLength, int numberOfIdentities, byte[] seed);
9 public static native byte[] decrypt(byte[] secretKey, byte[] ciphertext, int

numberOfIdentities);
10 private static native byte[] delegate(byte[] delegatorSecretKey, byte[] identity, int

identityLength, int numberOfIdentities, byte[] seed);

Listing 5.9: Native functions for the HIBE implementation.

62 5 Instantiation

There are functions that obtain the size of different elements of the different groups
of the pairing (Lines 1-5). We use these functions to calculate the size of the different
structures, e.g., keys. Using this approach we can ensure that the implementation
still works if we change the underlying curve for the pairings. Furthermore, there is
a function to obtain a random element of 𝐺𝑇 (Line 6). As already mentioned this
element is used as the message for encryption. Lastly, there are the HIBE functions
setup, encrypt, decrypt, and delegate (Lines 7-10). Now we describe the different
procedures of the Java HIBE part. Since the CCA transformation is directly ap-
plied, we explain the code in more detail.
Setup: Listing 5.10 shows the first part of the Java HIBE implementation.

1 public HibeKeyPair setup(byte[] identity, SecureRandom randomness) {
2 byte[] seed = new byte[sizeOfSeed];
3 randomness.nextBytes(seed);

Listing 5.10: Java HIBE Setup procedure - Part 1.

As already explained, we always have to provide the C++ part with a seed to ensure
random values. For this reason, we always create a seed from the randomness that
is provided when calling a function. This is done in every procedure of the HIBE.
Listing 5.11 shows the next part of the setup procedure.

1 byte[] encodedIdentity = new byte[sizeOfCCAIdentityData];
2 encodedIdentity[0] = 0;
3 System.arraycopy(identity, 0, encodedIdentity, 1, identity.length);
4 byte[] encodedKeys = setup(encodedIdentity, sizeOfCCAIdentityData, seed);

Listing 5.11: Java HIBE Setup procedure - Part 2.

As described in Section 3.7.2 we have to encode the identity we use in the HIBE. This
is done before calling the C++ code. The variable encodedKeys contains the public
parameters and the secret key for the encoded identity.

1 byte[] encapsulationKey = new byte[generatedKeyLength];
2 randomness.nextBytes(encapsulationKey);

Listing 5.12: Java HIBE Setup procedure - Part 3.

After that we generate a key we use for the encapsulation, which is also required for
the CCA transformation (Listing 5.12).

1 int sizeOfEncodedPublicKey = sizeOfcompressedGT * 2 + sizeOfG1 * (dpvsDimension *
dpvsDimension);

2 int sizeOfEncodedSecretKey = sizeOfG2 * (dpvsDimension * dpvsDimension) + sizeOfG2 *
dpvsDimension;

3 byte[] publicParameter = new byte[sizeOfEncodedPublicKey];
4 byte[] secretKey = new byte[sizeOfEncodedSecretKey];

5.5 Hierarchical Identity-Based Encryption 63

5 System.arraycopy(encodedKeys, 0, publicParameter, 0, sizeOfEncodedPublicKey);
6 System.arraycopy(encodedKeys, sizeOfEncodedPublicKey, secretKey, 0, sizeOfEncodedSecretKey

);

Listing 5.13: Java HIBE Setup procedure - Part 4.

Listing 5.13 shows how we are able to keep the code independent from the choice
of the underlying curve for the pairings. We first calculate the size of the public
parameters and the secret key (Lines 1-2). Then we create byte arrays and split
the encodedKeys array (which is the output of the setup algorithm (Listing 5.11,
Line 4)) into the respective keys. Similarly, the size of the other parameters can be
calculated, as well.
Encapsulate: Now we describe the encapsulation procedure. We omit code parts
that are similar to the parts explained in the setup procedure.

1 byte[] randomElement = getRandomGtElement(seed);
2 byte[] com = new byte[k];
3 byte[] r = new byte[k];
4 byte[] dec = Arrays.copyOf(randomElement, k1);
5 keyedHash.init(new HKDFParameters(inputForBytesGeneration, null, null));
6 keyedHash.generateBytes(com, 0, k);
7 encapsulationHash = new SHA256Digest();
8 encapsulationHash.update(dec, 0, k1);
9 encapsulationHash.doFinal(r, 0);

Listing 5.14: Java HIBE Encapsulate procedure - Part 1.

Listing 5.14 shows the first key part of the encapsulation procedure. The listing
shows how we generate (r, com, dec) for the CCA transformation, so this part im-
plements the algorithm S(pub) of the encapsulation scheme. We generate a random
element from 𝐺𝑇 which we can encrypt with the HIBE (Line 1). We then obtain the
first 𝑘1 bytes of the random element and use it as dec for the encapsulation. The
variables 𝑘 and 𝑘1 are static variables that are set to 32 and 96 respectively. So they
meet the requirement of 𝑘1 > 3𝑘. We then use HKDF instantiated with SHA256
to produce a hash of com (Line 5). The variable inputForBytesGeneration which is
used as a parameter for the HKDF (Line 4) contains the encapsulation key and com.
After that we use regular SHA256 to hash com to produce r (Line 9). Listing 5.15
shows the encryption an the generation of the MAC tag.

1 byte[] ciphertext = encrypt(publicParameter.getEncodedHibePublicParameter(), randomElement
, encodedIdentities, sizeOfCCAIdentityData, level + 1, seed);

2 hmacAlgorithm.init(new KeyParameter(r));
3 hmacAlgorithm.update(ciphertext, 0, ciphertext.length);
4 byte[] mactag = new byte[hmacAlgorithm.getMacSize()];
5 hmacAlgorithm.doFinal(mactag, 0);

Listing 5.15: Java HIBE Encapsulate procedure - Part 2.

64 5 Instantiation

We encrypt the randomElement for the identity encodedIdentities, which contain the
encoded identites as described in the CCA transformation (Line 1). After that we
generate the MAC tag using 𝑟 as the key (Lines 2-5). We then use the remaining
bytes of the randomElement variable and use those to generate a symmetric key using
another HKDF instance. By using this approach, we combined the encapsulation
scheme for the CCA transformation with the encapsulate procedure of the HIBE.
After explaining these two procedures of the Java part of the HIBE, the decapsulate
procedure, and the delegate procedure are straightforward. We always encode the
identities as described in the CCA transformation and then use the ‘CCA identities’
in the HIBE. When performing the decapsulate procedure, we first delegate a key
to the new identity and then decrypt the ciphertext. After that we can compute 𝑟
and check the MAC tag.

5.5.4 Summary

In this section, we explained the implementation of the HIBE. We implemented the
HIBE in three parts. The actual Lewko-Waters HIBE in C++, a wrapper class
that uses JNI in C++ that acts as an interface between Java and C++, and the
Java part that acts as a KEM and directly includes the CCA transformation. We
implemented the HIBE such that the underlying curve for the pairing can easily
be changed. Furthermore, classes that interact with the HIBE do not notice any
change to the identity data or any of the changes caused by the CCA transforma-
tion.

5.6 Key-Updateable Key Encapsulation Mechanism

With the implementation of the HIBE we can implement the kuKEM. As for all
classes we keep the implementation of the kuKEM independent of the underlying
HIBE so we can replace the HIBE at a later point in time. In this Section, we
describe the implementation of the kuKEM. As explained in Section 3.6 the associ-
ated data is used as the identity information in the HIBE. Specifically in BRKE the
identity information consists of a ciphertext associated data pair. For this reason,
we represent the identity information as a bytes array. This way we can use it in
the HIBE. Furthermore, the kuKEM has a own class KuKemAssociatedData which
enables us to keep the kuKEM implementation independent from the BRKE con-
struction.
Gen: When generating a kuKEM key pair, we construct an initial identity in which
we set all bytes to 1. This identity is used to generate a HIBE key pair. Instead of
setting the identity information to 0 as proposed by Poettering and Rösler [77] we set
the identity information to 1, because the identity might be used as an exponent in
the HIBE (this is the case in the Lewko-Waters HIBE) and thus cancels out specific
parts of the key. This does not directly influence the functionality of the HIBE, but

5.7 Conclusion 65

we want to avoid potential influences on the security when using an ‘empty’ identity.
A kuKEM public key consists of the HIBE public key (or public parameters), the
identity, and the level of the identity. The kuKEM secret key consists of the HIBE
secret key for an identity, the identity, and the level of the identity.
Encapsulate: The encapsulation procedure calls the encapsulate procedure of the
HIBE using the information stored in the kuKEM public key.
Decapsulate: Similar to the encapsulation procedure, we simply call the decapsu-
lation procedure of the HIBE with the information stored in the kuKEM secret key.
Update Public Key: When updating a kuKEM public key we take the KuKe-
mAssociatedData and append it to the identity stored in the kuKEM public key.
Update Secret Key: When updating a kuKEM secret key we delegate a secret key
for the KuKemAssociatedData. We then save the generated secret key, the identity
(which is the identity of the initial secret key concatenated with the KuKemAssoci-
atedData), and the new level as a kuKEM secret key.
KuKemAssociatedData: The KuKemAssociatedData we use in our implementa-
tion of the kuKEM is generated by a ciphertext associated data pair. To generate
KuKemAssociatedData we hash the ciphertext associated data pair to 32 byte and
use it as the identity information. This way we can directly use it in the HIBE.
Since the kuKEM directly used the HIBE to perform its algorithms the actual im-
plementation is straightforward. We have to ensure the kuKEM correctly acts as an
interface between the queued kuKEM and the HIBE. The kuKEM keys contain the
identity information and the respective level of the identity information so that the
kuKEM can directly make calls to the HIBE.

5.7 Conclusion

In this Chapter, we describe the implementation of the BRKE instantiation. We
implement classes for all interfaces required by the generic BRKE implementation.
We describe important design decisions and utility classes for use in a real-world
application. We describe the implementation of the HIBE and thus, indirectly the
kuKEM a bit more thorough. The reason for that is that all other algorithms are
mostly implemented in bouncy castle and we only have to make sure the algorithms
provide the functionality the BRKE construction requires. With the implementa-
tions we describe in this Chapter, we can perform the BRKE protocol and establish
symmetric session keys. We test the implementation with similar Unit tests as the
generic BRKE implementation to make sure two users generate matching symmetric
keys even when communicating asynchronously.

6 Evaluation

In this chapter, we evaluate the instantiation of the BRKE construction. We analyze
the size of the states and the ciphertext for different communication sequences.
Additionally, we observe the performance of the different communication sequences.
We start by giving an overview of the complete BRKE project. Then we discuss the
approach to the evaluation and, lastly, show our results.

6.1 The Complete BRKE project

As described in the respective Chapters we upload all code to a Github repository.
We use Maven to build the complete project in one go. For this, we use Maven
modules. We have five modules:

brkegeneric contains the generic BRKE implementation described in Chapter 4.

brkeinstantiation contains the implementation of the algorithms we use to instan-
tiate BRKE. These are described in Chapter 5.

hibe-native contains the HIBE C++ code described in Chapter 5. The code is
compiled with gcc which is also triggered by Maven.

relic-lib contains the Relic library. The library also is built by Maven.

brkeevaluation contains the evaluation module which we explain in this chapter.

As long as the project is built on Linux, the complete project is built and in-
stalled without any additional prerequisites. As described in Section 5.5 we set
the curve for the pairing by compiling the Relic library with a specific prime size.
For this reason, we only have to recompile the Relic library with a different prime
size to test different curves. Since we implemented all of our algorithms indepen-
dent from the specific primitives, we can test different curves without much ef-
fort.

68 6 Evaluation

6.2 Approach

As already mentioned we want to test the BRKE implementation with four different
pairing-friendly elliptic curves. The first reason for that is that we assume the HIBE
to have the most influence on the performance of the implementation. If we change
the underlying elliptic curve for the pairings, we assume that the send and receive
algorithms of the BRKE implementation take longer and that the size of the state
and the ciphertexts change. This is because elliptic curves that have a higher se-
curity level tend to have larger parameters and, thus, have worse performance over
elliptic curves with a lower security level [8]. The second reason is that pairings
are a highly active research topic and that choosing a specific curve for the pairings
may not be straightforward. We addressed this in Section 3.7 and discussed four
different pairing-friendly elliptic curves. Unfortunately, the Relic library does not
directly provide the parameters for all curves described in Section 3.7. So we have
to use different elliptic curves in the evaluation.
Choices for pairing-friendly curves: The Relic library provides the curve pa-
rameters for BN-P256 and B12-P381, so we do not have to choose alternatives for
those two curves. However, the Relic library does not provide parameters for KSS16-
340 and BLS12-461. For this reason, we choose the curves BN-P382 and B12-P455
as alternatives. Like BN-P256, BN-P382 is a Baretto-Naehrig curve [11] but uses a
larger prime field (382 Bit instead of 256 Bit). It is said to have 128 Bit security, but
there is no research result on the security evaluation [90]. The B12-P455 curve uses
a slightly smaller prime field than the BLS12-461 curve (455 Bit instead of 461), but
is also said to fulfill the requirements set by Barbulescu-Duquesne [10] and, thus,
have 128-Bit estimated symmetric-equivalent strength [7, 33]. So we choose two
types of curves, Baretto-Naehrig (BN) [11] and Baretto-Lynn-Scott (B12) [12], each
with two different prime field sizes. Computations on the BN-P256 curve are highly
optimized because it was the state-of-the-art pairing-friendly curve for the 128-Bit
security level until the research by Barbulescu-Duquesne [10]. This is the reason
why we decide to consider this curve in the evaluation, despite having only 100 Bit
estimated symmetric-equivalent strength. So we can estimate the performance if the
HIBE uses an optimized pairing-friendly curve. Computations on the curves for to-
day’s 128-Bit security level are not optimized yet, and performance may still change.
However, theoretically, the Baretto-Lynn-Scott curves should perform better than
the BN-P382 curve [8, 10, 33].
How we test: We implement an evaluation module in Java that simulates four dif-
ferent communication sequences between two users. Every communication sequence
is performed 50 times, and we measure the time that each send and receive algo-
rithm takes, the size difference of the user states before and after every send and
receive algorithm and the size of the kuKem ciphertexts for every iteration. Further-
more, we measure the size of the base ciphertext (without the kuKem ciphertext)
and the size of the state of a user after the initialization. The averages of the mea-
surements of the 50 iterations are printed to the Java console, and every individual

6.2 Approach 69

measurement is printed to a CSV file so that it can be opened and evaluated with
a spreadsheet. We perform the evaluation program with each of the prior discussed
elliptic curves. When the evaluation is run with the BN-P256 curve, we also use
a different Diffie-Hellman group for the chameleon hash function, namely ffdhe2048
from RFC7919 [38] which has an estimated symmetric-equivalent strength of 103
bits. Similar to the choice of the pairing-friendly elliptic curve this group complies
to the requirements on finite fields set by the BSI, but not to the requirements set
by ECRYPT-CSA.
Specifications: We perform the evaluation program on a 3.4 GHz Intel Core
i5-8250U 64-bit PC with 8 GB RAM and Ubuntu 18.04.2. We use Java version
1.8.0_201. The evaluation code is included in the BRKE project and uploaded to a
Github repository as a branch. Like the rest of the implementation, the evaluation
module is built by Maven. We use Maven version 3.5.2. To estimate the size of the
states and ciphertexts we use Java Object Layout (JOL) [49]. Measuring the size of
an object in Java is not straightforward, so the measured sizes by JOL might not be
hundred percent accurate, but they give us a good indication of the size which suits
our purpose.

6.2.1 Communication Sequences

The four communication sequences we use in the evaluation are lockstep communi-
cation, asynchronous communication without crossing messages, asynchronous com-
munication with crossing messages, and ‘worst-case’ communication. We describe
these communication sequences in this section. Generally, we always loop the se-
quences, so if a communication sequence has, e.g., six steps we always jump from
step 6 to step 1. We do not reset the user states after every run, because in a
real-world application users would not be reset either. This means that the first
run of a communication sequence is different from the remaining runs because the
user states after a communication run differ from the freshly initialized user states.
For this reason, we do not consider the first run of a communication sequence when
computing the average. However, the first run is always written to the CSV file so
that we could analyze it separately. In the following descriptions of the communi-
cation sequences we are always concerned with communication between two BRKE
users 𝐴 and 𝐵 using associated data 𝑎𝑑.
Lockstep Communication: Listing 6.1 shows the lockstep communication se-
quence. In this sequence, we simulate a conversation between two users in which
the users alternately send messages and directly receive the message of its commu-
nication partner.

0 (𝑘𝐴,0, 𝑐𝐴,0)⇐ send𝐴(𝑎𝑑)
1 𝑘𝐴,0 ← receive𝐵(𝑐𝐴,0)
2 (𝑘𝐵,0, 𝑐𝐵,0)⇐ send𝐵(𝑎𝑑)

70 6 Evaluation

3 𝑘𝐵,0 ← receive𝐴(𝑐𝐵,0)

Listing 6.1: Lockstep communication sequence

Asynchronous Communication Without Crossing Messages: Listing 6.2
shows the asynchronous communication sequence without crossing messages. This
sequence simulates a conversation between two users who communicate asynchronously
without crossing messages. This means every message is directly received. In this
sequence, 𝐴 sends three messages successively. After that 𝐵 responds with two
messages.

0 (𝑘𝐴,0, 𝑐𝐴,0)⇐ send𝐴(𝑎𝑑)
1 𝑘𝐴,0 ← receive𝐵(𝑐𝐴,0)
2 (𝑘𝐴,1, 𝑐𝐴,1)⇐ send𝐴(𝑎𝑑)
3 𝑘𝐴,1 ← receive𝐵(𝑐𝐴,1)
4 (𝑘𝐴,2, 𝑐𝐴,2)⇐ send𝐴(𝑎𝑑)
5 𝑘𝐴,2 ← receive𝐵(𝑐𝐴,2)
6 (𝑘𝐵,0, 𝑐𝐵,0)⇐ send𝐵(𝑎𝑑)
7 𝑘𝐵,0 ← receive𝐴(𝑐𝐵,0)
8 (𝑘𝐵,1, 𝑐𝐵,1)⇐ send𝐵(𝑎𝑑)
9 𝑘𝐵,1 ← receive𝐴(𝑐𝐵,1)

Listing 6.2: Asynchronous communication sequence without crossing messages

Asynchronous Communication With Crossing Messages: The asynchronous
communication sequence with crossing messages is shown in Listing 6.3. This com-
munication sequence is similar to the asynchronous communication sequence without
crossing messages, but in this sequence, messages are not directly received. Thus,
they cross.

0 (𝑘𝐴,0, 𝑐𝐴,0)⇐ send𝐴(𝑎𝑑)
1 (𝑘𝐴,1, 𝑐𝐴,1)⇐ send𝐴(𝑎𝑑)
2 (𝑘𝐵,0, 𝑐𝐵,0)⇐ send𝐵(𝑎𝑑)
3 (𝑘𝐵,1, 𝑐𝐵,1)⇐ send𝐵(𝑎𝑑)
4 𝑘𝐵,0 ← receive𝐴(𝑐𝐵,0)
5 (𝑘𝐴,2, 𝑐𝐴,2)⇐ send𝐴(𝑎𝑑)
6 𝑘𝐴,0 ← receive𝐵(𝑐𝐴,0)
7 𝑘𝐴,1 ← receive𝐵(𝑐𝐴,1)
8 𝑘𝐴,2 ← receive𝐵(𝑐𝐴,2)
9 𝑘𝐵,1 ← receive𝐴(𝑐𝐵,1)

Listing 6.3: Asynchronous communication sequence with crossing messages

Worst case Communication: Listing 6.4 shows the ‘worst-case’ communication
sequence. This communication sequence simulates a communication in which we
try to create many active epochs which need to be updated. For this we let 𝐴
send five messages of which 𝐵 receives none. After that, 𝐵 sends two messages
which 𝐴 receives. Afterward, 𝐴 sends another message, and 𝐵 receives all mes-
sages.

6.3 Evaluation Results 71

0 (𝑘𝐴,0, 𝑐𝐴,0)⇐ send𝐴(𝑎𝑑)
1 (𝑘𝐴,1, 𝑐𝐴,1)⇐ send𝐴(𝑎𝑑)
2 (𝑘𝐴,2, 𝑐𝐴,2)⇐ send𝐴(𝑎𝑑)
3 (𝑘𝐴,3, 𝑐𝐴,3)⇐ send𝐴(𝑎𝑑)
4 (𝑘𝐴,4, 𝑐𝐴,4)⇐ send𝐴(𝑎𝑑)
5 (𝑘𝐵,0, 𝑐𝐵,0)⇐ send𝐵(𝑎𝑑)
6 𝑘𝐵,0 ← receive𝐴(𝑐𝐵,0)
7 (𝑘𝐵,1, 𝑐𝐵,1)⇐ send𝐵(𝑎𝑑)
8 𝑘𝐵,1 ← receive𝐴(𝑐𝐵,1)
9 (𝑘𝐴,5, 𝑐𝐴,5)⇐ send𝐴(𝑎𝑑)

10 𝑘𝐴,0 ← receive𝐵(𝑐𝐴,0)
11 𝑘𝐴,1 ← receive𝐵(𝑐𝐴,1)
12 𝑘𝐴,2 ← receive𝐵(𝑐𝐴,2)
13 𝑘𝐴,3 ← receive𝐵(𝑐𝐴,3)
14 𝑘𝐴,4 ← receive𝐵(𝑐𝐴,4)
15 𝑘𝐴,5 ← receive𝐵(𝑐𝐴,5)

Listing 6.4: Worst case communication sequence

We choose the first two communication sequences because we want to simulate a
typical conversation between two users. In these sequences there are no crossing
messages, which means the communication partner directly receives every message.
For this reason, there are no key updates in those two communication sequences.
The latter two communication sequences simulate a conversation when there are
crossing messages. Now there are several active epochs and, thus, we require key
updates. While the third communication sequence simulates a somewhat more prob-
able communication sequence, because the messages are not that delayed, the third
communication sequence is constructed to lead to several active epochs that need to
be updated.

6.3 Evaluation Results

In this section, we show and discuss the results of the evaluation. We first have
a look at the overall state size and the ciphertext size, and then we evaluate the
four communication sequences. Table 6.5 shows the size of the user state after the
initialization for each of the four elliptic curves. We see that the user states for every

State in Bytes BN-P256 B12-P381 BN-P382 B12-P455
73776 74800 74800 74800

Table 6.5: User state sizes after initialization.

curve except BN-P256 is even. The reason for this is that we do not use the kuKEM
in the initialization, so we do not use the elliptic curve. As explained in Section
4.3 the first key of an epoch can always be a regular KEM key. For this reason,
the state contains no kuKEM keys and, thus, the curves do not influence the size
of the freshly initialized state. The difference between the BN-P256 curve is caused

72 6 Evaluation

by using a smaller Diffie-Hellman group for the one-time signature (since we use a
100-Bit security level). Table 6.6 shows the size of the base ciphertext (without the
kuKEM ciphertext) for every elliptic curve. These parts are the constant part of
the ciphertext. We can see that the choice of the curve for the HIBE influences the

Base Ciphertext Size in Bytes BN-P256 B12-P381 BN-P382 B12-P455
kuKEM Public Key 1864 2696 2696 3160
OT-Signature Verification Key 768 1024 1024 1024
KEM Ciphertext 104 104 104 104
Signature 648 904 904 904
Integer 64 64 64 64
Total 3448 4792 4792 5256

Table 6.6: Base Ciphertext Size (without kuKEM ciphertext).

size of the ciphertext. The kuKEM public key grows depending on the choice of the
curve. The kuKEM public keys and, thus, the ciphertexts, of B12-P381 and BN-
P382 are of the same size, because of the size of the elements of the curves. The size
of the elements of B12-P381 and BN-P382 are shown in Table 6.7. We can see that
𝐺1, 𝐺2, and 𝐺𝑇 elements have the same size across both curves. However, elements
in 𝑍𝑝 have a different size. This leads to kuKEM public keys, kuKEM secret keys,
and kuKEM ciphertexts having the same size. However, as we see in the evaluation
of the communication sequence, this leads to different computational times. The
reason for that is that the kuKEM keys and ciphertexts only consist of elements in
𝐺1, 𝐺2, and 𝐺𝑇 , but computations include multiplications with elements from 𝑍𝑝.

Element Size in Bytes B12-P381 BN-P382
𝑍𝑝 32 48
𝐺1 49 49
𝐺2 97 97
𝐺𝑇 567 567

Table 6.7: Element Sizes of B12-P381 and BN-P382.

We can already see that even without the kuKEM ciphertext the kuKEM has the
most influence on the size of the ciphertext. The kuKEM public key makes up for
more than 50% of the ciphertext (60% in the case of B12-P455).

6.3.1 Lockstep Communication

Table 6.8 shows the results of the lockstep communication sequence. The table
consists of three parts. The first part shows the average time each of the communi-
cation steps takes in milliseconds. The second part shows the average size difference
in Bytes of the user state before and after a communication step. And the third
part shows the size of the kuKEM ciphertext in Bytes. Of course, there are only
ciphertexts for send operations.
From the timings, we can see that the BN-P256 curve is the most performant. This

6.3 Evaluation Results 73

Time in ms BN-P256 B12-P381 BN-P382 B12-P455
A sends (Step 0) 179 363 470 571
B receives (Step 1) 122 250 316 395
B sends (Step 2) 179 363 469 570
A receives (Step 3) 122 250 316 395
State in Bytes
A sends (Step 0) 6014 6526 6526 6814
B receives (Step 1) -6019 -6531 -6531 -6819
B sends (Step 2) 6016 6528 6528 6816
A receives (Step 3) -6016 -6528 -6528 -6816
KuKemCT in Bytes
A sends (Step 0) 992 1376 1376 1592
B receives (Step 1) - - - -
B sends (Step 2) 992 1376 1376 1592
A receives (Step 3) - - - -

Table 6.8: Results of the Lockstep Communication Sequence

is expected, since as already described this curve is highly optimized. The BRKE al-
gorithms take around double the time if the HIBE is instantiated with the B12-P381
curve. If we use the BN-P382 curve, the algorithms take around 2.5 times the time
of the instantiation with BN-P256. And lastly, the instantiation with B12-P455 is
3 times less efficient than the instantiation with BN-P256.
The choice of the curve also affects the size of the user state. Between BN-P256 and
B12-P455 there is only a difference of 800 Bytes. In the instantiation with B12-P381
and BN-P382, the size is 500 Bytes larger than in the instantiation with BN-P256.
So we can see that it does affect the size of the state, but since the base state is
already around 74.800 Bytes, the difference has a minimal effect on the total size.
However, from the results, we can see that in the lockstep communication a send
operation increases the size of the state, and the receive operation decreases the
size of the state. We would assume that send and receive would balance out the
size of the state, and if we have a look at the full measurements for the lockstep
communication, it turns out that most of the time the receive algorithm decreases
the size of the state by the amount the send algorithm increases the size. There are
a few measurements that are ±100 Bytes off that cause the average, which is shown
in the table, to indicate that the algorithms do not balance out the state, but in
reality, they do. We assume that those size differences are either caused by JOL,
since we cannot be sure that the size estimation is a hundred percent accurate, or
by some Java-specific objects being allocated or freed.
Table 6.8 also shows that every ciphertext in the lockstep communication sequence
contains a kuKEM ciphertext. Naturally, the size of the kuKEM ciphertext is de-
pendent on the choice of the elliptic curve in the HIBE. If we once more pick the
BN-P256 curve as a reference, the kuKEM ciphertext grows for around 40% if the
used curve is B12-P381 or BN-P382, and for around 60% if we use B12-P455.
All in all, we can say that the lockstep communication sequence is pretty balanced
meaning both users have the same computational times for the send and receive
algorithms, and all ciphertexts are of the same size. However, we can already see

74 6 Evaluation

that the choice of the curve has a high impact on the time the respective BRKE
algorithms take.

6.3.2 Asynchronous Communication without Crossing Messages

Table 6.9 shows the results of the asynchronous communication sequence without
crossing messages. Again the BN-P256 is the most performant curve. The perfor-

Time in ms BN-P256 B12-P381 BN-P382 B12-P455
A sends (Step 0) 213 426 549 678
B receives (Step 1) 234 468 600 758
A sends (Step 2) 147 299 387 464
B receives (Step 3) 12 31 31 31
A sends (Step 4) 148 299 387 463
B receives (Step 5) 11 31 31 31
B sends (Step 6) 246 489 631 783
A receives (Step 7) 345 687 885 1121
B sends (Step 8) 148 299 388 463
A receives (Step 9) 11 31 31 31
State in Bytes
A sends (Step 0) 4128 3808 3808 3632
B receives (Step 1) -9136 -10992 -10992 -12032
A sends (Step 2) 3120 4464 4464 5216
B receives (Step 3) 1888 2720 2720 3184
A sends (Step 4) 3120 4464 4464 5216
B receives (Step 5) 1888 2720 2720 3184
B sends (Step 6) 2240 1088 1088 448
A receives (Step 7) -12256 -15456 -15456 -17248
B sends (Step 8) 3120 4464 4464 5216
A receives (Step 9) 1888 2720 2720 3184
KuKemCT in Bytes
A sends (Step 0) 1952 2720 2720 3152
B receives (Step 1) - - - -
A sends (Step 2) 0 0 0 0
B receives (Step 3) - - - -
A sends (Step 4) 0 0 0 0
B receives (Step 5) - - - -
B sends (Step 6) 2912 4064 4064 4712
A receives (Step 7) - - - -
B sends (Step 8) 0 0 0 0
A receives (Step 9) - - - -

Table 6.9: Results of the Asynchronous Communication Sequence without Crossing
Messages

mance impact has the same ratio as for the lockstep communication sequence. So
the BRKE algorithms take around 2 times longer with B12-P381, around 2.5 times
longer with BN-P382, and roughly 3 times longer with B12-P455. From the timings,
we can see some interesting properties of the BRKE algorithms. Every consecutively
sent message (Step 2, Step 4, and Step 8) always takes the same amount of time.
Furthermore, every consecutively received message takes the same amount of time
(Step 3, Step 5, and Step 9). The time for the receive algorithm is thereby the same
across the curves for the 128-Bit security level. The reason for that is that only the

6.3 Evaluation Results 75

KEM is used in these situations and, thus, we do not use the HIBE. The difference
between BN-P256 and the other curves is caused by choice of the group for the one-
time signature. We can see that choosing a smaller group speeds up the verification
by 20 ms. When sending messages, we always have to generate a kuKEM key pair.
For this reason, the send algorithms have no constant time across the curves.
Now we have a look at the first call of the send algorithm (Step 0 and Step 6),
after receiving messages. If we call the send algorithm after receiving a message the
queued kuKEM uses the kuKEM keys, which we received in the ciphertexts. For
this reason, the send algorithm takes longer for every additional received message,
because for each received message we have another kuKEM encapsulation. A re-
ceives two messages before its call to the send algorithm in Step 0 (note that the
communication sequence is looped) and, thus, the send algorithm takes 213 ms with
the BN-P256 curve. B receives three messages before its call to the send algorithm
in Step 6 and, thus, the send algorithm takes 246 ms with the BN-P256 curve. If
we further take the send algorithm from the lockstep communication (179 ms, Table
6.8) into account, we can compute that every previously received message increases
the time the send algorithm takes by roughly 33 ms when the HIBE is instantiated
with BN-P256. For this reason, we can roughly calculate the required time for the
send algorithm for each curve if there are no crossing messages. The reason for that
is that for every received message the send algorithm performs another kuKEM en-
capsulation. We now see that the same applies to the receive algorithm. Again, we
only consider BN-P256, for now, but the same idea applies to the other curves. B’s
receive algorithm in Step 1 takes 234 ms. Since A uses two kuKEM encapsulations
in Step 0, B has to use two kuKEM decapsulations. Similar A uses three kuKEM
decapsulations when receiving B’s message in Step 7, which results in a time of 345
ms. Again, if we take the receive algorithm from the lockstep communication (122
ms, Table 6.8) into account, we can compute that every previously received message
increases the time the send algorithm takes by roughly 111 ms when the HIBE is
instantiated with BN-P256.
This shows that if we have no crossing messages, we can roughly estimate the times
each of the BRKE algorithms take for a specific curve.
The user state size differences behave similarly, which means consecutively sent or
received messages have the same effect on the state (Step 2,3,4,5,8,9), but opposite
our observation from the lockstep communication sequence consecutively received
message increase the size of the user state. The reason for that is that the kuKEM
public key that is contained in the ciphertext is added to the public key queue in
the queued kuKEM, and unlike other receives the algorithm does not delete kuKEM
secret keys. In the receives in Step 1 and Step 7, we can see that the size of the
user state is significantly decreased. The reason for that is that the respective user
receives the information that sent messages are received and, thus, can delete all
now unnecessary stored data, e.g., kuKEM secret keys. We can see that the send
algorithm in Step 0 and Step 6 increase the state, but that the size increase is lower
for the higher security curves than for BN-P256. This occurs only for the first send
after receiving messages. The first send uses all prior received kuKEM keys and,

76 6 Evaluation

thus, they are deleted from the user state. The keys for the kuKEM keys for the
higher security curves are larger which means we free more space when deleting the
keys. We assume this is the reason for the size difference.
The ciphertext does not contain a kuKEM ciphertext when a user sends more than
one message consecutively. The reason for that is that the user only uses the KEM
to encapsulate a key. Otherwise the kuKEM ciphertext grows linearly for each used
kuKEM encapsulation. Again if we consider BN-P256 as the elliptic curve for the
HIBE and take the kuKEM ciphertext size of the lockstep communication sequence
(992 Bytes, Table 6.8) into account, we can see that for every kuKEM encapsulation
the kuKEM ciphertext grows by roughly 960 Bytes.
So with this communication sequence we can see that as long that there are no
crossing messages, we can roughly estimate the times that each BRKE algorithm
takes, and the size of the ciphertexts depending on the choice of the elliptic curve.
However, until now the communication sequences required no key updates, since all
messages were directly received by the respective users. This will change in the next
two communication sequences.

6.3.3 Asynchronous Communication with Crossing Messages

Table 6.10 shows the results of the asynchronous communication sequence with cross-
ing messages. In this communication sequence, there are crossing messages which
lead to key updates in the kuKEM. So we focus on the communication steps which
are affected by key updates and do not describe every step. So a key update is
necessary if a user receives a message and receives the information that the commu-
nication partner did not receive a sent message yet. This situation is simulated in
the asynchronous communication sequence with crossing messages. Unfortunately,
we can not directly say that only the key updates are causing the BRKE algorithms
to take longer than in the other communication sequences. This communication
sequence leads to multiple kuKEM en-/decapsulations in one algorithm call mixed
with key updates. If we have a look at Step 4, for example. A receives the cipher-
text sent by B in Step 2. Since we loop the communication sequence, B includes the
information that it received three messages (Step 6-8) and, thus, it uses the three
kuKEM public keys contained in the three received ciphertexts. For this reason, A
not only has to perform three kuKEM decapsulations, but also has to update the
keys that are generated in Step 1 and Step 2. So we see, in this communication se-
quence many different parts affect the performance of the BRKE algorithms, which
makes it less straight forward to analyze as the first two communication sequences.
For this reason, we focus more on the results shown in Table 6.10 and do not try to
analyze the reason for, e.g., long algorithm times. So we see that this communica-
tion sequence leads to long computational times in the send and receive algorithms.
Even with the optimized BN-P256 curve Step 4 takes 734 ms. If we use the B12-
P455 curve, it takes 2,3 s to generate the key. This shows that crossing messages
affect the performance of the BRKE construction. However, this is expected, since

6.3 Evaluation Results 77

Time in ms BN-P256 B12-P381 BN-P382 B12-P455
A sends (Step 0) 211 424 555 677
A sends (Step 1) 146 299 387 464
B sends (Step 2) 295 592 774 961
B sends (Step 3) 146 299 387 463
A receives (Step 4) 734 1441 1924 2391
A sends (Step 5) 200 404 526 642
B receives (Step 6) 414 816 1100 1349
B receives (Step 7) 223 441 621 730
B receives (Step 8) 360 708 959 1169
A receives (Step 9) 295 584 819 971
State in Bytes
A sends (Step 0) 5920 6432 6432 6720
A sends (Step 1) 3120 4464 4464 5216
B sends (Step 2) 2080 928 928 288
B sends (Step 3) 3120 4464 4464 5216
A receives (Step 4) -13456 -17232 -17232 -19360
A sends (Step 5) 5952 6464 6464 6752
B receives (Step 6) -6384 -7088 -7088 -7480
B receives (Step 7) 2800 4016 4016 4704
B receives (Step 8) -1616 -2320 -2320 -2728
A receives (Step 9) -1536 -128 -128 672
KuKemCT in Bytes
A sends (Step 0) 1584 2256 2256 2632
A sends (Step 1) 0 0 0 0
B sends (Step 2) 3896 5528 5528 6448
B sends (Step 3) 0 0 0 0
A receives (Step 4) - - - -
A sends (Step 5) 1384 1960 1960 2288
B receives (Step 6) - - - -
B receives (Step 7) - - - -
B receives (Step 8) - - - -
A receives (Step 9) - - - -

Table 6.10: Results of the Asynchronous Communication Sequence with Crossing
Messages

crossing messages require all functionality of the kuKEM and, thus, the HIBE.
This communication sequence also has a high impact on the state of the users. As
we discussed in the lockstep communication section the send and receive algorithms
balance out the size of the state. If we have a look at Step 4 in Table 6.10 we see
that the state is decreased by 13 to 19 kB, which implies that the state at least
grows by the same amount. If we take a base state size of 74800 Bytes or 74 kB as
the reference an increase of 19 kB means that the state grows by around 25%. The
size of the kuKEM ciphertext is strongly affected by this communication sequence,
as well. If we take the ciphertext produced in Step 2 the kuKEM ciphertext is larger
than the actual base ciphertext. If we now compute the influence of the kuKEM on
the BRKE ciphertext we see that the kuKEM makes up 80% of the ciphertext for
the BN-P256 curve (with total ciphertext size: 7344 Bytes), 80% of the ciphertext
for the B12-P381 and BN-P382 curve (with total ciphertext size: 10320 Bytes), and
83% for the B12-P455 curve (with total ciphertext size: 11704 Bytes).
All in all, we can see that crossing messages have a significant impact on the overall

78 6 Evaluation

behavior of the BRKE algorithms. With the B12-P455 curve, the key generation in
Step 4 takes 2,1 s. Furthermore, the impact on the size of the state and ciphertext
is much stronger than in the other communication sequences. It is open to question
how likely such a communication sequence occurs.

6.3.4 Worst-Case Communication

Since the worst-case communication sequence contains 16 communication steps, we
split the result table into three parts and evaluate the parts individually. Table
6.11 shows the results for the time measurements of the worst-case communication
sequence. We can see that this communication sequence greatly increases the time

Time in ms BN-P256 B12-P381 BN-P382 B12-P455
A sends (Step 0) 147 300 387 464
A sends (Step 1) 147 299 386 462
A sends (Step 2) 147 299 386 463
A sends (Step 3) 146 299 387 463
A sends (Step 4) 147 298 387 464
B sends (Step 5) 444 886 1161 1459
A receives(Step 6) 1527 2992 4009 4984
B sends (Step 7) 146 299 387 463
A receives (Step 8) 541 1059 1495 1776
A sends (Step 9) 317 633 836 1033
B receives (Step 10) 156 314 430 510
B receives (Step 11) 222 442 618 729
B receives (Step 12) 289 570 804 946
B receives (Step 13) 357 700 993 1167
B receives (Step 14) 424 826 1181 1386
B receives (Step 15) 726 1414 1878 2337

Table 6.11: Time Results of the Worst-Case Communication Sequence

required for the BRKE algorithms. Step 0 to Step 4 are consecutively sent mes-
sages, so they always have the same performance (note that we loop the sequence).
In Step 5 B takes all keys it receives in Step 10-15 for the kuKEM encapsulation,
so the time required for the send algorithm is increased. In Step 6 A receives the
ciphertext produced by B in Step 5. B did not receive any of the ciphertexts from
Step 0-4, so A has to perform five key updates and has to perform six kuKEM
decapsulations. This leads to a very high computational time. With the B12-P455
the key generation takes almost five seconds. When A receives the next message
(Step 8) it only has to update the keys but does not need to perform a kuKEM
decapsulation. This leads to the lower required time for the receive algorithm in
Step 8 than the receive algorithm in Step 6. In Step 10-15 B receives all messages
sent by A. The required time for the receive algorithm always increases, because the
amount of key updates increases with every received message. Furthermore, the last
received message (Step 15) requires kuKEM decapsulations, which further increases
the required time for the receive algorithm. The other receives only require KEM
decapsulations.

6.3 Evaluation Results 79

Table 6.13 shows the results for the state size difference of the worst-case communi-
cation sequence. Similar to the last section we only look at the entire state and not

State in Bytes BN-P256 B12-P381 BN-P382 B12-P455
A sends (Step 0) 3120 4464 4464 5216
A sends (Step 1) 3120 4464 4464 5216
A sends (Step 2) 3120 4464 4464 5216
A sends (Step 3) 3120 4464 4464 5216
A sends (Step 4) 3120 4464 4464 5216
B sends (Step 5) -3744 -7392 -7392 -9424
B sends (Step 6) -23576 -31768 -31768 -36376
A receives (Step 7) 3120 4464 4464 5216
A receives (Step 8) 4168 5960 5960 6984
A sends (Step 9) 3808 3488 3488 3312
B receives (Step 10) -2000 -784 -784 -96
B receives (Step 11) 2800 4016 4016 4704
B receives (Step 12) 2800 4016 4016 4688
B receives (Step 13) 2800 4016 4016 4688
B receives (Step 14) 2784 4000 4000 4688
B receives (Step 15) -8560 -12336 -12336 -14464

Table 6.12: State Difference Results of the Worst-Case Communication Sequence

analyze every state difference independently. So we see that the state size decreases
by at most 36 kB. If we use the same argumentation as for the other communication
sequences, we assume that the state has to grow by at least the same amount. For
this reason, we can assume that the state grows up to almost 50% of its original size
if the HIBE is instantiated with the B12-P455 curve. If we use BN-P256, the state
grows by around 30%. This again shows the impact of the conversation sequence on
the overall size of the user state.
Table 6.11 shows the results for the kuKEM ciphertext size of the worst-case com-
munication sequence. As we can see only two ciphertexts in the communication

KuKemCT in Bytes BN-P256 B12-P381 BN-P382 B12-P455
A sends (Step 0) 0 0 0 0
A sends (Step 1) 0 0 0 0
A sends (Step 2) 0 0 0 0
A sends (Step 3) 0 0 0 0
A sends (Step 4) 0 0 0 0
B sends (Step 5) 7752 11016 11016 12872
B sends (Step 6) - - - -
A receives (Step 7) 0 0 0 0
A receives (Step 8) - - - -
A sends (Step 9) 3936 5664 5664 6624
B receives (Step 10) - - - -
B receives (Step 11) - - - -
B receives (Step 12) - - - -
B receives (Step 13) - - - -
B receives (Step 14) - - - -
B receives (Step 15) - - - -

Table 6.13: KuKEM Ciphertext Results of the Worst-Case Communication Se-
quence

sequence contain kuKEM ciphertexts. The kuKEM ciphertext produced in Step 9

80 6 Evaluation

has around the same size as the largest ciphertext in the third communication se-
quence, but the kuKEM ciphertext produced in Step 5 more than triples the size of
the base BRKE ciphertext. So in Step 5 for the BN-P256 curve, the BRKE cipher-
text is 11200 Bytes, for B12-P381/BN-P382 the BRKE ciphertext is 10456 Bytes,
and for B12-P455 the ciphertext is 18128 Bytes large.
We constructed this communication sequence to see the impact of the kuKEM for
different curves if we have to perform multiple key updates and have several active
epochs. We can see that the performance suffers significantly if a user has to keep sev-
eral active epochs. Moreover, with an increasing amount of active epochs the kuKEM
has an increasing impact on the performance of BRKE.

6.4 Conclusion

In this chapter we evaluate the BRKE instantiation. We choose four pairing-friendly
elliptic curves to test the performance impact of the elliptic curve choice on the per-
formance and behavior of the BRKE instantiation. We choose BN-P256, which
provides 100-Bit security, and B12-P381, BN-P382, and B12-P445, which provide
128-Bit security. We choose the first curve because it is a highly optimized curve and
this helps us to obtain an idea what the performance could look like if the HIBE is
instantiated with an efficient elliptic curve. We discussed B12-P381 and B12-P455
(more precisely a slightly different version) in Chapter 3. We described that the
former curve is the optimistic choice for the 128-Bit security level and the latter
curve is the conservative choice for the 128-Bit security level. We consider BN-P382
as a comparison to the other pairing-friendly curves for the 128-Bit security level.
Furthermore, we change the Diffie-Hellman group for the one-time signature if we
use BN-P256 for the pairings. So we use a 100-Bit security level algorithm set and
a 128-Bit security level algorithm set.
We construct four communication sequences and test the BRKE instantiation with
all four curves. Two of the communication sequences simulate a regular conversation
between two users without crossing messages. The other two simulate communica-
tion sequences in which messages cross while transferring over the network. We
measure the average required time of the BRKE algorithms, the size difference of
the state before and after an algorithm call, and the size of the kuKEM ciphertext.
The results show that the required time of the BRKE algorithms increases linearly
if there are no crossing messages. Furthermore, the kuKEM ciphertext grows lin-
early depending on the conversation flow. If there are crossing messages the amount
of active epochs considerably impacts the performance of BRKE. The more active
epochs, the more influence the kuKEM has on the required time for the algorithms,
the size of the state, and the size of the ciphertext.

7 Conclusion

The goal of this thesis was to implement the Bidirectionally Ratcheted Key Ex-
change (BRKE) construction proposed by Poettering and Rösler [77] in Java. We
split the implementation into two parts: a generic part and an instantiation of the
generic part. The goal for the generic part was that the BRKE implementation can
be instantiated with any actual implementations of the required algorithms and does
not depend on any cryptographic libraries. The instantiation should then use actual
algorithms which achieve the security requirements set by Poettering and Rösler
[77].
After describing the different required cryptographic primitives, security require-
ments, and the required mathematical backgrounds, we discuss possible choices for
each of the required primitives. We use recommendations by the BSI and ECRYPT-
CSA to find suitable algorithms and then research if those algorithms fulfill the secu-
rity requirements set by Poettering and Rösler [77]. Furthermore, we check if there
are already implemented versions of those algorithms in Java. The performance of
the respective algorithms is no primary concern for the implementation. For each of
the primitives, we provide an overview that shows suitable algorithms for the use in
the BRKE construction. Except for the one-time signature and the HIBE we use im-
plementations provided by bouncy-castle [86]. We choose to implement a one-time
signature based on a chameleon hash function, and the HIBE ourselves because we
could not find implementations of those two primitives that fulfill our requirements.
Furthermore, we discuss several pairing-friendly elliptic curves for the use in the
HIBE. It turns out that pairings are a currently highly active research topic and
choosing a suitable pairing-friendly elliptic curve is not straightforward, due to the
recently found attacks on those curves. After discussing the algorithms, we describe
the generic BRKE implementation. To better represent a real-world application
we proposed several changes to the BRKE ad-hoc construction as described by Po-
ettering and Rösler [77]. These changes are necessary to avoid endlessly growing
arrays and so that the implementation complies with the Java standard of object-
oriented programming. We furthermore propose the queued kuKEM, which is a
queue-based modification of the kuKEM, which directly performs key updates, and
queued en-/decapsulations. The generic BRKE implementation does not depend on
any specific algorithms. It only uses interfaces which specify the functionality of the
respective algorithms. This enables us to interchange different algorithms without
affecting the BRKE functionality easily.
For the instantiation, we use the bouncy-castle library [86] and the Relic library
[7]. We use the Relic-library for the pairings which we need in the HIBE. Unfortu-

82 7 Conclusion

nately, Relic is only available in C/C++. For this reason, we implement the HIBE
in C++ and use JNI to use the implementation in Java. Since our choice of the
HIBE, namely the Lewko-Waters HIBE [58], does not fully comply with the security
requirements needed for the kuKEM we also apply a transformation to the HIBE.
With this implementation of the HIBE we can implement the kuKEM as described
by Poettering and Rösler [77]. By using the implementations of the algorithms we
construct a BRKE algorithm set, which can be used to instantiate the generic BRKE
construction and test its functionality. Even the implementation of the specific al-
gorithms is kept as generic as possible, so that we can exchange the underlying
primitives, e.g., we can exchange the elliptic curve used for the KEM.
In the end, we evaluate the BRKE implementation with our algorithm set. We
perform the evaluation with four different pairing-friendly elliptic curves for the
HIBE to analyze what effect the choice of the curve, and what effect the HIBE and
the kuKEM have on the BRKE construction. The results show that the effect of
the kuKEM depends on the flow of communication. If there are no crossing mes-
sages between two communicating users, the performance of BRKE is linear and
can be roughly estimated. However, if there are crossing messages the kuKEM
and, thus, the elliptic curve used for the pairings have a significant impact on the
performance and the behavior of the BRKE construction. This shows that the
kuKEM or more precisely the HIBE has the most impact on the performance of
BRKE.

Further Work

There are many interesting aspects which can continue the work on the implemen-
tation of BRKE. Firstly, it can be interesting to compare the performance impact
on different algorithms on BRKE. We already established that the HIBE has the
most influence on the BRKE implementation, but it still might be interesting to test
other alternatives for the one-time signature, KEM and the other algorithms. For
this, we can use the algorithm overviews provided in Chapter 3. However, since the
HIBE has the highest impact on the performance, the HIBE probably is the most
interesting algorithm which we can change to optimize the performance of BRKE.
We could think about changing the HIBE to a bounded HIBE so that the HIBE has
a more consistent performance. However, at the same time, we would have to think
about a suitable depth of the HIBE. Furthermore, we have to think about how the
BRKE implementation should handle if the maximal depth is reached. As pointed
out by Poettering and Rösler [77] the maximum depth is bounded by the number of
ciphertexts sent by a user during one round-trip time (RTT) on the network between
the user and its communication partner. So an idea would be dynamically setting
the maximum depth of the HIBE. Another aspect which affects the performance of
the HIBE is the choice of the elliptic curve. As we discussed, BN-P256 is a highly
optimized curve, but only provides 100-Bit security. If computations on the other

pairing-friendly curves are further optimized, performance for the 128-Bit security
level might achieve a similar performance level. The Relic library is still under de-
velopment, so the performance might still improve.
Before employing the implementation in a real-world application, we would also
have to perform a security analysis on the implementation. Our implementation
is theoretically secure which means we use algorithms which individually fulfill the
security requirements set by Poettering and Rösler [77], but we do not analyze the
security of the implementation against side-channel attacks like timing attacks, for
example. Furthermore, we would have to compute the actual security level of our
algorithm sets by using the security proofs of Poettering and Rösler [77] with our
algorithm and parameter choices.
Independently from the optimization we can apply to the BRKE implementation,
we would have to think about reasonable specifications for a real-world applica-
tion. So we would have to determine what is an acceptable time a key generation
with BRKE can take before it is user unfriendly. In this context it also might
be interesting to compare the performance of BRKE with other ratcheting-based
protocols.

Bibliography

[1] Statista: Number of Mobile Phone Messaging App Users Worldwide From
2016 to 2021 (in Billions). https://www.statista.com/statistics/483255/
number-of-mobile-messaging-users-worldwide/, 2017.

[2] WhatsApp Blog: Connecting One Billion Users Every Day. https://blog.
whatsapp.com/10000631/Connecting-One-Billion-Users-Every-Day,
2017.

[3] Kryptographische Verfahren: Empfehlungen und Schluessellaengen [Crypto-
graphic Techniques: Recommendations and Keylengths]. Technical report,
Bundesamt für Sicherheit in der Informationstechnik (BSI), 2018.

[4] Algorithms, Key Size and Protocols Report (2018). Technical report, ECRYPT-
CSA, 2018.

[5] Shweta Agrawal, Dan Boneh, and Xavier Boyen. Efficient Lattice (H)IBE in
the Standard Model. In Annual International Conference on the Theory and
Applications of Cryptographic Techniques, pages 553–572. Springer, 2010.

[6] Joseph A. Akinyele, Christina Garman, Ian Miers, Matthew W. Pagano,
Michael Rushanan, Matthew Green, and Aviel D. Rubin. Charm: a framework
for rapidly prototyping cryptosystems. Journal of Cryptographic Engineering,
3(2):111–128, 2013. ISSN 2190-8508. doi: 10.1007/s13389-013-0057-3. URL
http://dx.doi.org/10.1007/s13389-013-0057-3.

[7] D. F. Aranha and C. P. L. Gouvêa. RELIC is an Efficient LIbrary for Cryp-
tography. https://github.com/relic-toolkit/relic.

[8] Diego F. Aranha. Pairings Are Not Dead, Just Resting. ECC 2017, 2018.

[9] Emil Artin. Geometric Algebra. Courier Dover Publications, 2016.

[10] Razvan Barbulescu and Sylvain Duquesne. Updating Key Size Estimations for
Pairings. Journal of Cryptology, pages 1–39, 2018.

[11] Paulo SLM Barreto and Michael Naehrig. Pairing-Friendly Elliptic Curves of
Prime Order. In International Workshop on Selected Areas in Cryptography,
pages 319–331. Springer, 2005.

https://www.statista.com/statistics/483255/number-of-mobile-messaging-users-worldwide/
https://www.statista.com/statistics/483255/number-of-mobile-messaging-users-worldwide/
https://blog.whatsapp.com/10000631/Connecting-One-Billion-Users-Every-Day
https://blog.whatsapp.com/10000631/Connecting-One-Billion-Users-Every-Day
http://dx.doi.org/10.1007/s13389-013-0057-3
https://github.com/relic-toolkit/relic

[12] Paulo SLM Barreto, Ben Lynn, and Michael Scott. Constructing Elliptic Curves
with Prescribed Embedding Degrees. In International Conference on Security
in Communication Networks, pages 257–267. Springer, 2002.

[13] Mihir Bellare. New Proofs for NMAC and HMAC: Security Without Collision-
Resistance. In Annual International Cryptology Conference, pages 602–619.
Springer, 2006.

[14] Mihir Bellare and Phillip Rogaway. Random Oracles are Practical: A Paradigm
for Designing Efficient Protocols. In Proceedings of the 1st ACM conference on
Computer and communications security, pages 62–73. ACM, 1993.

[15] Mihir Bellare, Oded Goldreich, and Anton Mityagin. The Power of Verifica-
tion Queries in Message Authentication and Authenticated Encryption. IACR
Cryptology ePrint Archive, 2004:309, 2004.

[16] Mihir Bellare, Asha Camper Singh, Joseph Jaeger, Maya Nyayapati, and Igors
Stepanovs. Ratcheted Encryption and Key Exchange: The Security of Messag-
ing. In Annual International Cryptology Conference, pages 619–650. Springer,
2017.

[17] BlueKrypt. Cryptographic Key Length Recommendation, 2018 (accessed April,
2019). URL https://www.keylength.com/.

[18] Dan Boneh and Xavier Boyen. Efficient Selective-ID Secure Identity-Based En-
cryption Without Random Oracles. In International Conference on the Theory
and Applications of Cryptographic Techniques, pages 223–238. Springer, 2004.

[19] Dan Boneh and Matt Franklin. Identity-Based Encryption From the Weil Pair-
ing. In Annual international cryptology conference, pages 213–229. Springer,
2001.

[20] Dan Boneh, Xavier Boyen, and Eu-Jin Goh. Hierarchical Identity Based En-
cryption with Constant Size Ciphertext. In Annual International Conference
on the Theory and Applications of Cryptographic Techniques, pages 440–456.
Springer, 2005.

[21] Dan Boneh, Ran Canetti, Shai Halevi, and Jonathan Katz. Chosen-Ciphertext
Security From Identity-Based Encryption. SIAM Journal on Computing, 36(5):
1301–1328, 2006.

[22] Dan Boneh, Emily Shen, and Brent Waters. Strongly Unforgeable Signatures
Based on Computational Diffie-Hellman. In International Workshop on Public
Key Cryptography, pages 229–240. Springer, 2006.

[23] Sean Bowe. BLS12-381: New zk-SNARK Elliptic Curve Construction. zCash
Blog, 2017. URL https://z.cash/blog/new-snark-curve/.

https://www.keylength.com/
https://z.cash/blog/new-snark-curve/

[24] Ernest Brickell, David Pointcheval, Serge Vaudenay, and Moti Yung. Design
Validations for Discrete Logarithm Based Signature Schemes. In International
Workshop on Public Key Cryptography, pages 276–292. Springer, 2000.

[25] Johannes Buchmann, Erik Dahmen, Sarah Ereth, Andreas Hülsing, and Markus
Rückert. On the Security of the Winternitz One-Time Signature Scheme. In In-
ternational Conference on Cryptology in Africa, pages 363–378. Springer, 2011.

[26] Johannes Buchmann, Erik Dahmen, and Andreas Hülsing. XMSS-a Practical
Forward Secure Signature Scheme Based on Minimal Security Assumptions.
In International Workshop on Post-Quantum Cryptography, pages 117–129.
Springer, 2011.

[27] Ran Canetti, Oded Goldreich, and Shai Halevi. The Random Oracle Method-
ology, Revisited. Journal of the ACM (JACM), 51(4):557–594, 2004.

[28] David Cash, Dennis Hofheinz, Eike Kiltz, and Chris Peikert. Bonsai Trees, or
How to Delegate a Lattice Basis. In Annual International Conference on the
Theory and Applications of Cryptographic Techniques, pages 523–552. Springer,
2010.

[29] Katriel Cohn-Gordon, Cas Cremers, Benjamin Dowling, Luke Garratt, and
Douglas Stebila. A Formal Security Analysis of the Signal Messaging Protocol.
Cryptology ePrint Archive, Report 2016/1013, 2016. https://eprint.iacr.
org/2016/1013.

[30] Angelo De Caro and Vincenzo Iovino. jPBC: Java Pairing Based Cryptography.
In Proceedings of the 16th IEEE Symposium on Computers and Communica-
tions, ISCC 2011, pages 850–855, Kerkyra, Corfu, Greece, June 28 - July 1,
2011. IEEE. URL http://gas.dia.unisa.it/projects/jpbc/.

[31] Whitfield Diffie and Martin Hellman. New Directions in Cryptography. IEEE
transactions on Information Theory, 22(6):644–654, 1976.

[32] F Betül Durak and Serge Vaudenay. Bidirectional Asynchronous Ratcheted
Key Agreement without Key-Update Primitives. Technical report, Cryptology
ePrint Archive, Report 2018/889, 2018.

[33] Keita Emura and Takuya Hayashi. A Revocable Group Signature Scheme with
Scalability from Simple Assumptions and Its Implementation. In International
Conference on Information Security, pages 442–460. Springer, 2018.

[34] Facebook. Messenger Secret Conversations: Technical White Pa-
per. https://fbnewsroomus.files.wordpress.com/2016/07/secret_
conversations_whitepaper-1.pdf, 2016. Accessed: 2018-10-22.

[35] FasterXML. Jackson API. https://github.com/FasterXML/jackson.

[36] David Freeman, Michael Scott, and Edlyn Teske. A Taxonomy of Pairing-
Friendly Elliptic Curves. Journal of cryptology, 23(2):224–280, 2010.

https://eprint.iacr.org/2016/1013
https://eprint.iacr.org/2016/1013
http://gas.dia.unisa.it/projects/jpbc/
https://fbnewsroomus.files.wordpress.com/2016/07/ secret_conversations_whitepaper-1.pdf
https://fbnewsroomus.files.wordpress.com/2016/07/ secret_conversations_whitepaper-1.pdf
https://github.com/FasterXML/jackson

[37] Craig Gentry and Alice Silverberg. Hierarchical ID-Based Cryptography. In
International Conference on the Theory and Application of Cryptology and In-
formation Security, pages 548–566. Springer, 2002.

[38] Daniel Gillmor. Negotiated Finite Field Diffie-Hellman Ephemeral Parameters
for Transport Layer Security (TLS). RFC 7919, RFC Editor, August 2006.
URL https://tools.ietf.org/html/rfc7919.

[39] Github:artjomb. List of Pairing Libraries. Github, 2019. URL https://gist.
github.com/artjomb/f2d720010506569d3a39.

[40] Rob Gordon. Essential JNI: Java Native Interface. Prentice-Hall, Inc., 1998.

[41] Aurore Guillevic. Comparing the Pairing Efficiency Over Composite-Order and
Prime-Order Elliptic Curves. In International Conference on Applied Cryptog-
raphy and Network Security, pages 357–372. Springer, 2013.

[42] Max Hoffmann. Lecture: Software Implementation of Cryptographic Schemes,
May 2018.

[43] Leslie Hogben. Handbook of Linear Algebra (Discrete Mathematics and Its
Applications 81). Chapman and Hall/CRC, 2016. ISBN 9781466507296.

[44] Jeremy Horwitz and Ben Lynn. Toward Hierarchical Identity-Based Encryption.
In International Conference on the Theory and Applications of Cryptographic
Techniques, pages 466–481. Springer, 2002.

[45] Qiong Huang, Duncan S Wong, and Yiming Zhao. Generic Transformation
to Strongly Unforgeable Signatures. In International Conference on Applied
Cryptography and Network Security, pages 1–17. Springer, 2007.

[46] Andreas Hülsing. W-OTS+–Shorter Signatures for Hash-Based Signature
Schemes. In International Conference on Cryptology in Africa, pages 173–188.
Springer, 2013.

[47] ISO/IEC 18033-2. Information technology — Security techniques — Encryption
algorithms — Part 2: Asymmetric Ciphers. Standard, International Organiza-
tion for Standardization, January 2004.

[48] Tibor Jager. Script: Digitale Signaturen [Digital Signatures], September 2018.

[49] Oracle Corporation Open JDK. JOL (Java Object Layout). https://openjdk.
java.net/projects/code-tools/jol/.

[50] Jakob Jonsson. Security Proofs for the RSA-PSS Signature Schemes and its
Variants. In SECOND OPEN NESSIE WORKSHOP. Citeseer, 2001.

[51] Jonathan Katz and Yehuda Lindell. Introduction to Modern Cryptography. CRC
press, 2007.

https://tools.ietf.org/html/rfc7919
https://gist.github.com/artjomb/f2d720010506569d3a39
https://gist.github.com/artjomb/f2d720010506569d3a39
https://openjdk.java.net/projects/code-tools/jol/
https://openjdk.java.net/projects/code-tools/jol/

[52] Jonathan Katz, Alfred J Menezes, Paul C Van Oorschot, and Scott A Vanstone.
Handbook of Applied Cryptography. CRC press, 1996.

[53] Eike Kiltz. Script: Cryptographic Protocols, July 2018.

[54] Eike Kiltz, Daniel Masny, and Jiaxin Pan. Optimal Security Proofs for Signa-
tures from Identification Schemes. In Annual International Cryptology Confer-
ence, pages 33–61. Springer, 2016.

[55] Taechan Kim and Razvan Barbulescu. Extended Tower Number Field Sieve: A
New Complexity for the Medium Prime Case. In Annual International Cryp-
tology Conference, pages 543–571. Springer, 2016.

[56] Hugo Krawczyk and Pasi Eronen. Hmac-Based Extract-and-Expand Key
Derivation Function (HKDF). 2010.

[57] Leslie Lamport. Constructing Digital Signatures From a One-Way Function.
Technical report, Technical Report CSL-98, SRI International Palo Alto, 1979.

[58] Allison Lewko. Tools for Simulating Features of Composite Order Bilinear
Groups in the Prime Order Setting. In Annual International Conference on the
Theory and Applications of Cryptographic Techniques, pages 318–335. Springer,
2012.

[59] Allison Lewko and Brent Waters. Unbounded HIBE and Attribute-Based En-
cryption. In Annual International Conference on the Theory and Applications
of Cryptographic Techniques, pages 547–567. Springer, 2011.

[60] Jin Li, Fangguo Zhang, and Yanming Wang. A New Hierarchical ID-Based
Cryptosystem and CCA-Secure PKE. In International Conference on Embedded
and Ubiquitous Computing, pages 362–371. Springer, 2006.

[61] Manfred Lochter and Johannes Merkle. Elliptic Curve Cryptography (ECC)
Brainpool Standard Curves and Curve Generation. Technical report, 2010.

[62] Ben Lynn. PBC Library. Online: http://crypto. stanford. edu/pbc, 59:76–99,
2006.

[63] Ben Lynn. On the Implementation of Pairing-Based Cryptosystems. PhD thesis,
Stanford University Stanford, California, 2007.

[64] Moxie Marlinspike and Trevor Perrin. The Double Ratchet Algorithm. https:
//signal.org/docs/specifications/doubleratchet/doubleratchet.pdf,
2016. Accessed: 2018-10-22.

[65] Ken Martin and Bill Hoffman. Mastering CMake: a Cross-Platform Build
System. Kitware, 2010.

[66] Vincent Massol and Ted Husted. JUnit in Action. Manning Publications, 2003.
ISBN 1930110995.

https://signal.org/docs/specifications/doubleratchet/doubleratchet.pdf
https://signal.org/docs/specifications/doubleratchet/doubleratchet.pdf

[67] Ueli M Maurer. Towards the Equivalence of Breaking the Diffie-Hellman Pro-
tocol and Computing Discrete Logarithms. In Annual International Cryptology
Conference, pages 271–281. Springer, 1994.

[68] Kevin S McCurley. The Discrete Logarithm Problem. In AMS Proc. Symp.
Appl. Math, volume 42, pages 49–74, 1990.

[69] Alfred Menezes. An Introduction to Pairing-Based Cryptography. Recent trends
in cryptography, 477:47–65, 2009.

[70] Alfred Menezes, Palash Sarkar, and Shashank Singh. Challenges With Assessing
the Impact of NFS Advances on the Security of Pairing-Based Cryptography.
In International Conference on Cryptology in Malaysia, pages 83–108. Springer,
2016.

[71] Frederic P. Miller, Agnes F. Vandome, and John McBrewster. Apache Maven.
Alpha Press, 2010. ISBN 6130652194, 9786130652197.

[72] Payman Mohassel. One-Time Signatures and Chameleon Hash Functions. In
International Workshop on Selected Areas in Cryptography, pages 302–319.
Springer, 2010.

[73] Moni Naor and Moti Yung. Universal One-Way Hash Functions and Their
Cryptographic Applications. In Proceedings of the twenty-first annual ACM
symposium on Theory of computing, pages 33–43. ACM, 1989.

[74] Tatsuaki Okamoto and Katsuyuki Takashima. Homomorphic Encryption and
Signatures from Vector Decomposition. In International Conference on Pairing-
Based Cryptography, pages 57–74. Springer, 2008.

[75] Tatsuaki Okamoto and Katsuyuki Takashima. Hierarchical Predicate Encryp-
tion for Inner-Products. In International Conference on the Theory and Appli-
cation of Cryptology and Information Security, pages 214–231. Springer, 2009.

[76] Christof Paar and Jan Pelzl. Understanding Cryptography - A Textbook for
Students and Practitioners. Springer Science Business Media, Berlin Heidelberg,
2009. ISBN 978-3-642-04101-3.

[77] Bertram Poettering and Paul Rösler. Towards Bidirectional Ratcheted Key Ex-
change. In Annual International Cryptology Conference, pages 3–32. Springer,
2018.

[78] David Pointcheval and Serge Vaudenay. On Provable Security for Digital Sig-
nature Algorithms. 1996.

[79] GitHub: Signal Messenger Protocol. libsignal-protocol-java. https://github.
com/signalapp/libsignal-protocol-java, 2016.

https://github.com/signalapp/libsignal-protocol-java
https://github.com/signalapp/libsignal-protocol-java

[80] Geumsook Ryu, Kwangsu Lee, Seunghwan Park, and Dong Hoon Lee. Un-
bounded Hierarchical Identity-Based Encryption With Efficient Revocation. In
International Workshop on Information Security Applications, pages 122–133.
Springer, 2015.

[81] Jörg Schwenk. Script: Authenticated Key Exchange: An Introduction to its
Formal Analysis, June 2018.

[82] Hovav Shacham. New Paradigms in Signature Schemes. PhD thesis, Stanford
University, December 2005.

[83] Adi Shamir. Identity-Based Cryptosystems and Signature Schemes. In Work-
shop on the theory and application of cryptographic techniques, pages 47–53.
Springer, 1984.

[84] Victor Shoup. Using Hash Functions as a Hedge Against Chosen Ciphertext
Attack. In International Conference on the Theory and Applications of Cryp-
tographic Techniques, pages 275–288. Springer, 2000.

[85] Victor Shoup. A Proposal for an ISO Standard for Public Key Encryption
(Version 2.1). IACR e-Print Archive, 112, 2001.

[86] The Legion of the Bouncy Castle Inc. Bouncy Castle API. URL https://www.
bouncycastle.org/java.html.

[87] Frederik Vercauteren. Discrete Logarithms in Cryptography. ESAT/COSICKU
Leuven ECRYPT Summer, 2008.

[88] Brent Waters. Efficient Identity-Based Encryption Without Random Oracles.
In Annual International Conference on the Theory and Applications of Crypto-
graphic Techniques, pages 114–127. Springer, 2005.

[89] WhatsApp. Whatsapp Encryption - Overview: Technical White Paper. https:
//www.whatsapp.com/security/WhatsApp-Security-Whitepaper.pdf,
2017. Accessed: 2018-10-22.

[90] Chikara Yonezawa, Lepidum. IETF Draft: Pairing-Friendly Curves
(WIP). IETF Draft, 2019. URL https://tools.ietf.org/html/
draft-yonezawa-pairing-friendly-curves-01.

[91] Mingwu Zhang, Bo Yang, Chunzhi Wang, and Tsuyoshi Takagi. Unbounded
Anonymous Hierarchical IBE With Continual-Key-Leakage Tolerance. Security
and Communication Networks, 7(11):1974–1987, 2014.

[92] Shiwei Zhang. Dual Pairing Vector Space, October 2014. URL https://www.
uow.edu.au/~fuchun/seminars/031014.pdf.

https://www.bouncycastle.org/java.html
https://www.bouncycastle.org/java.html
https://www.whatsapp.com/security/WhatsApp-Security-Whitepaper.pdf
https://www.whatsapp.com/security/WhatsApp-Security-Whitepaper.pdf
https://tools.ietf.org/html/draft-yonezawa-pairing-friendly-curves-01
https://tools.ietf.org/html/draft-yonezawa-pairing-friendly-curves-01
https://www.uow.edu.au/~fuchun/seminars/031014.pdf
https://www.uow.edu.au/~fuchun/seminars/031014.pdf

Acronyms

ARKE Asynchronous Ratcheted Key Exchange.

BRKE Bidirectionally Ratcheted Key Exchange.

BSI German Federal Office for Information Security.

CDH Computational Diffie-Hellman.

DDH Decisional Diffie-Hellman.

DLP Discrete Logarithm Problem.

DPVS Dual Pairing Vector Spaces.

ECDLP Elliptic Curve Discrete Logarithm Problem.

HIBE Hierarchical Identity-Based Encryption.

IBE Identity-Based Encryption.

JNI Java Native Interface.

JOL Java Object Layout.

KDF Key Derivation Function.

KEM Key Encapsulation Mechanism.

kuKEM key-updateable Key Encapsulation Mechanism.

MAC Message Authentication Code.

PKG Private Key Generator.

PRF Pseudo Random Function.

RKE Ratcheted Key Exchange.

ROM Random Oracle Model.

SRKE Sesquidirectionally Ratcheted Key Exchange.

URKE Unidirectionally Ratcheted Key Exchange.

	Introduction
	Motivation
	Related Work
	Contribution
	Organization of this Thesis

	Background
	Notation
	Mathematical Background
	Finite Fields
	Discrete Logarithm Problem
	Cryptographic Assumptions
	Elliptic Curves
	Pairings
	dpvs

	Cryptographic Primitives
	Message Authentication Code
	Digital Signature
	Hash functions
	Chameleon Hash Functions
	Key Encapsulation Mechanism
	Key-Updateable Key Encapsulation Mechanism
	Hierachical Identity Based Encryption

	arke
	Ratcheting
	urke
	srke
	brke

	Algorithm Choices
	Choosing Algorithms
	One-Time Signature
	Summary

	Hash Functions
	Summary

	Random Oracle
	Summary

	Key Encapsulation Mechanism
	Summary

	Key-Updateable Key Encapsulation Mechanism
	Summary

	Hierarchical Identity Based Encryption
	Lewko-Waters Unbounded hibe (Prime Order Translation)
	CPA to CCA Transformation
	Summary

	Conclusion

	Generic Implementation
	Specifications
	General Approach
	The BRKE Ad-Hoc Construction
	Protocol Changes
	Queue-Based Algorithms
	Queued kukem

	The Modified brke Protocol
	Project Structure
	Unit Tests
	Conclusion

	Instantiation
	Libraries
	Specifications
	General Approach
	Random Oracle
	Transcript
	Utility Classes
	Variables
	Key Encapsulation Mechanism

	One-Time Signature
	Hierarchical Identity-Based Encryption
	The C++ Part
	Java to C++ and Vice Versa
	The Java Part
	Summary

	Key-Updateable Key Encapsulation Mechanism
	Conclusion

	Evaluation
	The Complete BRKE project
	Approach
	Communication Sequences

	Evaluation Results
	Lockstep Communication
	Asynchronous Communication without Crossing Messages
	Asynchronous Communication with Crossing Messages
	Worst-Case Communication

	Conclusion

	Conclusion
	Bibliography
	Acronyms

