
Single Sign-On Security:
Security Analysis of real-life
OpenID Connect Implementations

Lauritz Holtmann

Master’s Thesis – September 30, 2020.
Chair for Network and Data Security.

Supervisor: Dr.-Ing. Christian Mainka
Advisor: Prof. Dr. Jörg Schwenk
Advisor: Dr.-Ing. Vladislav Mladenov





Abstract

OpenID Connect 1.0 is an authentication protocol that extends the OAuth 2.0 Au-
thorization Framework. A typical OpenID Connect 1.0 setup involves three parties:
an End-User who wants to sign-in at a service, the OpenID Provider that authenti-
cates the End-User and a Relying Party that provides a service to the End-User. Im-
plementing Single Sign-On protocols like OpenID Connect enables Service Providers
to delegate authorization and authentication tasks to a dedicated third party. This
decentralized scenario comes with flexibility for implementing entities and usability
benefits for End-Users but also introduces new challenges regarding secure and re-
liable authentication mechanisms. In this thesis, three novel variants of attacks on
OpenID Connect implementations and two attacks on the OpenID Connect speci-
fication are presented. Besides these novel attacks, four Identity Provider and five
Service Provider implementations are evaluated against a set of previously known
attacks and requirements resulting from the specification and current security best
practices. During the execution of the analysis, NodeJS implementations of the
Identity Provider and Service Provider parts of the OpenID Connect specification
were created, which are also introduced in this thesis. Finally, common vulnerability
patterns observed within the set of OpenID Connect implementations are derived
and recommendations for additions to the OpenID Connect security considerations
are given.





Official Declaration

Hereby I declare, that I have not submitted this thesis in this or similar form to
any other examination at the Ruhr-Universität Bochum or any other institution or
university.

I officially ensure, that this paper has been written solely on my own. I here-
with officially ensure, that I have not used any other sources but those stated by
me. Any and every parts of the text which constitute quotes in original word-
ing or in its essence have been explicitly referred by me by using official marking
and proper quotation. This is also valid for used drafts, pictures and similar for-
mats.

I also officially ensure that the printed version as submitted by me fully confirms
with my digital version. I agree that the digital version will be used to subject the
paper to plagiarism examination.

Not this English translation, but only the official version in German is legally bind-
ing.

Eidesstattliche Erklärung

Ich erkläre, dass ich keine Arbeit in gleicher oder ähnlicher Fassung bereits für eine
andere Prüfung an der Ruhr-Universität Bochum oder einer anderen Hochschule
eingereicht habe.

Ich versichere, dass ich diese Arbeit selbstständig verfasst und keine anderen als die
angegebenen Quellen benutzt habe. Die Stellen, die anderen Quellen dem Wortlaut
oder dem Sinn nach entnommen sind, habe ich unter Angabe der Quellen kenntlich
gemacht. Dies gilt sinngemäß auch für verwendete Zeichnungen, Skizzen, bildliche
Darstellungen und dergleichen.

Ich versichere auch, dass die von mir eingereichte schriftliche Version mit der digita-
len Version übereinstimmt. Ich erkläre mich damit einverstanden, dass die digitale
Version dieser Arbeit zwecks Plagiatsprüfung verwendet wird.

Date Lauritz Holtmann





Erklärung

Ich erkläre mich damit einverstanden, dass meine Masterarbeit am Lehrstuhl NDS
dauerhaft in elektronischer und gedruckter Form aufbewahrt wird und dass die Er-
gebnisse aus dieser Arbeit unter Einhaltung guter wissenschaftlicher Praxis in der
Forschung weiter verwendet werden dürfen.

Date Lauritz Holtmann





Contents

Glossary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi
Acronyms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Research Question . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.5 Organization of this Thesis . . . . . . . . . . . . . . . . . . . . . . . 4

2 Foundations 5
2.1 JSON . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 JWT, JWS and JWE . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Single Sign-On (SSO) . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2.1 General Concept . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2.2 OAuth 2.0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2.3 OpenID Connect 1.0 . . . . . . . . . . . . . . . . . . . . . . . 12

2.3 Single Sign-On Security . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.3.1 Identity Provider Security . . . . . . . . . . . . . . . . . . . . 18
2.3.2 Identity Provider Attacks and Flaws . . . . . . . . . . . . . . 23
2.3.3 Service Provider Security . . . . . . . . . . . . . . . . . . . . 27
2.3.4 Service Provider Attacks and Flaws . . . . . . . . . . . . . . 32

3 Attacker Models 41
3.1 Web Attacker . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.2 Malicious Identity Provider . . . . . . . . . . . . . . . . . . . . . . . 42
3.3 Malicious Service Provider . . . . . . . . . . . . . . . . . . . . . . . . 42
3.4 Malicious Administrative User . . . . . . . . . . . . . . . . . . . . . . 43
3.5 Man-in-the-Middle . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4 Selection and Test Environment 45
4.1 Selection of OpenID Connect Implementations . . . . . . . . . . . . 45

4.1.1 Identity Provider Selection . . . . . . . . . . . . . . . . . . . 45
4.1.2 Service Provider Selection . . . . . . . . . . . . . . . . . . . . 46

4.2 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.2.1 Custom Implementations . . . . . . . . . . . . . . . . . . . . 47
4.2.2 Local Test Environment . . . . . . . . . . . . . . . . . . . . . 47



x Contents

4.2.3 Remote Test Environment . . . . . . . . . . . . . . . . . . . . 49

5 Security Evaluation 51
5.1 Identity Provider Evaluation . . . . . . . . . . . . . . . . . . . . . . 51
5.2 Identity Provider Analysis Details . . . . . . . . . . . . . . . . . . . 54

5.2.1 Analysis of Keycloak . . . . . . . . . . . . . . . . . . . . . . . 54
5.2.2 Analysis of GitLab . . . . . . . . . . . . . . . . . . . . . . . . 66
5.2.3 Analysis of Amazon Cognito (AWS) . . . . . . . . . . . . . . 69

5.3 Service Provider Evaluation . . . . . . . . . . . . . . . . . . . . . . . 70
5.4 Service Provider Analysis Details . . . . . . . . . . . . . . . . . . . . 73

5.4.1 Analysis of Keycloak . . . . . . . . . . . . . . . . . . . . . . . 73
5.4.2 Analysis of Bitbucket . . . . . . . . . . . . . . . . . . . . . . 76
5.4.3 Analysis of GitLab . . . . . . . . . . . . . . . . . . . . . . . . 89
5.4.4 Analysis of Salesforce Lightning . . . . . . . . . . . . . . . . . 94
5.4.5 Analysis of Amazon Cognito (AWS) . . . . . . . . . . . . . . 98

6 Lessons Learned 105
6.1 Expectations and Results . . . . . . . . . . . . . . . . . . . . . . . . 105
6.2 Derived Common Issue Patterns . . . . . . . . . . . . . . . . . . . . 105
6.3 Derived OpenID Connect Security Considerations . . . . . . . . . . . 107
6.4 Responsible Disclosure . . . . . . . . . . . . . . . . . . . . . . . . . . 108

6.4.1 Keycloak . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
6.4.2 Bitbucket . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
6.4.3 GitLab . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
6.4.4 Salesforce . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
6.4.5 Amazon Cognito . . . . . . . . . . . . . . . . . . . . . . . . . 110

7 Conclusion 111
7.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

List of Figures 113

List of Tables 114

Bibliography 115

A Evaluation Table for Identity Providers 121

B Evaluation Table for Service Providers 131

C Source Code: Malicious Identity and Service Providers 139



Glossary xi

Glossary

Carriage Return and Line Feed The CRLF sequence is a series of meta characters
which is used to represent a newline.

Content Security Policy The Content Security Policy is a web security measure
against common attacks like data or script injection attacks. The CSP is
specified using the Content-Security-Policy HTTP header.

Cross-Site-Request-Forgery Cross-Site-Request-Forgery is a web application vul-
nerability. To exploit such a vulnerability, a malicious actor tricks the user’s
browser to perform authenticated actions using the victim’s session on behalf
of the attacker.

Cross-Site-Scripting Cross-Site-Scripting is a web application vulnerability. To ex-
ploit such a vulnerability, a malicious actor injects JavaScript into the context
of a website that is then executed in the victim’s browser.

Hypertext Transfer Protocol The Hypertext Transfer Protocol (HTTP) is a state-
less application-level protocol for data exchange. It is in use since 1990 and is
the foundation of the World-Wide Web.

Insecure Direct Object Reference Insecure Direct Object Reference (IDOR) is a
web application vulnerability. If an application does not implement proper
access control and performs actions based on user-controlled references, a ma-
licious actor could trick the application to perform actions on objects the
attacker has no permissions for.

Referrer-Policy The Referrer-Policy is a web security measure that defines how
much information should be included within the HTTP Referer header.

Same-Origin Policy The Same-Origin Policy is a web security measure for docu-
ments and client-side scripting languages like JavaScript. An origin is deter-
mined by an URI’s host, scheme and port. The Same-Origin Policy restricts a
script’s access to resources that are cross-origin.

Server-Side Request Forgery Server-Side Request Forgery is a network-level vul-
nerability. To exploit such a vulnerability, a malicious actor forces a server -
e.g. using inputs within a web application - to perform requests on behalf of
the malicious actor.

SQL Injection SQL Injection is a web application vulnerability. If an application
does not filter metacharacters, a malicious actor can utilize these characters
to modify database queries.



xii Acronyms

Transmission Control Protocol The Transmission Control Protocol (TCP) is part
of the Internet protocol suite and was developed to provide reliable data trans-
mission between applications that communicate over the network.

Transport Layer Security Transport Layer Security (TLS) is a cryptographic pro-
tocol to transfer data in an encrypted manner. Its deprecated predecessor is
SSL.

Acronyms

CRLF Carriage Return and Line Feed.

CSP Content Security Policy.

CSRF Cross-Site-Request-Forgery.

CVE Common Vulnerabilities and Exposures.

GUI Graphical User Interface.

HTTP Hypertext Transfer Protocol.

IDOR Insecure Direct Object Reference.

IdP Identity Provider.

OIDC OpenID Connect.

PKCE Proof Key for Code Exchange.

SP Service Provider.

SQLi SQL Injection.

SSO Single Sign-On.

SSRF Server-Side Request Forgery.

TCP Transmission Control Protocol.

TLS Transport Layer Security.

UI User Interface.

XSS Cross-Site-Scripting.



1 Introduction

This chapter gives a short introduction to the master’s thesis “Single Sign-On Se-
curity: Security Analysis of real-life OpenID Connect Implementations”.
At first, motivation for the general research topic is given. Afterward, the topic is
set into context by discussing related work. Subsequently, the research question and
the contribution of this thesis are outlined. Finally, the organization of this thesis
is described.

1.1 Motivation

With the increasing number of online accounts per user, End-Users tend to utilize
password strategies. According to a study performed by Statista in 2017, more
than half of the German users reuse their passwords for multiple accounts [43]. An
additional study published by Statista in 2019 concludes that more than 20% of
the users include personal information like their date of birth in their passwords [44].
One possible concept to address this potentially dangerous behavior is to integrate
Single Sign-On protocols into services. In this case, the user has to create an ac-
count at one central instance, the Identity Provider. In the following, the user may
register on other services and websites without having to perform a full registration,
and instead, use Single Sign-On and his identity created at the Identity Provider. As
a result, the user only has to maintain and protect one central account by choosing
one strong password.
In the real world, the initial registration at an Identity Provider is often done implic-
itly, as services and social networks like Facebook and Google implemented so-called
“social logins”. As a result, users may log in using their Google or Facebook ac-
count on many websites without having to create an explicit account at an Identity
Provider. According to builtwith, who monitor “over a quarter of a billion web-
sites” [6] as stated in their official sources, over 185,000 websites use the Facebook
login button or used it in the past [5].

Single Sign-On is not only relevant for individuals, but also for large enterprises
who want their employees to use one account on multiple different internal services
or let their employees use their corporate login on external services. The Deutsche
Telekom for instance adopted OpenID Connect in 2013 (OpenID Connect Core 1.0
was finalized in 2014) and switched its largest service to OpenID Connect in mid of



2 1 Introduction

2014 [10].
One solution to implement OpenID Connect in a corporate environment is using
Keycloak, an “Open Source Identity and Access Management” [17] tool. Recently
there was a penetration test on Keycloak that focused on common web security
findings [8]. Keycloak supports multiple Single Sign-On protocols, but this thesis will
focus on its OpenID Connect implementation and Single Sign-On specific security
considerations in the first of two parts.

The second part will cover more implementations of the OpenID Connect protocol
but will focus on Client implementations. We will analyze four products: Bitbucket,
GitLab, Salesforce and Amazon Cognito. For each product, we will at first at-
tempt to set up a benign Identity Provider based on Keycloak. After verification
that everything works as intended, we will proceed and change the benign Iden-
tity Provider against a Malicious Identity Provider and analyze the behavior of the
products.

1.2 Related Work

Previous research developed techniques to analyze Single Sign-On protocols, attacker
models and classifications of attacks. In addition, these techniques were applied to
the major Single Sign-On protocols. There are few academic publications on con-
crete implementations.
In 2016, Fett et al. published their paper “A Comprehensive Formal Security Anal-
ysis of OAuth 2.0” [14], in which they analyze OAuth 2.0, which is the foundation
of OpenID Connect. In the following year, the authors published their follow-up pa-
per “The Web SSO Standard OpenID Connect: In-depth Formal Security Analysis
and Security Guidelines” [15], in which they present an in-depth security analysis of
OpenID Connect.
The security of Google’s OpenID Connect implementation was analyzed by Li and
Mitchell in their paper “Analysing the Security of Google’s Implementation of OpenID
Connect” in 2016 [20].
In 2017 Christian Mainka defended his dissertation “On Message-Level Security”
[25], in which he discusses Web Service Security and Single Sign-On Security, elab-
orating deep insights in attacks on Single Sign-On protocols. In his dissertation
he furthermore analyzes the usage of malicious Identity Providers and Single- and
Cross-Phase Attacks on different Single Sign-On protocols including OpenID Con-
nect.
Vladislav Mladenov defended his Dissertation “On the Security of Single Sign-On”
[31] likewise in 2017. He defines generic Attack Concepts on Single Sign-On proto-
cols and attacker models, in order to apply them to OpenID Connect, OpenID and
SAML.
In their paper “Do not trust me: Using malicious IdPs for analyzing and attacking



1.3 Research Question 3

Single Sign-On” [27] Mainka, Mladenov and Schwenk introduce their new approach
of using malicious Identity Providers in order to analyze and finally attack Single
Sign-On Protocols. This research finally leaded to two papers concerning OpenID
Connect Security: “SoK: Single Sign-On Security – An Evaluation of OpenID Con-
nect” [28] and “OpenID Connect Security Considerations” [26].
Steinegger et al. published their paper “Migration von OpenID Connect in eine
bestehende Anwendungslandschaft” [45], in which they provide concrete case studies
of an implementation of OpenID Connect in a complex environment in 2017.
In the last years, more and more non-academic research was published about OAuth
2.0 and OpenID Connect 1.0. In 2017, Arne Swinnen published a blog post on an
authentication bypass he achieved at Airbnb by stealing OAuth 2.0 access_tokens
[47]. Likewise in 2017, Max Moroz published a blog post on his OAuth 2.0 re-
search [30]. During his research, Moroz encountered common race conditions and
access_token/code invalidation issues.
Nowadays, Bug Bounty programs encourage researchers to analyze public services
and software, so does Twitter with its program. In November 2018, Terence Eden
reported an issue regarding incorrect permissions that were displayed on Twitter’s
consent screen [50], resulting in access to direct messages without explicit consent
given by the End-User.
Li et al. published their research on “Mitigating CSRF attacks on OAuth 2.0 and
OpenID Connect” [21] in 2018. In their paper, they outline the root causes for
real-world Cross-Site-Request-Forgery issues in the context of OpenID Connect and
OAuth 2.0 and propose a novel approach to mitigate CSRF in the wild.
In 2019 Fett et al. published their paper “An Extensive Formal Security Analysis of
the OpenID Financial-Grade API ” [13]. They analyze the OpenID Financial-Grade
API, a profile of OAuth 2.0 that is developed in an open process by the OpenID
foundation.
In August 2020, Saito et al. published their paper “Comparison of OAuth/OpenID
Connect Security in America and Japan”, in which they analyze 500 American elec-
tronic commerce websites regarding their OAuth 2.0 and OpenID Connect 1.0 im-
plementations. Additionally, the results of this evaluation are compared with similar
evaluation of Japanese websites [39].

1.3 Research Question

The overall research question of this master’s thesis can be summed up to: “How
secure are real-life OpenID Connect implementations in regard to previous research,
the specification’s security considerations and the OAuth 2.0 Security Best Current
Practices?”. Since its specification in 2014, many researchers have analyzed the
OpenID Connect 1.0 protocol and outlined security risks. This thesis aims to give
an impression on the adoption of previously proposed security mitigations by real-life



4 1 Introduction

implementations and the general awareness of the specification’s security consider-
ations.

1.4 Contribution

In this master’s thesis, a basic set of previously known attacks from academia and
non-formal sources is outlined and complemented with novel attack scenarios. The
resulting evaluation catalog is then applied to real-life OpenID Connect implementa-
tions. The most relevant findings are described in detail. Further, the analyzed prod-
ucts and services are thoroughly evaluated regarding the evaluation catalog. Finally,
common patterns and resulting proposed additions to the OpenID Connect security
considerations are derived and a conclusion is drawn.

1.5 Organization of this Thesis

A brief and motivating introduction to the topic of Single Sign-On, in general, and
OAuth 2.0 and OpenID Connect 1.0 security, in particular, is given in the first chap-
ter.
The second chapter focuses on the foundations needed for this master’s thesis, in-
cluding technical background regarding JSON and JWT, Single Sign-On and an
overview of Single Sign-On security as well as Identity and Service Provider flaws
and attacks.
The third chapter introduces the attacker models that are used throughout the the-
sis. In the fourth chapter, the selection of OpenID Connect 1.0 implementations as
well as the setup of the test environment is outlined.
The fifth chapter gives a short overview on the overall evaluation results regarding
Service Provider and Identity Provider implementations. Furthermore, the most
significant findings among the different products and services that were observed
are explained in detail.
The lessons learned including common issue patterns, resulting proposals for new
OpenID Connect security considerations and general information about the Respon-
sible Disclosure processes are presented in the sixth chapter.
Finally, in the seventh chapter, a conclusion on this master’s thesis is drawn and
future work is proposed.



2 Foundations

This chapter focuses on the foundations that are needed to understand the observa-
tions and findings in the following chapters.

2.1 JSON

The JavaScript Object Notation (JSON) is a serialization format for data. It was
initially developed for ECMAScript (third edition, 1999) but was later derived and
standardized as an independent standard in RFC4627 [9].
As per RFC8259, “JSON can represent four primitive types (strings, numbers,
booleans, and null) and two structured types (objects and arrays)” [12].
A JSON object consists of key-value pairs. Among these zero or more pairs, the key
is a string and the value is either “string, number, boolean, null, object, or array”
[12]. A non-normative example of a JSON object including possible value types is
shown below:

1 {
2 "a" :"b",
3 "c" : 1,
4 "d" : null,
5 "e" : {
6 "f" : "g"
7 },
8 "h" : [1, 2, 3],
9 "i" : true

10 }

Listing 2.1: An example JSON object including string, number, null, object, array
and boolean as values.

In contrast, an array is an ordered set of values in which the values can be from
different types:



6 2 Foundations

1 ["a", "b", 3, {"d":"e"}]

Listing 2.2: An example JSON array including string, number and object as values.

2.1.1 JWT, JWS and JWE

JSON Web Token (JWT) is a format to transfer data in an url-safe manner that was
standardized in RFC7519. It defines a JSON structure that is the payload of a JSON
Web Signature (JWS) or JSON Web Encryption (JWE) structure [24]. Therefore,
a JWT can be cryptographically secured using encryption and/or signatures.

The JOSE header of the JWT structure holds general information about the encod-
ing of the structure, including the algorithms used (“alg” claim) for integrity and
confidentiality protection as well as key references.

1 {
2 "typ" : "JWT",
3 "alg" : "HS256"
4 }

Listing 2.3: An example JOSE header declaring that it belongs to a JWT structure
that is a JWS using the HMAC SHA-256 algorithm for MAC-generation.

Specific and standardized JWT contents are part of the payload, including the fol-
lowing claims:

• iss: The issuer claim holds information on the entity that issued the JSON
Web Token. The “iss” claim is a case sensitive string.

• sub: The subject claim holds information on the entity that is accountable for
the JSON Web Token. The “sub” claim is a case sensitive string.

• aud: The audience claim holds information on the entity that should receive
the JSON Web Token. The “aud” claim is a case sensitive string.

• exp, iat, nbf : These claims hold information on the freshness of the JSON
Web Token. A JWT is neither valid before its “nbf” claim nor after its “exp”
claim and was issued at the time provided via “iat”. The claims are encoded
as numbers, containing an UNIX Time Stamp value.



2.2 Single Sign-On (SSO) 7

1 {
2 "iss" : "Joe",
3 "sub" : "Alice",
4 "aud" : "Bob",
5 "iat" : 821404800
6 }

Listing 2.4: An example JWT structure (only decoded payload) that was issued by
Joe for Alice on 12th January 1996 that is intended for Bob.

2.2 Single Sign-On (SSO)

This section covers the general concept of Single Sign-On mechanisms. After this
high-level introduction, specific protocols are introduced and their relationships are
explained.

2.2.1 General Concept

Users frequently have to authenticate at a growing amount of services and websites.
In a traditional setup, this could be implemented using dedicated accounts per
service.

“Single Sign-On” protocols address this by adding a trusted third party to this
setup, which is responsible for user management. This third party is often called
“Identity Provider”, in contrast to the “Service Provider” that offers functionality for
End-Users. Identity and Service Providers can either communicate using a direct
server-to-server connection that is called the “back-channel” or using an indirect
channel through the user’s User Agent that is called “front-channel”, as shown in
Figure 2.1.

The front-channel is in most cases implemented by redirecting the user’s User Agent
and passing arguments along, as shown in Figure 2.2.

The trusted third party can provide different information to a service. One key
difference lies in the distinction between authentication and authorization. In an
authentication scenario the Service Provider tries to determine the identity of an
entity, e.g. to create an account that is linked to this identity or to log-in an
existing user. In contrast in an authorization scenario, the Service Provider does
not necessarily get information about the identity of an entity but is authorized to
perform privileged actions on behalf of that entity.



8 2 Foundations

Figure 2.1: Idealized Single Sign-On scenario with front- and back-channel.

Figure 2.2: Single Sign-On front-channel communication using redirect.

2.2.2 OAuth 2.0

The OAuth 2.0 Authorization Framework was standardized in RFC 6749 in 2012
[11]. It defines the following four roles:

• Resource Owner. An entity or person who can grant access to a resource.

• Resource Server. The server that hosts the resource. It implements access
control and accepts access_tokens for authorization.

• Client. The application that is granted access to the protected resource. The
client performs authorized requests on behalf of the Resource Owner.

• Authorization Server. The server that authenticates the Resource Owner
and issues access_tokens.



2.2 Single Sign-On (SSO) 9

Within the protocol the following two Authorization Server endpoints are defined:

• Authorization Endpoint. This endpoint is used by the client to obtain
authorization. The Resource Owner is redirected to this endpoint via his User
Agent. The Authorization Server then authenticates the Resource Owner,
the exact implementation (e.g. authentication using credentials or an active
session) is not specified. After successful authentication, the Resource Owner
is redirected to the Client’s Redirection Endpoint.

• Token Endpoint. This endpoint is used by the Client to exchange a pre-
viously granted authorization grant (e.g. code) for an access_token. The
bearer token can then be used by “Any party in possession of a bearer token”
to “get access to the associated resources” [23]. To obtain the token, Confiden-
tial Clients authenticate themselves using Client Credentials, Public Clients
do not possess a client_secret.

Additionally, one Client endpoint is defined:

• Redirection Endpoint. After successful authentication, the Authorization
Server returns the authorization credentials to this endpoint via the Resource
Owner’s User Agent.

2.2.2.1 Code Flow

The Authorization Code Grant is a redirect-based flow that was initially “optimized
for confidential clients” [11, Section 4.1.].

In Figure 2.3, an idealized protocol flow is given. The flow consists of the following
steps:

1. Request Resource. The initial step is non-normative. The End-User re-
quests a resource for which the Client needs further authorization.

2. Authorization Request. To start the OAuth 2.0 authorization flow, the
Client redirects the End-User to the Authorization Endpoint of the Autho-
rization Server. In doing so, it must include response_type=code and the
client_id as parameters. It is recommended to include an additional state
parameter to prevent Cross-Site-Request-Forgery issues. Optionally a scope
and a redirect_uri can be submitted.

3. Authorization Response. After the non-normative authentication of the
Resource Owner at the Authorization Server, the End-User is redirected to
the Redirection Endpoint of the Client. In this redirect, the Authorization
Server includes the code parameter. If the Client includes a state within its
Authentication Request, this values is also submitted as CSRF protection.



10 2 Foundations

Figure 2.3: Protocol Flow: OAuth 2.0 Authorization Code Flow including most sig-
nificant parameters.

4. Token Request. After receiving the code and validating the state, the
Client redeems the code at the Token Endpoint of the Authorization Server.
It includes grant_type=authorization_code, the code, the client_id and
the redirect_uri (if included within the Authorization Request) in this
request.

5. Token Response. Within the Token Response, the Authorization Server
transfers the access_token, the token_type and optionally a refresh_token
and an expires_in parameter to the Client.

6. Resource Request. After receiving the bearer access_token that grants
the privileges to request resources on behalf of the Resource Owner, the Client
requests the resource from the Resource Server.

7. Resource Response. If a valid and authorized access_token was provided,
the Resource Server responds with the requested resource.

8. Receive Resource. Finally, the Client responds with the initially requested
resource.



2.2 Single Sign-On (SSO) 11

2.2.2.2 Implicit Flow

The Implicit Grant is a redirect-based flow that was initially intended for pub-
lic clients that can not store Client Credentials confidently. As within the flow
access_tokens are transferred through the front-channel, “clients SHOULD NOT
use the implicit grant (response type "token") or other response types issuing ac-
cess tokens in the authorization response, unless access token injection in the au-
thorization response is prevented and the aforementioned token leakage vectors are
mitigated” [48, Section 2.1.2.].

Figure 2.4: Protocol Flow: OAuth 2.0 Authorization Implicit Flow including most
significant parameters.

The Implicit Flow differs from the Authorization Code Flow in the following re-
quests:

1. Authorization Response. After the non-normative authentication of the
Resource Owner at the Authorization Server, the End-User is redirected to the
Redirection Endpoint of the Client. In this redirect, the Authorization Server
includes within the fragment (#) the access_token, the token_type and the
state (if used in Authorization Request). Optionally, the scope parameter
can be included. Specifying the expires_in value is recommended.
User Agents omit the fragment of URLs during redirection, so that the request
without the fragment is received at the Client’s Redirection Endpoint.



12 2 Foundations

2. Script. In response to the request received at the Redirection Endpoint, the
Client sends JavaScript to the Resource Owner’s User Agent. The JavaScript
has access to the fragment and extracts the access_token.

3. Fetch Resource. After receiving the bearer access_token that grants the
privileges to request resources on behalf of the Resource Owner, the Client
requests the resource from the Resource Server.

4. Receive Resource. Finally, the Resource Server responds with the initially
requested resource.

2.2.2.3 Refresh Flow

An Authorization Server can grant refresh_tokens which are normally long-living
tokens in contrast to the rather short-living access_tokens. A refresh_token can
be redeemed against a fresh access_token within the Refresh Flow. To obtain the
access_token, a Client sends a Refresh Request to the Authorization Server’s To-
ken Endpoint including grant_type=refresh_token and the refresh_token value.
Optionally, a scope parameter can be included within the Refresh Request [11,
Section 1.5.].

2.2.2.4 Resource Owner Password Credentials and Client Credentials

If the Resource Owner Password Credentials Grant is used, the Client obtains the
Resource Owner’s credentials in order to request an access_token. According
to the specification, the grant type should only be used “in cases where the Re-
source Owner has a trust relationship with the client” [11, Section 4.3.]. As of 2020,
this has been updated to “The Resource Owner password credentials grant MUST
NOT be used” within the OAuth 2.0 Security Best Current Practices [48, Section
2.4.].

The Client Credentials Grant is used, if the Client requests authorization for re-
sources under its control. Therefore, it is sufficient to send an authenticated Access
Token Request using Client Credentials and grant_type=client_credentials to
obtain an access_token.

2.2.3 OpenID Connect 1.0

OpenID Connect 1.0 was specified 2014 as “a simple identity layer on top of the
OAuth 2.0 protocol” [33]. The OpenID Connect protocol consists of the following
three entities:



2.2 Single Sign-On (SSO) 13

• End-User. A person that wants to authenticate at a Relying Party. In terms
of OAuth 2.0, this is the Resource Owner.

• OpenID Provider. The Identity Provider that authenticates the End-User
for a Relying Party. In terms of OAuth 2.0, this entity unites the Authorization
Server and the Resource Server.

• Relying Party. The Service Provider that wants to authenticate an End-
User. In terms of OAuth 2.0, this is the Client application.

Beside the Token Endpoint and the Authentication Endpoint that use previously
specified endpoints within the OAuth 2.0 Authorization Framework, the UserInfo
Endpoint that utilizes the access_token for authorization is introduced with OpenID
Connect 1.0. In terms of OAuth 2.0, this is the mechanism used for authorization
at the Resource Server.

2.2.3.1 ID Token

The most significant extension to the OAuth 2.0 Authorization Framework that is
introduced in OpenID Connect 1.0 is the id_token [33, Section 2.]. The token
is represented as JSON Web Token (JWT) and contains claims about the End-
User that authenticates at a Relying Party using an external OpenID Provider.
It is issued by the OpenID Provider. The id_token must include the following
claims:

• iss. The issuer of the Authentication Response. This claim must be a case
sensitive URL using https and including host, scheme, path and optionally
port. It must not include query or fragment components.

• sub. The subject of the JWT. This claim must hold a locally unique identifier
for the End-User.

• aud. The audience(s) for which the JWT is intended to. This claim must
contain the OAuth 2.0 client_id of the Relying Party.

• exp. The expiration time after which the token must not be accepted.

• iat. The time at which the JWT was issued.

• nonce. If a nonce was included within the Authentication Request, this
value must be included as “nonce” claim within the id_token.

The following claims are optional and may be included:

• auth_time. This claim holds the time when the End-User was authenti-
cated.



14 2 Foundations

• acr. This value holds the Authentication Context Class Reference, which in-
dicates what requirements of ISO 29115 were met during End-User authenti-
cation.

• amr. The Authentication Methods References JSON array indicates which
authentication methods were used during authentication, for example pwd
(password), face (facial recognition), fpt (fingerprint) or mfa (multi-factor au-
thentication).

• azp. The Authorized Party to which the id_token was issued. If present, it
must contain the client_id of this entity.

2.2.3.2 Code Flow

The Code Flow is based on the OAuth 2.0 Authorization Code Flow. In the fol-
lowing, differences and additions within the requests being performed in an OpenID
Connect Code Flow are outlined.

Figure 2.5: Protocol Flow: OpenID Connect Authorization Code Flow including
most significant parameters.



2.2 Single Sign-On (SSO) 15

1. Authentication Request. To start the OpenID Connect authentication
flow, the client redirects the End-User to the Authentication Endpoint of
the OpenID Provider. It must include response_type=code, the client_id,
scope=openid and the redirect_uri. It is recommended to include an addi-
tional state parameter to prevent Cross-Site-Request-Forgery (CSRF) issues.
There are further optional parameters like nonce, display, prompt, max_age,
ui_locales, id_token_hint, login_hint and acr_values.

2. Authentication Response. After the non-normative authentication of the
End-User at the OpenID Provider, the End-User is redirected to the Redirect-
ion Endpoint of the Relying Party. In this redirect, the OpenID Provider
includes the code parameter. If the Relying Party included a state within its
Authentication Request, this values is also submitted as CSRF protection.

3. Token Request. After receiving the code and validating the state, the
Client redeems the code at the Token Endpoint of the OpenID Provider. It
includes grant_type=authorization_code, the code, the client_id and the
redirect_uri in this request.

4. Token Response. Within the Token Response, the OpenID Provider trans-
fers the id_token, the access_token, the token_type and optionally a refresh-
_token and an expires_in parameter to the Relying Party.

5. UserInfo Request. After receiving the bearer access_token that grants
the privileges to request additional UserInfo for the End-User, the Relying
Party sends a request to the UserInfo Endpoint of the OpenID Provider.

6. UserInfo Response. If a valid and authorized access_token was provided,
the OpenID Provider responds with the UserInfo Response.

2.2.3.3 Implicit and Hybrid Flow

Beside the Code Flow, OpenID Connect offers an Implicit Flow that is based on the
OAuth 2.0 Implicit Authorization Grant and a Hybrid Flow combining the Implicit
and Code Flow.

For OpenID Connect, flows that transfer access_tokens through the front-channel
are considered deprecated just like for OAuth 2.0. This applies to the Implicit
Flow as well as to Hybrid Flow variants which use response_type=code token or
response_type=code id_token token.
As a result, only the Hybrid Flow with code and id_token within the front-channel
is not considered deprecated.



16 2 Foundations

Figure 2.6: Protocol Flow: OpenID Connect Implicit and Hybrid Flow including
most significant parameters.

The protocol flow in Figure 2.6 includes the OpenID Connect Implicit Flow and
additional requests that are only performed if the Hybrid Flow is used, which are
marked in red. In the following, differences to the OpenID Connect Code Flow are
outlined:

1. Authorization Response. After the non-normative authentication of the
End-User at the OpenID Provider, the End-User is redirected to the Redirec-
tion Endpoint of the Relying Party. In this redirect, the OpenID Provider in-
cludes depending on the response_type within the Authentication Request
a fragment (#) including the id_token, the access_token, the token_type
and the state (if used in Authentication Request), as well as a code value
as query parameter if the Hybrid Flow is used. Optionally, the scope param-
eter can be included, specifying the expires_in values is recommended.
User Agents omit the fragment of URLs during redirection, so that the request



2.2 Single Sign-On (SSO) 17

without the fragment but including the code (Hybrid Flow only) is received
at the Client’s Redirection Endpoint.

2. Script. In response to the request received at the Redirection Endpoint,
the Client sends JavaScript to the End-User’s User Agent. The JavaScript
has access to the fragment and extracts the access_token and the id_token
(depending on the response_type).

3. Token Request. Hybrid Flow only: After receiving the code and validating
the state, the Relying Party redeems the code at the Token Endpoint of the
OpenID Provider. It includes grant_type=authorization_code, the code,
the client_id, the client_secret and the redirect_uri in this request.

4. Token Response. Hybrid Flow only: Within the Token Response, the
OpenID Provider transfers the id_token, access_token’, the token_type
and optionally a refresh_token and an expires_in parameter to the Rely-
ing Party.

5. UserInfo Request. If the Relying Party received the bearer access_token
that grants the privileges to request resources on behalf of the Resource Owner
within the front-channel, it requests additional information about the End-
User from the UserInfo Endpoint. In Hybrid Flow, the access_token’ is used
to query the UserInfo Endpoint through the back-channel.

2.2.3.4 OpenID Connect Discovery 1.0

With the OpenID Connect Discovery 1.0 specification, the OpenID Foundation spec-
ifies a “mechanism for an OpenID Connect Relying Party to discover the End-User’s
OpenID Provider and obtain information needed to interact with it” [34].
If a Service Provider performs the discovery, it obtains the OpenID Provider Meta-
data by sending an OpenID Provider Configuration Request to the Identity Pro-
vider’s Configuration Endpoint at <issuer>/.well-known/openid-configuration.
In response, the Identity Provider serves its configuration as JSON array via the
OpenID Provider Configuration Response. A non-normative Configuration Re-
sponse is given in Listing 2.5.

2.2.3.5 OpenID Connect Dynamic Client Registration 1.0

With the OpenID Connect Dynamic Client Registration 1.0 specification, the OpenID
Foundation specifies, “how an OpenID Connect Relying Party can dynamically reg-
ister with the End-User’s OpenID Provider” [35].
There are two additional endpoints to the core specification defined within this spec-
ification, the Client Registration Endpoint and the Client Configuration Endpoint.
Using a Client Registration Request, a Client can register itself at the Identity

<issuer>/.well-known/openid-configuration


18 2 Foundations

{
"issuer":"https://example.com/",
"authorization_endpoint":"https://example.com/auth",
"token_endpoint":"https://example.com/token",
"userinfo_endpoint":"https://example.com/userinfo",
"jwks_uri":"https://example.com/jwks",
"registration_endpoint":"https://example.com/register",
"response_types_supported":["code","token id_token"],
"subject_types_supported":["public","pairwise"],
"id_token_signing_alg_values_supported":["RS256"]

}

Listing 2.5: OpenID Connect Discovery: Non-Normative Configuration
Response.

Provider’s Registration Endpoint.
An already registered Client can determine its configuration at the Identity Provider
by sending a Client Read Request to the Configuration Endpoint.

2.3 Single Sign-On Security

In the following, based on the OAuth 2.0 and OpenID Connect 1.0 specification
[11][33], the OAuth 2.0 Security Best Current Practices [48] and previous research,
assertions for secure OpenID Connect Implementations are defined. References for
the assertions are given and possible attacks that can be performed if the assertions
are not met are sketched.

2.3.1 Identity Provider Security

The Identity Provider (IdP), OpenID Provider (OP), or in the context of OAuth
2.0 Authorization Server (AS) has to take care of the following aspects to reliably
authenticate End-Users to Relying Parties.

2.3.1.1 Redirect URI Protection

The redirect_uri validation is crucial for the security of an OpenID Connect Iden-
tity Provider implementation. The OpenID Connect specification requires, that the



2.3 Single Sign-On Security 19

provided value within the Authentication Request “MUST exactly match one of
the Redirection URI values for the Client pre-registered at the OpenID Provider” [33,
Section 3.1.2.1.]. The comparison must be performed using “Simple String Compar-
ison”.
On the other hand, the specification is quite vague regarding the allowed schemes
for redirect_uris. Https should be used, but “The Redirection URI MAY use an
alternate scheme, such as one that is intended to identify a callback into a native
application” [33, Section 3.1.2.1.]. This allows potentially dangerous schemes like
javascript, vbscript and data.

IdP-1-1. The redirect_uri within the Authentication Request must be com-
pared against the pre-registered URIs using “Simple String Comparison”.
IdP-1-2. The redirect_uri must not allow dangerous schemes like javascript,
vbscript or data.

2.3.1.2 HTTP

According to previous research, OpenID Connect “explicitly allows for any redirec-
tion method to be used for the redirection” [15, Section III; A. 5)]. This would allow
to use the HTTP 307 redirect, which only slightly differs from a 302 redirect but
“guarantees that the method and the body will not be changed when the redirected
request is made” [32].
As a result, if the Identity Provider receives the POST request to its Login Endpoint
including the End-User’s credentials and immediately responds with a status code
307, the User Agent performs the redirect and includes the End-User’s Request Body
containing the credentials within the request to the Service Provider.

IdP-2-1. The Authentication Response redirect to the redirect_uri must not
utilize the HTTP 307 status code.

2.3.1.3 Request Object, request_uri and Registration Object

The Request Object is a possibility to pass OpenID Connect requests “in a single,
self-contained parameter [...] optionally signed and/or encrypted” [33, Section 6.].
As this value is a JWT, a secure signing algorithm should be used. In addition,
“response_type and client_id parameters MUST be included using the OAuth 2.0
request syntax, since they are REQUIRED by OAuth 2.0” [33, Section 6.1.].
The Request Object can be passed along the Authentication Request by value or
by reference using the request_uri parameter. If this parameter is supported, the
Identity Provider fetches the external resource to obtain the Request Object [33,
Section 6.2.].

The specification defines the registration parameter that is intended for Self-
Issued OpenID Providers. The parameter “SHOULD NOT be used when the OP is



20 2 Foundations

not a Self-Issued OP” [33, Section 7.2.1.]. If the parameter is considered in regular
Authentication Requests, pre-configured values could be overwritten.

IdP-3-1. The request_uri parameter should be disabled by default. If it is en-
abled, the Identity Provider must enforce the request_uris whitelist for request_uri
values.
IdP-3-2. The signature validation of the Request Object must enforce a secure
signing algorithm, therefore the “none” algorithm must not be accepted.
IdP-3-3. The Request Object must include all required parameters.
IdP-3-4. The registration parameter within the Authentication Request must
only be considered if the OP is self-issued.

2.3.1.4 Access-Token, Refresh-Token and Client Credentials Protection

Token and Client Credentials are valuable secrets within an OpenID Connect setup,
as they are normally rather long-living and inherit privileges. Therefore, secure stor-
age of these secrets is crucial and “credential storage protection best practices” [49,
Section 5.1.4.1.] need to be applied.
Client Credentials need to be strong, “for instance, for HS256, the client_secret
value MUST contain at least 32 octets (and almost certainly SHOULD contain more”
[33, Section 16.19.]. Otherwise, the Token Endpoint could act as an oracle for Client
Credentials, if no rate limiting is applied and weak client secrets can be chosen [11,
Section 2.3.1.].
The access_token should expire after a reasonable timeout and have a limited scope
to reduce the impact of leakage. We consider a lifespan of 60 minutes as reasonable
for our evaluation. The refresh_token values normally have a longer lifespan, but
should expire in case of security events (for instance if the password is changed) [48,
Section 4.12.]. Additionally, the refresh_token must be bound to a client_id and
must be either rotated or sender constrained [48, Section 4.12.].
A Cache-Control header misconfiguration can lead to access-control restricted re-
sources like the UserInfo Response to be cached within HTTP proxies or the
browser cache. Therefore, responses to requests that use the access_token for
authorization “should send a Cache-Control header containing the "no-store" op-
tion” [49, Section 4.6.6.].
Finally, End-Users should have control over given permissions to Service Providers
and should be able to revoke access_tokens and refresh_tokens at the Identity
Provider.

IdP-4-1. The storage of sensitive OpenID Connect parameters must follow current
credential storage best practices.
IdP-4-2. The Identity Provider must enforce that Clients use sufficiently strong
client_secrets and should implement rate limiting at the Token Endpoint.



2.3 Single Sign-On Security 21

IdP-4-3. The access_token should not have a life-span longer than 60 minutes
and have a limited scope. The refresh_token should be invalidated in case of
security events.
IdP-4-4. The responses to requests that used the access_token for authorization
must set the Cache-Control HTTP header to “no-store”.
IdP-4-5. The End-User should be able to revoke tokens at the Identity Provider.

2.3.1.5 Code Protection

Within the Token Request, Client Authentication using a client_secret is op-
tional, according to the specification, because in the context of public Clients this
value can not be kept secret. For this reason, some implementations allow to distin-
guish between public and confidential Clients. Wherever applicable, Client Authen-
tication must be used and enforced by the Identity Provider when code values are
redeemed.
The code is a short-living (we consider a lifespan of 10 minutes as reasonable for
our evaluation) and one-time-usable sufficiently randomly chosen value. It must be
bound to the client_id and the exact redirect_uri it was issued for. Further-
more, the code must be bound to the nonce that is returned within the id_token
that is sent in response to the Token Request containing the code [48, Section
2.1.2.].
Finally, the code value must be immediately invalidated on all potentially distributed
hosts if redeemed once. Otherwise, race conditions can occur that lead to multiple
access_token values being returned for one code [30]. If the End-User revokes the
permissions previously granted to a Service Provider, all tokens need to be revoked,
including code values that could be redeemed for fresh access_tokens otherwise
[30].

IdP-5-1. Client Authentication using Client Credentials must be enforced.
IdP-5-2. The code must be one-time-usable, short-living (max 10 minutes lifes-
pan) and sufficiently random.
IdP-5-3. The code must be bound to the client_id and the exact redirect_uri
it was issued for.
IdP-5-4. The code must be bound to the nonce that is included within the
Authentication Request, the nonce included within the id_token must be equal
to the previously chosen value.
IdP-5-5. The code must be immediately invalidated after it was used once to pre-
vent race conditions.
IdP-5-6. If the End-User revokes the permissions granted to a Client, valid code
values that were previously obtained by a Client must be invalidated.



22 2 Foundations

2.3.1.6 Proof Key for Code Exchange

Although the Proof Key for Code Exchange (PKCE) was initially designed to protect
native applications, the OAuth 2.0 Security Best Current Practice Draft states that
“Authorization servers MUST support PKCE”. Furthermore, “Authorization servers
MUST provide a way to detect their support for PKCE” [48, Section 2.1.].

IdP-6-1. PKCE must be supported.
IdP-6-2. The OpenID Provider must provide a way to detect its PKCE support.

2.3.1.7 Audience Confusion

In order to prevent confusion, “Authorization servers SHOULD NOT allow clients to
influence their "client_id" or "sub" value or any other claim if that can cause confu-
sion with a genuine Resource Owner” [48, Section 2.6.].

IdP-7-1. Identity Providers should not allow Clients to influence their client_id
or “sub” claim.

2.3.1.8 Consent Screen

IdP-8-1. The requested permissions that are presented on the Consent Screen
must match the permission-set that is actually applied to the access_token that is
returned to the Service Provider.

2.3.1.9 Dynamic Client Registration

If OpenID Connect Dynamic Client Registration is implemented, some kind of
access-control should be applied before clients could register, for instance using Ini-
tial Access Tokens or Host/IP restrictions [35, Section 3.]. Alternatively, any client
that registers without further authentication may require manual review to be en-
abled.
If it is implemented, the sector_identifier_uri must only support https [35, Sec-
tion 5.].
The Client Metadata can contain various URIs. The Identity Provider must prevent
SSRF vulnerabilities as well as injection issues that could for instance occur if ex-
ternal resources specified during registration are embedded on the Login or Consent
Screen.

IdP-9-1. Dynamic Client Registration should be restricted by some kind of access-
control.



2.3 Single Sign-On Security 23

IdP-9-2. The sector_identifier_uri must only support https.
IdP-9-3. The URIs present within the Client Metadata must be handled carefully
to prevent injection and SSRF issues.

2.3.1.10 Client Authentication

There are multiple different Client Authentication mechanisms that can be used to
authenticate Service Providers at the Token Endpoint, including the two JWT based
mechanisms “client_secret_jwt” and “private_key_jwt”.

IdP-10-1. If JWT based Client Authentication mechanisms are used, the JWT
must be validated regarding required claims specified within the OpenID Connect
1.0 specification [33, Section 3.1.3.7.].
IdP-10-2. If JWT based Client Authentication mechanisms are used, the signa-
ture of the JWT must be validated. In doing so, the “none” algorithm must be
explicitly forbidden. The key that is used for the signature validation must be cho-
sen using the client_id of the Client.
IdP-10-3. If JWT based Client Authentication mechanisms are used, the fresh-
ness of the JWT must be validated. Therefore, the “iat”, “exp”, “nbf” and “jti”
claims need to be checked.

2.3.2 Identity Provider Attacks and Flaws

In the following, Identity Provider related attacks and flaws are described in de-
tail.

2.3.2.1 Injection

Injection flaws are a common issue in web applications. There are various different
kinds of injections.

Insufficient Filtering. If an Identity Provider fails to sanitize attacker-controlled
contents sufficiently, but this flaw can not be exploited, e.g. for Cross-Site-Scripting
(XSS), we still consider this as Insufficient Filtering.
If an Identity Provider does not enforce IdP-1-2 (subsubsection 2.3.1.1), a mali-
cious Service Provider (section 3.3) can choose redirect_uri values with an arbi-
trary scheme. This allows potentially dangerous schemes like javascript, vbscript
and data. If an implementation allows registering redirect_uris that use danger-
ous schemes, we consider this a security-relevant finding. Depending on the User
Agent’s behavior, this can lead to Cross-Site-Scripting (XSS) vulnerabilities. Even if
JavaScript is executed using a data URI, which results in script execution within the
null origin in recent User Agents, an attacker may be able to launch a Cross-Origin



24 2 Foundations

State Inference (COSI) attack like Sudhodanan et al. pointed out in their paper
“Cross-Origin State Inference (COSI) Attacks: Leaking Web Site States through
XS-Leaks” [46].

Cross-Site-Scripting. If an Identity Provider does not sanitize End-User and
Service Provider controlled contents, a malicious Service Provider (section 3.2) or a
web attacker (section 3.1) can be able to inject JavaScript that is executed within
the context of the Identity Provider in the End-User’s User Agent. An example
of such a value is the login_hint that can be passed along the Authentication
Request. If this value is not sanitized before it is reflected on the Login Screen,
this could lead to reflected XSS. Using XSS, a malicious actor could for instance try
to steal a victim’s session at the Identity Provider or to bypass Cross-Site-Request-
Forgery (CSRF) protections and perform actions on the Identity Povider as victim
user.

2.3.2.2 HTTP 307 redirect

If an Identity Provider violates IdP-2-1 (subsubsection 2.3.1.2) and utilizes an
HTTP 307 status code for the redirect to the redirect_uri in response to the
Login Request, the User Agent performs the redirect to the Service Provider and
includes the End-User’s request body containing the credentials within the request.
After obtaining the End-User’s credentials that are disclosed within the forwarded
POST body, the Service Provider is then able to impersonate the End-User at the
Identity Provider, as shown in Figure 2.7.

Figure 2.7: HTTP status code 307 Redirect in a Single Sign-On scenario disclosing
End-User’s credentials.



2.3 Single Sign-On Security 25

2.3.2.3 Open Redirect and Token Disclosure

If an Identity Provider violates IdP-1-1, (subsubsection 2.3.1.1) and does not check
the redirect_uri using “Simple String Comparison” against the pre-configured
values, this enables an Open Redirect vulnerability [48, Section 4.9.2.][11, Sec-
tion 4.1.2.1.]. A web attacker (section 3.1) could redirect the victim End-User to
the Authentication Endpoint including a redirect_uri pointing to an attacker-
controlled domain. If the victim is authenticated at the Identity Provider, the
Identity Provider immediately responds with the Authentication Response redi-
rect to the redirect_uri including a valid code (or access_token depending on
the OpenID Connect flow that is used) that is sent to the attacker-controlled do-
main. Besides the risk for phishing that is caused by Open Redirect issues, sensitive
OpenID Connect secrets are disclosed to the attacker.

2.3.2.4 Brute Force

An Identity Provider implements multiple endpoints that are used for authentica-
tion. If there is no rate limiting implemented on these endpoints and additionally
weak secrets can be chosen, this yields the risk of brute force attacks [11, Section
2.3.1.].

User Credentials. If there is no rate limiting at the Login Endpoint and End-
Users are allowed to choose weak passwords, a web attacker (section 3.1) can launch
an online brute force attack against the Identity Provider to guess the End-User’s
credentials.

Client Credentials. If there is no rate limiting at the Token Endpoint and
Clients may choose weak client_secrets (IdP-4-2, subsubsection 2.3.1.4), a mali-
cious web attacker (section 3.1) can launch an online brute force against the Identity
Provider to guess the Client’s Credentials. Therefore, RFC6749 requires that “the
authorization server MUST protect any endpoint utilizing it against brute force at-
tacks” [11, Section 2.3.1.].

2.3.2.5 Broken Authentication and Access Control

Code Invalidation. As pointed out in [30], the code needs to be invalidated
immediately after it was redeemed the first time (IdP-5-5, subsubsection 2.3.1.5).
Otherwise, race conditions can occur in a decentralized system, resulting in multiple
access_tokens being issued for one code.
Likewise pointed out in [30], a common flaw in OAuth 2.0 and OpenID Connect im-
plementations is a missing code invalidation after an End-User revokes permissions
for a Client (IdP-5-6, subsubsection 2.3.1.5). Depending on the actual implemen-
tation, if the code is not invalidated, a malicious Service Provider (section 3.3)



26 2 Foundations

can at least obtain one fresh access_token which holds privileges as long as it is
valid. In some implementations, redeeming a valid code after the permissions for
the Client were revoked even leads to restoring the complete permission-set persis-
tently.

2.3.2.6 Denial-of-Service

Issuing new sufficiently random code, access_token and refresh_token values
in Authorization or Refresh Flows can be an exhaustive operation for Identity
Providers. Therefore, a reasonable rate limiting should be considered and a suf-
ficient amount of token values should be available in storage to prevent exhaustive
generation of new random tokens. If no rate limiting is in place, a web attacker
(section 3.1) can launch a Denial-of-Service attack against the Identity Provider [49,
Section 4.4.1.11.].

2.3.2.7 Audience Confusion

If an Identity Provider violates IdP-7-1 (subsubsection 2.3.1.7), a malicious Service
Provider (section 3.3) can influence its client_id so that it may confuse genuine
Service Providers.

2.3.2.8 Server-Side Request Forgery

Request URI. Fett et al. outlined in 2017, that the request_uri allows inten-
tional unauthenticated Server-Side Request Forgery (SSRF) [15, Section III; A. 8)].
If this parameter is implemented, the Identity Provider is supposed to fetch the re-
source to obtain the Request Object. As a result, if the Identity Provider violates
IdP-3-1 (subsubsection 2.3.1.3), an unauthenticated web attacker (section 3.1) can
launch a SSRF attack against the victim Identity Provider.

2.3.2.9 Sensitive Information Disclosure

Referer Leaks. If an Identity Provider embeds external resources on sensitive
endpoints like the Login Endpoint and there is no Referrer-Policy defined, the
Referer HTTP header may disclose sensitive OpenID Connect parameters like
state and nonce to third parties.

Unencrypted Communication. If an Identity Provider violates requirements
regarding the TLS-enforcement, e.g. IdP-7-1 (subsubsection 2.3.1.7), sensitive in-
formation is transferred in plain text over the network. A man-in-the-middle attacker
(section 3.5) can eavesdrop, modify or drop this communication.



2.3 Single Sign-On Security 27

2.3.2.10 Signature Manipulation

If the signature validation for the Client Authentication mechanisms using JWTs
is not sufficiently implemented and the Identity Provider violates IdP-10-1 (sub-
subsection 2.3.1.10), IdP-10-2 (subsubsection 2.3.1.10) or IdP-10-3 (subsubsec-
tion 2.3.1.10), a web attacker (section 3.1) that obtained a valid code can bypass
the Client Authentication and can impersonate any Client at the Token Endpoint
in order to redeem code values.

2.3.3 Service Provider Security

The Service Provider (SP) or Relying Party (RP) has a different set of assertions to
fulfill than the Identity Provider. It potentially has to keep track of multiple Identity
Providers, internal and external user accounts, replayed messages and many more
threats covered in the following sections.

2.3.3.1 Replay Protection

In order to prevent id_token replay, the freshness of the JWT must be checked.
In doing so, the Service Provider must validate the JWT regarding its “exp”,
“iat”, “nbf” and “jti” claims. Additionally, the nonce value has to be checked
against the value that was set within the Authentication Request [33, Section
16.].

SP-1-1. The freshness of the id_token must be validated regarding the “exp”,
“iat”, “nbf” and “jti” claims.
SP-1-2. The “nonce” claim within the id_token must be checked against the
nonce passed along the Authentication Request.

2.3.3.2 Signature Validation

If the Code Flow is used, validation of the id_token’s JWT received through back-
channel communication is not mandatory, according to the specification. Neverthe-
less, the Service Provider should validate the JWT’s signature. In doing so, the
“none” algorithm should be declined.
As the id_token is a JWT, its JOSE header can contain references to the key that
is used for signature validation. This information could be specified using the fol-
lowing headers: “kid”, “jku”, “jwk”, “x5u” or “x5c”. These parameters should not
be interpreted by Service Providers to prevent Key Confusion [26, Section 3.1.5].
If the Service Provider supports the OpenID Connect Discovery, a malicious Identity
Provider (section 3.2) can try to overwrite configurations of existing benign Identity



28 2 Foundations

Providers, e.g. by claiming the same client_id [26, Section 3.1.4].
Finally, the Service Provider needs to keep track of the signature and MAC algo-
rithms for which each key is intended for. For instance, asymmetric keys must not
be used for symmetric algorithms [26].

SP-2-1. The Service Provider should validate the signature of id_tokens it re-
ceives via back-channel communication.
SP-2-2. The Service Provider must not accept the “none” algorithm as signature
algorithm for id_tokens.
SP-2-3. The Service Provider must not interpret external references to keys within
the JWT’s JOSE header.
SP-2-4. The Service Provider must strictly restrict the usage of keys to their in-
tended algorithm, for instance, RSA keys must not be used for symmetric algorithms
like HMAC SHA-256.

2.3.3.3 Token Recipient Validation

SP-3-1. The “aud” claim within the id_token must contain the client_id of the
Relying Party.
SP-3-2. The “azp” claim within the id_token must contain the client_id of the
party the id_token was issued to.

2.3.3.4 ID Validation

During the id_token validation, the Service Provider needs to pay additional atten-
tion to the “iss” claim. If this claim is not sufficiently checked, a malicious Identity
Provider (section 3.2) could confuse the benign Service Provider [26, Section 3.1.4].
If the Service Provider uses other claims than the “sub” claim to map the external
user to an internal account, these non-normative claims need to be handled carefully.
Especially, the “email” claim that could be added to a JWT “MUST NOT” be used
“for anything related to identify the End-user” [26, Section 3.1.4].
Finally, if OpenID Connect Discovery is supported, the issuer within the discovery
“MUST be identical to the issuer value returned by WebFinger. This also MUST be
identical to the iss Claim value in ID Tokens issued from this Issuer” [34, Section
4.3.].

SP-4-1. The Service Provider needs to validate the URL that is provided as “iss”
claim carefully to prevent confusion between multiple Identity Providers.
SP-4-2. The Service Provider must not use the “email” claim for authentication
purposes. If non-normative claims are used for authentication, these need to be
handled carefully.
SP-4-3. If the Service Provider implements OpenID Discovery, the issuer within



2.3 Single Sign-On Security 29

the discovery must be identical to the issuer values present during WebFinger and
within id_tokens.

2.3.3.5 Sub Claim Validation

Because there is no guarantee that the UserInfo Response is about the End-User
identified within the id_token, “The sub Claim in the UserInfo Response MUST be
verified to exactly match the sub Claim in the ID Token; if they do not match, the
UserInfo Response values MUST NOT be used” [33, Section 5.3.2].

SP-5-1. The Service Provider needs to make sure, that the “sub” claim within
id_token and UserInfo Response are equal.

2.3.3.6 State Validation

According to the OpenID Connect 1.0 specification, the state value is only recom-
mended but not mandatory. Without the state parameter, there is no binding
between the Authentication Request and the Authentication Response con-
taining the code that is further used to identify the End-User (by redeeming it
for the id_token and access_token) [15, Section III; A. 2)].
Some applications use the state to deliver further application state. In doing so,
they must make sure to integrity protect the state value to prevent injection issues
[48, Section 4.7.1.].
Finally, if the state is reusable, this enables multiple attack vectors. The OpenID
Connect Core Specification states that the Service Provider “MAY record the state
of the use of the token and check the status for each request” [33, Section 16.9.] in
order to prevent token reuse. The OAuth 2.0 Security Best Current Practices advise
to invalidate the state after each use, to limit the impact in case the parameter is
leaked through Referer headers [48, Section 4.2.].

SP-6-1. The Service Provider must use the state parameter or an alternative
CSRF protection like PKCE or the nonce within the id_token.
SP-6-2. If the Service Provider delivers application state within the state param-
eter, the parameter must be integrity protected.
SP-6-3. The state parameter must be an one-time-usable value that is bound to
the End-User’s session.

2.3.3.7 Leakage Protection of OpenID Connect Parameters

SP-7-1. The Service Provider must not embed external resources or anchors to ex-
ternal websites on sensitive OpenID Connect endpoints like the redirect_uri end-
point, unless there are additional countermeasures against Referer leaks in place,
for instance, a sufficient Referrer-Policy [48, Section 4.2.1.].



30 2 Foundations

SP-7-2. Sensitive OpenID Connect parameters must not be disclosed in the Ser-
vice Provider’s file system, e.g. in access logs or cache files [48, Section 4.8.2.].
SP-7-3. The access_token should not be transferred using the front-channel
(within the Authentication Response) [48, Section 2.1].
SP-7-4. For communication with the OpenID Connect endpoints, the Service
Provider must enforce TLS [11, Section 3.1.2.1.].

2.3.3.8 Cross-Site-Request-Forgery Protection

The specification defines a third party Login Initiation Endpoint that serves as inten-
tional Cross-Site-Request-Forgery (CSRF) protection bypass as pointed out in [14].
Fett et al. advise not to implement this endpoint as it is optional. Furthermore,
it has been shown that some Identity Providers implement different internally used
non-normative endpoints that start an OpenID Connect flow.

SP-8-1. If not explicitly needed for a reasonable use-case, Service Providers should
not implement the specified Login Initiation Endpoint.
SP-8-2. If the Service Provider internally utilizes a non-normative endpoint that
starts the OpenID Connect login flow, this endpoint must be protected against
CSRF.

2.3.3.9 Server-Side Request Forgery Protection

In an OpenID Connect scenario, especially the back-channel communication is prone
to SSRF by design. Depending on the actual setup, reasonable hardening should
be applied to limit the possible impact of SSRF. Otherwise, a malicious Iden-
tity Provider (section 3.2) could specify localhost or internal IP addresses as its
endpoints using OpenID Connect Discovery and target internal hosts [26, Section
2.1.2].

SP-9-1. To limit the risk resulting from Malicious Endpoint attacks that misuse
the OpenID Connect flow by specifying fake-endpoints, the Service Provider should
restrict endpoints from using localhost or internal IP addresses as OpenID Connect
endpoint.
SP-9-2. Error messages for back-channel communication must not contain sensi-
tive connection related information.

2.3.3.10 Covert Redirect Protection

A common pattern for Service Provider implementations is a non-normative param-
eter (e.g. next, start, redirect or nextURL) that indicates where a user should
be redirected after authentication. Some applications redirect the End-User to the



2.3 Single Sign-On Security 31

URL present as Referer header when the OpenID Connect flow is started, result-
ing in comparable but less obvious behavior. Additionally, if the Service Provider
transfers application state using the state parameter, the state parameter can also
include the redirection target.

SP-10-1. The Service Provider must validate the redirection target after login
(specified using next URL parameter, last Referer header, state or any other
non-normative method) against a whitelist of trusted hosts.
SP-10-2. The Service Provider must not allow the redirection target after login to
refer to local endpoints that have session relevant effects, such as Logout Endpoint
or Initiate Login Endpoint.

2.3.3.11 Deprecated Grants

According to the OAuth 2.0 Security Best Current Practices, “clients SHOULD
NOT use the implicit grant (response type "token") or other response types issuing
access tokens in the authorization response, unless access token injection in the
authorization response is prevented and the aforementioned token leakage vectors
are mitigated” [48, Section 2.1.2.].
Furthermore, the Resource Owner Password Credentials Grant must not be used,
because it “insecurely exposes the credentials of the Resource Owner to the client”
[48, Section 2.4.].

SP-11-1. The Service Provider should not use the Implicit Flow and Hybrid Flow
variants that transfer the access_token via front-channel.
SP-11-2. The Service Provider must not use the Resource Owner Password Cre-
dentials Grant.

2.3.3.12 Mix-Up Protection

In order to prevent Mix-Up attacks, in which a malicious Identity Provider (sec-
tion 3.2) tries to obtain an access_token or code by confusing a Relying Party to
send these tokens to the wrong entity, a Relying Party could either use dedicated
endpoints per Identity Provider, add an “iss” parameter to the Authentication
Response or use the Hybrid flow with an id_token in the front-channel containing
client_id and issuer, according to the OAuth 2.0 Security Best Current Practices
[48, Section 4.4.].

SP-12-1. If a Service Provider does not implement dedicated endpoints per Iden-
tity Provider, it must implement further Mix-Up mitigations.



32 2 Foundations

2.3.3.13 Discovery

The OpenID Connect Discovery or in particular the Configuration Request and
Response have crucial effect on the OpenID Connect Setup. If this communica-
tion is not performed over a trusted channel, no trustworthy authentication and
authorization can be performed. Therefore, according to the specification, “TLS
certificate checking MUST be performed by the RP [...] when making an OpenID
Provider Configuration Request” [34, Section 7.2].

SP-13-1. The Service Provider must enforce TLS for the communication with the
Configuration Endpoint.
SP-13-2. The Service Provider must enforce TLS for OpenID Connect endpoints
that are provided using OpenID Connect Discovery.

2.3.4 Service Provider Attacks and Flaws

In the following, Service Provider flaws and attacks that are possible if the previously
described checks are not fulfilled are sketched. In doing so, the checks that are vio-
lated as well as references to previous research are given.

2.3.4.1 Replay

If a Service Provider violates SP-1-1 (subsubsection 2.3.3.1) and SP-1-2 (sub-
subsection 2.3.3.1), it can not determine if a provided id_token is fresh or an old
id_token is replayed by a malicious Identity Provider (section 3.2) or a web attacker
(section 3.1) (depending on the context in which the id_token is used).

2.3.4.2 Signature Manipulation

Signature Bypass. If a Service Provider violates SP-2-1 (subsubsection 2.3.3.2)
or SP-2-2 (subsubsection 2.3.3.2) and effectively does not enforce the JWT to be
signed, a malicious Identity Provider (section 3.2) could authenticate as an arbitrary
End-User.

Key Confusion (I). If a Service Provider violates SP-2-3 (subsubsection 2.3.3.2),
a malicious actor could reference a controlled secret key and therefore provide valid
self-signed JWTs with controlled contents. As a result, a malicious Identity Provider
could authenticate as an arbitrary End-User [26, Section 3.1.5].

Key Confusion (II). Finally, if a Service Provider violates SP-2-4 (subsubsec-
tion 2.3.3.2), a malicious Identity Provider can confuse the Service Provider regard-
ing the keys that are used in accordance to the specified algorithm and the key



2.3 Single Sign-On Security 33

identifier (“kid”) claim within the JOSE header. In doing so, the attacker speci-
fies a “kid” of a RSA key pair (asymmetric) but specifies the algorithm as HS256
(symmetric). If the Service Provider does not restrict the RSA key to be used for
asymmetric algorithms and as for signature verification always the public key is
used, the attacker could sign the JWT using the known public key (in doing so, the
attacker could choose the whole public key in PEM or DER format or parameters of
the public key like n or e, depending on the implementation’s behavior) [26, Section
3.1.5].

2.3.4.3 Token Recipient Confusion

If the Service Provider accepts id_tokens that violate SP-3-1 (subsubsection 2.3.3.3)
or SP-3-2 (subsubsection 2.3.3.3), it may accept id_tokens that have a valid sig-
nature but were issued for another entity.
A malicious Identity Provider (section 3.2) can utilize this to authenticate as victim
End-User at the benign Service Provider using an id_token that was issued for the
victim End-User at another service.

2.3.4.4 ID Spoofing

If the Service Provider violates SP-4-1 (subsubsection 2.3.3.4), a malicious Identity
Provider (section 3.2) could authenticate as any End-User that previously registered
using a benign Identity Provider [26, Section 3.1.4].
If the Service Provider uses other claims than the “sub” claim to map the external
user to an internal account and therefore violates SP-4-2 (subsubsection 2.3.3.4) or
the “email” claim, a malicious Identity Provider could for instance spoof an End-
Users identity by setting the claim to the victim’s email address.
Finally, if OpenID Connect Discovery is supported and the Service Provider violates
SP-4-3 (subsubsection 2.3.3.4), a malicious Identity Provider can confuse the Ser-
vice Provider by specifying the issuer within the WebFinger protocol as the value of
a benign Identity Provider. If the Service Provider does not enforce that the issuer
present in discovery “MUST be identical to the issuer value returned by WebFinger.
This also MUST be identical to the iss Claim value in ID Tokens issued from this
Issuer” [34, Section 4.3.], the malicious Identity Provider can then issue id_tokens
for arbitrary End-Users who used the benign Identity Provider to authenticate at
the Service Provider before.

2.3.4.5 Cross-Site-Request-Forgery

OpenID Connect 1.0 and OAuth 2.0 are protocols that use multiple redirects with
GET parameters being passed around, which leads to a higher risk for Cross-Site-
Request-Forgery vulnerabilities.



34 2 Foundations

If the Service Provider does not utilize the state parameter (and no additional
mitigation like PKCE is implemented), “Session Donation” via Cross-Site-Request-
Forgery is possible (SP-6-1, subsubsection 2.3.3.6). Without the state parameter,
there is no binding between the Authentication Request and the Authentication
Response containing the code that is further used to identify the End-User (by
redeeming it for the id_token and access_token). As a result, a web attacker
(section 3.1) could launch a Cross-Site-Request-Forgery attack against the SP by
sending a request to the redirect_uri endpoint including a code that was issued for
an attacker-controlled account [15, Section III; A. 2)]. In doing so, the web attacker
“donates” his session to the victim and the victim is logged into the attacker’s
account.

In addition, if the Service Provider implements endpoints that start the OpenID
Connect flow without CSRF mitigation and therefore violates SP-8-1 (subsubsec-
tion 2.3.3.8) and SP-8-2 (subsubsection 2.3.3.8), a web attacker (section 3.1) can
utilize these endpoints to launch a Login CSRF against the End-User. If the End-
User has an active session at the Identity Provider and the SSO account is linked to
the Service Provider, the malicious actor only has to redirect the End-User to one
of the mentioned endpoints to log in the victim into the victim’s SSO account at
the Service Provider.

2.3.4.6 Server-Side Request Forgery

If the Service Provider violates SP-9-1 (subsubsection 2.3.3.9) and allows malicious
Identity Providers (section 3.2) or malicious administrative users (section 3.4) to
specify malicious endpoints, this enables SSRF by design.
If the Service Provider is self-hosted, administrative users can be considered to have
high privileges within the software. Nevertheless, using SSRF mechanisms a mali-
cious actor could potentially escalate privileges further if local or internal services,
that are intentionally not exposed to the internet, are accessible by launching a
SSRF attack. SSRF vulnerabilities occurring in hosted services have higher impact,
because if an attacker can obtain information about the internal network or localhost
in a hosted environment, this opens a new attack surface that is normally hidden
behind a firewall.
Thus, at minimum SSRF to localhost and private IPs should be restricted by de-
fault. If there is a legitimate use-case for access to internal IPs, the software is
most likely self-hosted and could implement an optional switch to enable an in-
secure configuration. Only super-admins that already have access to the under-
lying infrastructure should be able to enable requests to localhost or private IP
addresses.



2.3 Single Sign-On Security 35

2.3.4.7 Sensitive Information Disclosure

The state and code parameters are carried within the query parameters of the
Authentication Response. If the Service Provider violates SP-7-1 (subsubsec-
tion 2.3.3.7) and external resources are embedded on the redirect_uri endpoint or
error endpoints that also receive these parameters, the Referer header may disclose
OpenID Connect parameters to third parties [48, Section 4.2.].
Sensitive OpenID Connect parameters could additionally be disclosed in the file sys-
tem of the Service Provider, for instance in access logs or cache files [49, Section
4.6.7.], if the Service Provider violates SP-7-2 (subsubsection 2.3.3.7).
Depending on the flow that is used, access_tokens may be transferred within the
front-channel as query parameters. This behavior is deprecated, no access_tokens
should be present in front-channel communication according to the OAuth 2.0 Se-
curity Best Current Practices [48, Section 2.1.] (SP-7-3, subsubsection 2.3.3.7).
Finally, if a Service Provider does not enforce TLS and communicates over un-
encrypted connections (SP-7-4 , subsubsection 2.3.3.7), sensitive information and
OpenID Connect parameters are disclosed to man-in-the-middle attackers (section 3.5).

2.3.4.8 Sub Claim Spoofing

If the Service Provider violates SP-5-1 (subsubsection 2.3.3.5) and does not make
sure the UserInfo Response belongs to the same End-User that the id_token was
issued for, a malicious Identity Provider (section 3.2) could spoof arbitrary End-
Users using the UserInfo Response’s “sub” claim.

2.3.4.9 Denial-of-Service

A trivial Denial-of-Service attack against a Service Provider can be launched if the
implementation does not restrict the download size of contents received from OpenID
Connect endpoints and does not set a sufficient connection timeout. If these mea-
sures are not taken, a malicious Identity Provider (section 3.2) or malicious adminis-
trative user (section 3.4) could exhaust storage and connections in connection pools
(if used) by specifying download links to large files as OpenID Connect endpoints,
known as “Malicious Endpoint Attack” [26, Section 2.1.4].

If the Service Provider violates SP-6-3 (subsubsection 2.3.3.6) and allows to reuse
the state parameter and does not implement additional rate limiting on the re-
direct_uri endpoint, it can be exploited as “amplifying proxy” for Denial-of-Service
attacks.
It has been observed that the outgoing Token Request (back-channel) to the con-
figured Token Endpoint can be multiple times larger than the Authentication



36 2 Foundations

Request (front-channel). A malicious actor could utilize this to launch a Denial-of-
Service attack spending limited bandwidth using the Service Provider as an ampli-
fying proxy, as shown in Figure 2.8. A web attacker (section 3.1) could target the
configured Identity Provider. A malicious Identity Provider (section 3.2) can addi-
tionally specify an arbitrary web server as Token Endpoint with a long URL path
and issue long client credentials on registration (either manual or using OpenID
Connect Dynamic Client Registration), resulting in an even larger outgoing request.
If there is no rate limiting at the redirect_uri endpoint, the attacker could contin-
uously replay the Authentication Response including the valid state, resulting
in large outgoing Token Requests on each try.

Figure 2.8: Reusable state: Denial-of-Service Amplification using Token Request.

2.3.4.10 Covert Redirect

If the redirection target is not sufficiently validated against a list of trusted hosts
(and therefore violates SP-10-1 (subsubsection 2.3.3.10)), a Covert Redirect occurs.
That in doing so, parsing URLs is not an easy task, was for instance outlined by
Wang et al. at Blackhat Asia ’19 [51]. If not sufficiently validated, a web attacker
(section 3.1) can redirect a victim End-User to an arbitrary redirection target after
login using the non-normative redirection target parameter.
If session relevant endpoints are allowed as redirection target and SP-10-2 (subsub-
section 2.3.3.10) is violated, the web attacker can additionally influence the victim’s
session at the Service Provider after successful authentication.



2.3 Single Sign-On Security 37

2.3.4.11 Login Confusion

Login Confusion is a new attack that was developed during this thesis. It has the
following prerequisites:

• The Service Provider needs to be vulnerable to Login Cross-Site-Request-
Forgery (violate SP-8-1 (subsubsection 2.3.3.8) or SP-8-2 (subsubsection 2.3.3.8)),
i.e. there is an endpoint that launches an OpenID Connect flow with a pre-
configured Identity Provider.

• The Service Provider needs to implement a non-normative parameter that
holds the redirection target after login. Additionally, session relevant relative
paths like the Initiate Login Endpoints can be specified as destination (SP-
10-2, subsubsection 2.3.3.10).

• The victim has two accounts at the Service Provider: One “native” account
to which she authenticates using credentials and one “SSO” account which is
linked to an account on an external Identity Provider. Furthermore, the victim
has an active session at the Identity Provider.

If these prerequisites are met, the following attack could be launched:

1. The victim requests the Login UI: https://sp.com/?next=/oauth/start.
As one can observe, the next parameter holds the relative path of the Login
Initiation Endpoint.

2. The victim authenticates through the Login UI with credentials for user A.

3. After successful authentication, the victim is redirected to the next URL (Lo-
gin Initiation Endpoint): https://sp.com/oauth/start.

4. Without further interaction, the Login Initiation Endpoint starts a new OpenID
Connect flow with the pre-configured Identity Provider including a valid state
that is issued by the Service Provider.

5. As the victim has an active session for user B at the Identity Provider, there is
an immediate redirect to the redirect_uri including the code and the state.

6. The Service Provider completes the OpenID Connect flow with redeeming the
code at the Token Endpoint. As it receives an id_token for user B from the
Identity Provider, user B is logged in at the Service Provider.

As a result, our victim is now authenticated as user B, even though she en-
tered her credentials for user A and did not perform any additional user inter-
actions.

https://sp.com/?next=/oauth/start
https://sp.com/oauth/start


38 2 Foundations

2.3.4.12 Mix-Up

If a Service Provider violates SP-12-1 (subsubsection 2.3.3.12) a malicious Identity
Provider (section 3.2) can launch a Mix-Up attack, in which it confuses a gen-
uine Service Provider to redeem a valid code or access_token at the malicious
Identity Provider’s Token Endpoint, enabling the malicious Identity Provider to
perform actions on behalf of the End-User and obtain personal information, as
pointed out within the OAuth 2.0 Security Best Current Practices [48, Section
4.4.].

2.3.4.13 Injection

State parameter. If the Service Provider delivers application state within the
state parameter and thus violates SP-6-2 (subsubsection 2.3.3.6) by not applying
integrity protection, this behavior can result in injection issues like SQL Injection
(SQLi) and XSS.

IdP provided values: Generic. If Identity Provider provided values are not
sufficiently sanitized, this could cause common injection flaws like XSS or SQLi [26,
Section 2.1.3].

IdP provided values: CRLF. In addition, a novel variant of injection flaws in
OpenID Connect has been observed. Identity Provider provided values that are used
in sensitive contexts like HTTP headers need additional attention. If they are sani-
tized for usage in HTML context, dangerous Carriage Return and Line Feed (CRLF)
sequences could be missed and end up as bearer token value within the UserInfo
Request, resulting in potential HTTP header injections. An idealized flow for this
injection vulnerability is shown in Figure 2.9.

Beside new HTTP headers, an attacker could smuggle new requests within the open
TCP connection, by setting the Connection: Keep-Alive header and injecting
multiple CRLF sequences to indicate that a new requests starts.
If OpenID Connect Discovery is implemented and the configuration of the Identity
Provider is regularly updated, the malicious Identity Provider (section 3.2) could
additionally alter its configuration and specify an arbitrary web server as UserInfo
Endpoint, resulting in SSRF with control over Host, Path, HTTP Verb, HTTP
Headers and HTTP body. Depending on the actual implementation, a malicious
actor could even smuggle in other protocols than HTTP that can be used on top of
TCP.
RFC6749 claims, that “Access tokens can have different formats, structures, and
methods of utilization” and “Access token attributes and the methods used to ac-
cess protected resources are beyond the scope of this specification and are defined by
companion specifications such as [RFC6750]” [11, Section 1.4.]. In fact, RFC6750
defines in section 2.1. the format of access_token values that are allowed to be used



2.3 Single Sign-On Security 39

in the context of HTTP headers correctly, excluding CRLF sequences, as shown in
Listing 2.6 [23, Section 2.1.].

The syntax for Bearer credentials is as follows:
b64token = 1*( ALPHA / DIGIT / "-" / "." / "_" / "~" /

"+" / "/" ) *"="→˓

credentials = "Bearer" 1*SP b64token

Listing 2.6: RFC6750: Allowed characters for bearer token values.

Figure 2.9: CRLF injection within HTTP header leads to arbitrary header injection.





3 Attacker Models

In this thesis, multiple different attacker models are considered. Each individ-
ual observation will be categorized to an attacker model that is described here-
inafter.

3.1 Web Attacker

The web attacker model was introduced by Barth et al. in 2008 [4].

Victim. The victim in this attacker model is either an End-User, a benign Service
Provider or a benign OpenID Provider.

Objectives of the Attacker. Depending on the victim, the attacker’s objectives
are different. If a web attacker targets an End-User, the ultimate goal is to break
the authentication and access restricted resources. Beside this, a malicious actor’s
objective can be to influence the End-User’s session, e.g. log in or log out a victim
without indication to the user.
If a web attacker targets a Service Provider or Identity Provider, the primary ob-
jective is also an authentication bypass in order to access restricted resources. Ad-
ditionally, causing notable harm to the application or the underlying infrastructure
of the Identity Provider or Service Provider can be the objective of a malicious
actor.

Capabilities of the Attacker. The web attacker is the least privileged attacker
that is considered in this thesis. A web attacker is not able to intercept or eavesdrop
communication that is not intended for him. If the victim is an End-User, we assume
that the victim visits an attacker controlled website. Additionally, the web attacker
may send and receive HTTP requests and provide a trusted Transport Layer Security
(TLS) certificate for a controlled domain, e.g. attacker.com, to enable encrypted
communication with Service Providers and Identity Providers. If explicitly outlined,
the web attacker is in charge of a user account at the Identity Provider or the Service
Provider.

attacker.com


42 3 Attacker Models

3.2 Malicious Identity Provider

The malicious Identity Provider attacker model was introduced in 2016 by Mainka,
Mladenov and Schwenk [27]. They highlight that the Identity Provider in tradi-
tional Single Sign-On setups like Kerberos is a trusted party. If customers can
configure own Identity Providers or Identity Providers are dynamically discovered,
these entities must be considered as third parties and must be treated accord-
ingly.

Victim. A malicious Identity Provider could either target an End-User or a benign
Service Provider as victim.

Objectives of the Attacker. If the malicious Identity Provider targets an End-
User, the attacker’s objective is to bypass the authentication of the End-User that
used an honest Identity Provider to register at a Service Provider, in order to au-
thenticate as the victim user. If a malicious Identity Provider directly targets a
benign Service Provider, beside the authentication bypass, causing harm to the
underlying application or infrastructure can be the objective of a malicious ac-
tor.

Capabilities of the Attacker. A malicious Identity Provider is able to perform
a genuine OpenID Connect flow and to authenticate users for a Relying Party. In
doing so, it is not bound to restrictions being made by the specification and could
also act maliciously. For instance, the malicious Identity Provider may send mal-
formed requests, set id_token claims in a misleading manner or may tamper with
the key references that are used for signature validation. Prerequisite for this is
that either a victim Client supports Dynamic OpenID Provider Discovery e.g. using
the WebFinger protocol [36] or a manually configured and initially trusted Identity
Provider turns rogue at some point in time. In general, as per the overall setup
of Single Sign-On, the Identity Provider is a third party from a Client’s perspec-
tive.

3.3 Malicious Service Provider

Victim. A malicious Service Provider could either target an End-User or a benign
Identity Provider as victim.

Objectives of the Attacker. If a malicious Service Provider targets an End-
User, his main objective is to gather sensitive information about the End-User and
to gain privileges to perform actions on behalf of the End-User. In contrast, if a
benign Identity Provider is targeted, beside authentication bypasses the underlying
application and infrastructure of the Identity Provider can be target of the malicious
Service Provider.



3.4 Malicious Administrative User 43

Capabilities of the Attacker. A malicious Service Provider is able to start a gen-
uine OpenID Connect flow and retrieve a code, an id_token and an access_token
from an Identity Provider. Just like the malicious Identity Provider, it may act
maliciously when communicating with a victim Identity Provider or victim End-
User. In contrast to the regular web attacker, it is in charge of valid client cre-
dentials. Thus, a malicious Service Provider needs to initially register at the be-
nign Identity Provider in order to obtain these client credentials. This could ei-
ther be done manually or using the OpenID Connect Dynamic Client Registration
[35].

3.4 Malicious Administrative User

The malicious administrative user attacker model was introduced by Matsumoto et
al. in 2014 [29, Section 3.1]. The impact of attacks under this attacker model is
highly conditional, as described in the following:

Victim. A malicious administrative user can either target a benign Service Provider
or a benign Identity Provider as victim. Additionally, a malicious administra-
tive user could target End-Users of the Provider he has administrative privileges
on.

Objectives of the Attacker. Main objective of a malicious administrative user
is to target the application or the underlying infrastructure of a Service Provider
or Identity Provider. In some cases, a malicious administrative user could addi-
tionally target End-Users of the Service Provider or Identity Provider and try to
obtain sensitive OpenID Connect related parameters that should not be accessible
to administrative users.

Capabilities of the Attacker. A malicious administrative user is a powerful
attacker. As he is privileged, he may change OpenID Connect related configurations
either at the Identity Provider or at the Service Provider. Thus, exploitability and
severity of security issues that occur under this attacker model are highly conditional.
Considering a hosted service, a customer that is able to exploit vulnerabilities to
target the service directly could in fact cause notable harm.
In contrast, if the software is self-hosted, the administrative user is highly trusted
in most cases and might have even further access to the system than through a web
service. Nevertheless, if the environment enforces the concept of least privileges,
there may still be the possibility for malicious administrative users on one host to
gain access to restricted resources by exploiting vulnerabilities in the self-hosted
software and escalate privileges.



44 3 Attacker Models

3.5 Man-in-the-Middle

The most powerful attacker that is considered in this thesis is the man-in-the-middle
attacker. Man-in-the-middle attacks are “well-known in security environments, and
have drawn significant attention” [42].

Victim. In an OpenID Connect Flow, every entity can be target of a man-in-the-
middle attacker, as the attacker operates on the requests and responses that are sent
over the network.

Objectives of the Attacker. A malicious entity’s main goal is to bypass au-
thentication and authenticate as an End-User at a Service Provider. Additionally,
a man-in-the-middle attacker can aim to learn sensitive information and personal
data that is transferred over the network.

Capabilities of the Attacker. In the following, we consider that if TLS is used
and enforced, all entities use TLS in a secure manner. Thus, the man-in-the-
middle attacker is not able to tamper with HTTPS communication, but he is able
to obtain, modify or drop unencrypted communication like plain HTTP without
TLS.



4 Selection and Test Environment

This chapter deals with the methodology of this thesis. After outlining the selec-
tion of OpenID Connect implementations the setup of the test environments are
described.

4.1 Selection of OpenID Connect Implementations

In this master’s thesis, we focus on products and services that implement OpenID
Connect in contrast to libraries that implement OpenID Connect primitives and
capabilities. As libraries are often designed to be flexible and universal, depending
on their actual configuration, the security level of the resulting OpenID Connect im-
plementation is highly conditional. Therefore, we will analyze products and services
that actually implement and utilize OpenID Connect to evaluate real-life OpenID
Connect implementations.

As of April 2020 many products and services use OpenID Connect 1.0 and OAuth 2.0.
The analysis of each product and service would have its own benefits and limitations,
for instance regarding setup of the analysis environment (self-hosted versus hosted
service), availability of the source code, relevance in terms of usage and the possibility
to configure a malicious Identity Provider in order to perform Service Provider re-
lated tests. Therefore, the following sections discuss the selection criteria for OpenID
Connect implementations applied in this master’s thesis.

4.1.1 Identity Provider Selection

Keycloak is a broadly used open source Identity and Access Management (IAM)
software. Written in Java, it comes with support for OpenID Connect and SAML
as Identity Provider. When acting as Identity Broker, Keycloak additionally can
act as Relying Party against other OpenID Connect Identity Providers. We analyze
v10.0.0 of Keycloak.
As it is open-source, beside focusing on network analysis, a greybox testing approach
can be used to prove observations and to support the analysis process. We consider
this approach to be “greybox” instead of “whitebox”, because we do not perform
thorough code analysis. The public Keycloak Docker Image available at https:
//hub.docker.com/r/jboss/keycloak/ was downloaded more than 50 million times

https://hub.docker.com/r/jboss/keycloak/
https://hub.docker.com/r/jboss/keycloak/


46 4 Selection and Test Environment

(September 2020) and allows a standardized and developer-friendly setup of the
analysis environment.

In addition to Keycloak, some of the products and services that were chosen as test
subjects for the Service Provider evaluation implement Identity Provider capabilities.
All of them do not implement the complete set of features required to apply the entire
evaluation catalog, so that only a subset of the Identity Provider evaluation catalog
could be applied to these implementations.

4.1.2 Service Provider Selection

The requirements for Service Providers that could be covered in this master’s thesis
were quite specific. At first, all implementations that could be considered have to
support the setup of a custom Identity Provider. This is the main reason, why other
popular self-hosted products and popular services could not be considered, as some
services only support a fixed set of commonly used Identity Providers.
Additionally, the environment of a Service Provider can have huge effect on the im-
pact of potential vulnerabilities. Therefore, self-hosted software and remote services
are chosen as analysis subjects.
Beside the focus on the ability to specify a custom Identity Provider, most implemen-
tations that are mentioned below also implement the Identity Provider part of the
OpenID Connect specification themselves. Thus, the Identity Provider specific parts
of the evaluation catalog are also applied to these implementations, resulting in a
broader test-set for Identity Provider implementations.

Bitbucket Server is a commercial git and code management software developed by
Atlassian. The server version of Bitbucket can be self-hosted, a Docker Image that
was pulled more than 10 million times is available at https://hub.docker.com/r/
atlassian/bitbucket-server/. Additionally, Bitbucket’s OpenID Connect imple-
mentation was just recently announced and published, resulting in a vivid develop-
ment and the potential to nudge the ongoing processes to take a secure and specifica-
tion compliant direction [3]. We analyze v7.2 of Bitbucket Server.

In contrast, GitLab’s OAuth 2.0 and OpenID Connect implementation was intro-
duced with v7.7 in January 2015 [18]. Just like Keycloak, GitLab supports the
Identity Provider and the Service Provider part of the OpenID Connect speci-
fication. There is a public Docker Image for the Community Edition that was
solely pulled more than 100 million times: https://hub.docker.com/r/gitlab/
gitlab-ce/ (September 2020). We analyze v13.2 of GitLab’s Community Edi-
tion.

Salesforce is a Customer-Relationship-Management service that has more than 150.000
users, according to official sources [41]. The service implements the OpenID Connect
Service and Identity Provider part of the specification.

https://hub.docker.com/r/atlassian/bitbucket-server/
https://hub.docker.com/r/atlassian/bitbucket-server/
https://hub.docker.com/r/gitlab/gitlab-ce/
https://hub.docker.com/r/gitlab/gitlab-ce/


4.2 Setup 47

Amazon Web Services (AWS) is an umbrella term for many cloud services provided
by Amazon. According to official sources, AWS has “millions of customers” [1].
Among these services, there is Amazon Cognito, a cloud-based Identity and Access
Management (IAM) service. Serving as Identity Broker, Identity Provider and Ser-
vice Provider parts of the OpenID Connect specification are implemented and can
be analyzed.

4.2 Setup

The setup for our test environment is mainly based on Docker. If possible, local
instances of the test subjects are setup on our analysis machine. Only Salesforce
and Amazon Cognito as web services require remotely accessible Identity and Ser-
vice Providers hosted within the NDS-Cloud. To monitor and modify front- and
back-channel communication, we configure the user’s User Agent and all self-hosted
Identity and Service Providers to use an intercepting proxy running on our analy-
sis machine. Furthermore, custom minimal OpenID Connect Service and Identity
Provider Implementations were created.

4.2.1 Custom Implementations

While most of the local tests were performed using Burp Suite, “the world’s most
widely used web application security testing software” [38], as intercepting Proxy to
modify requests on the fly, during the execution of the analysis more flexible OpenID
Connect implementations turned out to be very helpful tools. This applies especially
to cross-phase attacks and cryptography attacks that require the generation of sig-
natures based on nonces which are provided by the Relying Party. Therefore custom
NodeJS-based Service and Identity Provider implementations were created. Among
other features, they are very flexible regarding JWT signature generation, can be
configured to use TLS and allow to control the entire protocol flow from either the
Service or the Identity Provider’s perspective. The source code can be found on
Github12.
Thus, most of the remote tests and the more advanced local tests were performed
using these custom implementations.

4.2.2 Local Test Environment

The local test environment uses Burp Suite as an intercepting proxy, Docker con-
tainers for our test subjects and NodeJS webservers for our custom OpenID Connect
implementations, all running on the same machine.

1Custom OpenID Connect Service Provider: https://github.com/lauritzh/oidc-custom-sp
2Custom OpenID Connect Identity Provider: https://github.com/lauritzh/oidc-custom-idp

https://github.com/lauritzh/oidc-custom-sp
https://github.com/lauritzh/oidc-custom-idp


48 4 Selection and Test Environment

During the analysis, the 8GB of RAM available at the analysis machine turned out
to be barely sufficient. The migration to a more powerful machine showed that 16GB
to 20GB RAM should be available to sufficiently run multiple containers running
heavy Java and Ruby applications, Burp Suite as a Java application and multiple
Chrome/Chromium instances at the same time.

Figure 4.1: High Level overview of the local docker-based test environment.

4.2.2.1 Keycloak

In our setup, we use the official JBoss Keycloak Docker image available at: https:
//hub.docker.com/r/jboss/keycloak/. As we would like to use Burp Suite as in-
tercepting proxy and Keycloak as a Java application performs certificate validation,
we need to add Burp Suite’s certificate authority to Keycloak’s trust store. After-
wards Keycloak can be configured to use the proxy for outgoing HTTP requests. We
use the built-in H2 database bundled with Keycloak.

4.2.2.2 Bitbucket

Just like for Keycloak, Atlassian publishes an official Docker image for Bitbucket
available at: https://hub.docker.com/r/atlassian/bitbucket-server/. Bitbuck-
et is a commercial software, so that we need to obtain an evaluation license that ex-
pires after 30 days. Additionally, we need to use a “Data Center” license, as the rele-
vant “SSO 2.0” functionality is not available for “Server” instances. Bitbucket is also
a Java application, so that the Burp Suite certificate authority once again needs to

https://hub.docker.com/r/jboss/keycloak/
https://hub.docker.com/r/jboss/keycloak/
https://hub.docker.com/r/atlassian/bitbucket-server/


4.2 Setup 49

be added to the application’s trust store. To observe the outgoing requests from Bit-
bucket, the Burp Suite is configured as outgoing proxy.

4.2.2.3 GitLab

For GitLab’s Community Edition there are official Docker-Compose files and Docker
images available at: https://hub.docker.com/r/gitlab/gitlab-ce/. This version
could be installed without further licenses, in contrast to the Enterprise Edition.
GitLab is a Ruby-based software, so that there is no global trust store just like Java
applications have. In contrast, GitLab requires certificates that should be added to
the trust store to have a specific name and be mounted to a specific path on the file
system, so that they are imported during startup. The configuration of the Burp
Suite as an outgoing proxy is comparable to Bitbucket.

4.2.3 Remote Test Environment

Figure 4.2: High Level overview of the remote test environment.

Core of the remote test environment is a virtual machine hosted at the chair for
network and data security. This machine has 8GB of RAM which is sufficient, as we
would like to run at most one Docker container with Keycloak. Most of the time we
will use our minimal and custom OpenID Connect implementations.

4.2.3.1 Salesforce

Salesforce allows users of an organization to authenticate using an external provider.
All we have to do is launching the custom Identity Provider at the publicly accessi-
ble NDS machine and configure Salesforce to use our custom Identity Provider for
external authentication. As https is required and we need a valid certificate, we set
an additional DNS entry for a controlled website (e.g. https://openid.lauritz-

https://hub.docker.com/r/gitlab/gitlab-ce/
https://openid.lauritz-holtmann.de/
https://openid.lauritz-holtmann.de/
https://openid.lauritz-holtmann.de/


50 4 Selection and Test Environment

holtmann.de/) to the NDS IP and claim a Let’s Encrypt certificate for this sub-
domain. Alternatively, the service ngrok could be used to make a locally run-
ning instance of the NodeJS application publicly accessible having a valid certifi-
cate.

4.2.3.2 Amazon Cognito

Amazon SSO only supports SAML for Logins to an organisation using Single Sing-
On. But there is a service that is part of the AWS family that can act as Ser-
vice and Identity Provider, namely “Amazon Cognito” . Thus, we configure our
publicly available Service and Identity Providers hosted within the NDS cloud at
Amazon’s Cognito service. As Amazon Cognito should enforce TLS for commu-
nication with OpenID Connect endpoints and restricts the depth of subdomains
(only one subdomain is allowed), we use https://openid.lauritz-holtmann.de/
with our previously obtained Let’s Encrypt certificate. Alternatively, ngrok could
be used.

https://openid.lauritz-holtmann.de/
https://openid.lauritz-holtmann.de/
https://openid.lauritz-holtmann.de/
https://openid.lauritz-holtmann.de/


5 Security Evaluation

In the following, the evaluation results of this thesis are presented. At first, the
evaluation table for Identity Providers is explained. Afterwards, the most significant
Identity Provider observations are outlined.
Thereafter, the results of the Service Provider evaluation are outlined. Finally, the
most significant observations regarding the Service Provider implementations are
described in detail.

5.1 Identity Provider Evaluation

Category Keycloak GitLab Salesforce Amazon
Cognito

Redirect URI Protection ○ Ë Ë ○

HTTP Ë Ë Ë Ë

Request Object, request_uri
○ N/A N/A N/Aand Registration Object

Access/Refresh Token
○ Ë ○ ○and Client Credentials Protection

Code Protection + ○ + Ë

Denial-of-Service Ë Ë N/A N/A
PKCE Ë ○ Ë Ë

Audience Confusion ○ Ë Ë Ë

Consent Screen Ë Ë Ë Ë

Dynamic Client Registration ○ N/A + N/A
Client Authentication + N/A N/A N/A

Ë: Secure / No attack found in this category
○: Insecure / One or more attacks found in this category
+: Theoretical issues identified or limited attack success

Table 5.1: Evaluation of Identity Provider related Test and Attack Categories.

Table 5.1 presents the evaluation results of the analyzed Identity Provider imple-
mentations. Only Keycloak implements the complete subset of the specification



52 5 Security Evaluation

including optional aspects as well as Dynamic Client Registration and Discovery
that allows performing tests for all outlined categories.

Redirect URI Protection Two out of four analyzed Identity Provider implementa-
tions show issues regarding the redirect_uri. The comparison against pre-
registered values is implemented correctly among the test set, but Keycloak
and Amazon Cognito support redirect_uri values with dangerous schemes
like javascript or data.

HTTP All analyzed implementations use HTTP 302 redirects as expected.

Request Object, request_uri and Registration Object Only Keycloak supports the
request_uri and does not implement counter measures against the unauthen-
ticated SSRF previously described by Fett et al. in 2017 [15, Section III; A.
8)].

Access/Refresh Token and Client Credentials Protection Three out of four im-
plementations have issues regarding their Token or Client Credentials pro-
tection. Keycloak allows Clients to specify weak client_secret values and
does not prevent brute force attacks on the Token Endpoint. Additionally, if
the built-in H2 database is used, default credentials are used. Salesforce does
not issue refresh_tokens at all and uses access_tokens that are longer valid
than 60 minutes. Amazon Cognito does not rotate refresh_tokens and does
not allow End-Users to revoke granted permissions on the Identity Provider.

Code Protection Most of the code protection assertions were fulfilled among the
test set. Keycloak (default 60 minutes) and Salesforce chose a slightly longer
expiry time for code values than the expected 10 minutes. Striking is the code
revocation flaw observed in GitLab that allows a malicious Client to restore
complete permissions after they were revoked, using a previously issued code.

Denial-of-Service None of the self-hosted implementations show longer response
times if a huge amount of fresh code or access_token values is requested.
Assertions that could potentially cause harm to the systems (e.g. Denial-of-
Service) were not tested for hosted services.

PKCE Among the test-set, only GitLab does not support PKCE at all.

Audience Confusion. All tested implementations issue the client_id and client_-
secret values to clients. But for Keycloak, there is a non-normative regis-
tration API (beside the OpenID Connect Dynamic Client Registration) that
additionally allows authenticated clients to manually specify client_id and
client_secret. In doing so, even registration of clients that only differ in
capitalization is possible, additionally increasing the risk of Audience Confu-
sion.

Consent Screen The information presented on the Consent Screen was not found
to be incorrect among the test-set.



5.1 Identity Provider Evaluation 53

Dynamic Client Registration Only Keycloak and Salesforce support Dynamic Client
Registration. Salesforce issues Initial Access Tokens that can be used to reg-
ister an arbitrary amount of clients without possibility to limit the validity.
Keycloak in contrast allows to issue tokens that may be used to register n pre-
viously defined clients. Keycloak supports the sector_identifier_uri and
in doing so supports HTTP without TLS.

Client Authentication Finally, only Keycloak supports JWT based Client Authen-
tication mechanisms. The signature validation itself was not found to be er-
roneous, nevertheless, the implementation uses the fact that “iss” and “sub”
claim are expected to equally hold the client_id and therefore only utilizes
the “sub” claim. As a result, the “iss” claim could be omitted from the JWT,
but the JWT would have to be signed with the correct key nevertheless.



54 5 Security Evaluation

5.2 Identity Provider Analysis Details

In the following, the most significant observations regarding Identity Provider im-
plementations made during the practical analysis phase of this thesis are described
in detail. The observations are ordered based on their severity, which is represented
as scale from None to Critical (None, Low, Medium, High, Critical). The title of
each finding indicates if it is considered as [BUG] with significant impact to the
OpenID Connect implementation, as an issue regarding the [SPEC] with no imme-
diate resulting attack in our considered attacker models or [VULNERABILITY-TYPE]
(see section 2.3) that is mapped to an attacker model. For each finding a recom-
mendation to mitigate the issue is given.

5.2.1 Analysis of Keycloak

As Identity and Access Management (IAM), the OpenID Connect Identity Provider
implementation is part of Keycloak’s core functionality. Keycloak implements broad
parts of the specification including optional aspects.

Section Vulnerability Type Attacker Model Severity
5.2.1.1 SSRF Web Attacker High
5.2.1.2 Insufficient Filtering Malicious Administrative User Low
5.2.1.3 Sensitive Information Disclosure Malicious Administrative User Low
5.2.1.4 Brute Force Web Attacker Low

5.2.1.5 Insufficient Filtering Malicious Service Provider or LowMalicious Administrative User
5.2.1.6 Parser Error N/A None
5.2.1.7 Unencrypted Communication N/A None
5.2.1.8 Incomplete Validation N/A None

Table 5.2: Overview of the most relevant observations and findings in Keycloak’s
Identity Provider implementation.

5.2.1.1 [SSRF] “request_uri” in Authentication Request (CVE-2020-10770)

Attacker Model. The attacker model that is applied for the following attack is
an unauthenticated web attacker (section 3.1).

Description. The request_uri is an optional parameter within the OpenID Con-
nect Authentication Request that allows specifying an external URI where the
Request Object may be found. Fett et al. discovered in 2017 [15, Section III;
A. 8)] that, as the Identity Provider is supposed to request the external Request



5.2 Identity Provider Analysis Details 55

Object, this parameter can be easily used to launch a SSRF attack against the
Identity Provider.

The OpenID Connect Core specification defines the request_uri as an Authenti-
cation Request parameter that “enables OpenID Connect requests to be passed
by reference, rather than by value” [33, Section 6.]. If a Service Provider uses
this parameter, the Identity Provider retrieves the Request Object “from the re-
source at the specified URL” [33, Section 6.2.]. The Identity Provider could re-
strict allowed URLs by allowing the Service Provider to specify the request_uris
parameter that is an “array of request_uri values”, at Registration [35, Section
2.]. If OpenID Connect Dynamic Client Registration is used, the Identity Provider
can require the Service Provider to “pre-register request_uri values using the re-
quest_uris parameter” [33, Section 6.2.]. Thus, only if OpenID Connect is imple-
mented with the Registration Extension, there is a mitigation hint given by the
specification.

Keycloak supports using a Request Object and referencing it externally. The “Fine
Grained OpenID Connect Configuration” for a specific client allows specifying the
following values for the option “Request Object Required” :

• Not required (default)

• request or request_uri

• request only

• request_uri only

Figure 5.3: Keycloak: Configuration options for the Request Object.

As one can see, if an OpenID Connect Client is set-up with default settings, the
default value for this option is “Not required”. There is no option to do not sup-
port a Request Object at all, as “not required” means submitting the request ob-
ject is just optional but if you submit one, it is used by Keycloak. Additionally,
there is no option to manually define the request_uris parameter during manual
client registration. Finally, using the default configuration, Keycloak does not re-
quire a Request Object, but supports passing the request_uri parameter with an
Authentication Request. As a result, Keycloak is in its default configuration for
clients vulnerable to the SSRF attack Fett et al. discovered in 2017 [15, Section III;
A. 8)].



56 5 Security Evaluation

Recommendation. To mitigate the described issue, the request_uri should be
disabled in Keycloak’s default Client configuration. Furthermore, localhost and
private IPs should be forbidden as request_uri, unless explicitly enabled by an
administrative user with high privileges. Finally, the request_uris whitelist should
be used to further restrict the request_uri parameter.

5.2.1.2 [Insufficient Filtering] Base URL Allows “data” URIs
(CVE-2020-10748)

Attacker Model. The administrative user attacker model (section 3.4) is con-
sidered in the following, as privileges are required to modify Keycloak’s configura-
tion.

Background. In November 2019 there was a penetration test on Keycloak per-
formed by Cure53 [8]. In this pentest, Heiderich et al. found a XSS vulnerability
that was acknowledged as CVE-2020-1697.

Keycloak allows specifying a “baseUrl” for each client. This URL was reflected on
different pages, in two cases without applying sanitization before setting it as href
attribute of an anchor. As a result, there was a stored XSS vulnerability present
if a Client registered a “baseUrl” with javascript scheme. If a user clicked a link
on a website that used the javascript scheme, the JavaScript was executed in the
same context as the website the anchor was embedded.

Description. To mitigate this behavior, Keycloak introduced a filter for the java-
script scheme. This filter can be bypassed using another potential dangerous
scheme, namely the data scheme. The data scheme is less dangerous, as most
popular Browsers changed their behavior in 2017 and do not navigate to these URIs
anymore [7]. Nevertheless, Safari 13.5 for macOS and iOS executes JavaScript in a
different context than the embedding site (the null origin) if a user clicks an anchor
with a data URI.

An example “baseUrl” could be data:text/html;base64,PHNjcmlwdD5jb25maXJtKG-
RvY3VtZW50LmRvbWFpbik7PC9zY3JpcHQ+ resulting in the markup snippets
given in Listing 5.1 and Listing 5.2.

Recommendation. To mitigate this issue, any user supplied contents and the
“baseURL” scheme in special should be sufficiently sanitized before further us-
age.

data:text/html;base64,PHNjcmlwdD5jb25maXJtKGRvY3VtZW50LmRvbWFpbik7PC9zY3JpcHQ+
data:text/html;base64,PHNjcmlwdD5jb25maXJtKGRvY3VtZW50LmRvbWFpbik7PC9zY3JpcHQ+


5.2 Identity Provider Analysis Details 57

1 <p><a id="backToApplication"
href="data:text/html;base64,PHNjcmlwdD5jb25maXJtKGRv
Y3VtZW50LmRvbWFpbik7PC9zY3JpcHQ+">Back to Application</a></p>

→˓

→˓

Listing 5.1: Keycloak: Missing sanitization on https://keycloak.local/
auth/realms/master/protocol/openid-connect/auth?scope=
openid&response_type=code&redirect_uri=wrong&state=
something&nonce=something&client_id=test.local (can be ac-
cessed without authentication).

1 <td>
2 <a href="data:text/html;base64,PHNjcmlwdD5jb25maXJtKGRv

Y3VtZW50LmRvbWFpbik7PC9zY3JpcHQ+">→˓

3 test.local
4 </a>
5 </td>

Listing 5.2: Keycloak: Missing sanitization on https://keycloak.local/auth/
realms/master/account/applications (authentication required).

5.2.1.3 [Sensitive Information Disclosure] Missing Referrer Policy and Image
Injection on Login Screen

Attacker Model. The following attack utilizes the malicious administrative user
attacker model (section 3.4), as the configuration that needs to be set is only accessi-
ble for administrative users that have access to the realm configuration.

Description. Administrative users can customize Keycloak’s Login Screen for
each realm using the “HTML display name”. Keycloak uses an HTML sanitizer
that aims to only allow harmless markup, for instance <script>-tags are stripped
out of the rendered realm name. The sanitizer assumes images without event han-
dlers as harmless.

Furthermore, Keycloak does not use an HTTP Referrer-Policy or a Content Security
Policy (CSP) that prevents the User Agent from disclosing the path of the embedding
page in HTTP Referer headers. As a result, an embedded image pointing to a third
party resource discloses OpenID Connect parameters to these parties, including the
state and nonce.

https://keycloak.local/auth/realms/master/protocol/openid-connect/auth?scope=openid&response_type=code&redirect_uri=wrong&state=something&nonce=something&client_id=test.local
https://keycloak.local/auth/realms/master/protocol/openid-connect/auth?scope=openid&response_type=code&redirect_uri=wrong&state=something&nonce=something&client_id=test.local
https://keycloak.local/auth/realms/master/protocol/openid-connect/auth?scope=openid&response_type=code&redirect_uri=wrong&state=something&nonce=something&client_id=test.local
https://keycloak.local/auth/realms/master/protocol/openid-connect/auth?scope=openid&response_type=code&redirect_uri=wrong&state=something&nonce=something&client_id=test.local
https://keycloak.local/auth/realms/master/account/applications
https://keycloak.local/auth/realms/master/account/applications


58 5 Security Evaluation

Considering a basic image tag like
<img src="https://lauritz-holtmann.de/image.png">, the resulting HTTP re-
quest including a sensitive Referer header is presented in Listing 5.3.

1 GET /image.png HTTP/1.1
2 Host: lauritz-holtmann.de
3 Referer: https://keycloak.local:8443/auth/realms/master/protocol/

openid-connect/ auth?client_id=test.client
&redirect_uri=https%3A%2F%2Fkeycloak.local%3A8443%2Fauth%2F
&state=10e42242-d14a-4674-87b0-a09a71770f6b&response_type=code
&scope=openid&nonce=212af5ad-d957-4354-84db-d7c16afd26d3

→˓

→˓

→˓

→˓

4 [...]

Listing 5.3: Keycloak: Third Party request that discloses OpenID Connect state
and nonce.

Recommendation. To mitigate this issue, a Referrer-Policy that prevents the
leakage of sensitive date through Referer headers should be introduced.

5.2.1.4 [Brute Force] Weak “client_secret” and Missing Rate Limiting on
Token Endpoint Enable Client Credential Brute Force

Attacker Model. In the following the web attacker model (section 3.1) is consid-
ered. If a client is manually configured using the web interface, the client_secret
that is chosen by Keycloak is sufficiently strong to mitigate the risk of brute force at-
tacks. Nevertheless, using Keycloak’s registration API, weak client_secret values
could be chosen. Thus, a more secure configuration than outlined in the following
is possible but not consistently enforced.

Description. When querying Keycloak’s Token Endpoint, Clients can provide
their credentials using Basic Authorization. When doing so, Keycloak responds
with different error codes depending on the validity of the provided client creden-
tials. Additionally, even if a Client repeatedly provides wrong credentials over and
over again, there is no rate limiting in place.

A sufficiently strong client_secret mitigates the risk of brute force, so that Clients
that are registered using the web UI and receive a secret from Keycloak are not at
risk. But Keycloak additionally allows Clients to register using a non-normative
registration API that allows the client to choose its client_id and client_secret
on its own, without applying a policy regarding the strength of chosen secrets. As
a result, Clients can register themselves using a single character secret, as shown in



5.2 Identity Provider Analysis Details 59

Listing 5.4 and Listing 5.5. That the weak secret is accepted could be additionally
observed using the web UI presented in Figure 5.4.

Recommendation. Keycloak should introduce a rate limiting on the Token End-
point. If a client repeats to provide erroneous credentials there should be a con-
figurable rate limiting in place – just like the existing brute force detection for the
user login. Furthermore, a policy should enforce sufficiently strong client_secret
values if a Client registers itself using the API.

1 POST /auth/realms/master/clients-registrations/default HTTP/1.1
2 Host: keycloak.local
3 Connection: close
4 Authorization: Bearer [REDACTED]
5 Content-Type: application/json
6 Content-Length: 40
7

8 {"clientId" : "test1234", "secret": "a"}

Listing 5.4: Keycloak: The Client Registration allows using weak secrets, an example
request is shown above.

1 HTTP/1.1 201 Created
2 Location: https://keycloak.local/auth/realms/master/

clients-registrations/default/test1234→˓

3 Content-Type: application/json
4 Content-Length: 1259
5 [...]
6

7 {"id":"64872404-a71d-4e44-a0f3-6889ddae1ea8","clientId":"test1234",
"surrogateAuthRequired":false,"enabled":true,
"alwaysDisplayInConsole":false,
"clientAuthenticatorType":"client-secret","secret":"a",
[...]}

→˓

→˓

→˓

→˓

Listing 5.5: Keycloak: The Client Registration allows using weak secrets, an example
response is shown above (only most significant headers are presented).



60 5 Security Evaluation

Figure 5.4: Keycloak: The Client Registration allows using weak secrets. The weak
client_secret is also displayed on the configuration page.

5.2.1.5 [Insufficient Filtering] OIDC “redirect_uri” Allows Dangerous Schemes
Resulting in Potential XSS (CVE-2020-10776)

Attacker Model. A malicious administrative user (section 3.4) or a malicious Ser-
vice Provider (section 3.3) that registers using OpenID Connect Dynamic Client Reg-
istration are considered as attacker models in the following.

Description. According to the OpenID Connect specification, alternative schemes
may be used as redirect_uri beside https. If the Client Type is configured as
confidential, http is allowed as scheme. For native applications – e.g. the Twit-
ter Application – even custom schemes like twitter:// may be used [33, Section
3.1.2.1.].

Following the specification consequently, Keycloak does not restrict the redirect-
_uri regarding its scheme at all. This enables dangerous behavior, as the Authenti-
cation Response’s 302 redirect is sent to this URI with an arbitrary scheme. As a
result, depending on the Browser’s behavior and treatment of the Location HTTP
header, this may cause several security issues, potentially even leading to Cross-Site-
Scripting (XSS).

Browser behavior regarding dangerous schemes in Location headers highly differs
and changed in the last decade. Among a test-set of current and popular Browser
versions, only Safari 13.5 (iOS and macOS) executes JavaScript provided as data-
URI, as shown in Figure 5.5.



5.2 Identity Provider Analysis Details 61

Figure 5.5: Keycloak: JavaScript execution using data URI as Location header.

The JavaScript execution is limited, as the script is executed in a different origin than
the Identity Provider that sets the Location header. Thus, cross-origin access is re-
stricted by the Same-Origin Policy. Nevertheless, an attacker may be able to launch
a Cross-Origin State Inference (COSI) attack like Sudhodanan et al. pointed out in
their paper “Cross-Origin State Inference (COSI) Attacks: Leaking Web Site States
through XS-Leaks” [46] using a data URL as redirect_uri.

Steps to reproduce:

1. Register a new client and configure the following recirect_uri:
data:text/html,%3Cscript%3Ealert%281%29%3C%2Fscript%3E

Figure 5.6: Keycloak: Client configuration with data-URI as redirect_uri.

2. Visit the Authentication Endpoint for the created Client: https://keycloak.local:
8443/auth/realms/master/protocol/openid-connect/auth?scope=openid&state=

data:text/html,%3Cscript%3Ealert%281%29%3C%2Fscript%3E
https://keycloak.local:8443/auth/realms/master/protocol/openid-connect/auth?scope=openid&state=a&response_type=code&client_id=test&redirect_uri=data%3Atext%2Fhtml%2C%253Cscript%253Ealert%25281%2529%253C%252Fscript%253E&nonce=b
https://keycloak.local:8443/auth/realms/master/protocol/openid-connect/auth?scope=openid&state=a&response_type=code&client_id=test&redirect_uri=data%3Atext%2Fhtml%2C%253Cscript%253Ealert%25281%2529%253C%252Fscript%253E&nonce=b
https://keycloak.local:8443/auth/realms/master/protocol/openid-connect/auth?scope=openid&state=a&response_type=code&client_id=test&redirect_uri=data%3Atext%2Fhtml%2C%253Cscript%253Ealert%25281%2529%253C%252Fscript%253E&nonce=b
https://keycloak.local:8443/auth/realms/master/protocol/openid-connect/auth?scope=openid&state=a&response_type=code&client_id=test&redirect_uri=data%3Atext%2Fhtml%2C%253Cscript%253Ealert%25281%2529%253C%252Fscript%253E&nonce=b


62 5 Security Evaluation

a&response_type=code&client_id=test&redirect_uri=data%3Atext%2Fhtml%
2C%253Cscript%253Ealert%25281%2529%253C%252Fscript%253E&nonce=b

3. After successful authentication there is a redirect to the registered redirect_uri:

1 HTTP/1.1 302 Found
2 Location:

data:text/html,%3Cscript%3Ealert%281%29%3C%2Fscript%3E?state=a
&session_state=b&code=c

→˓

→˓

3 [...]

Listing 5.6: Keycloak: 302 Redirect to data-URI (parameters shortened).

Depending on the Browser’s behavior, the data-URI is parsed and the embedded
JavaScript is executed. Safari 13.5 for instance evaluates the provided location
header, see Figure 5.5.

Recommendation. To mitigate the above described issue, potential dangerous
schemes should be forbidden for redirect_uri values, as they open an unneces-
sary attack surface and there is, to our knowledge, no reasonable use-case for these
schemes.

5.2.1.6 [Bug] Internal Server Error When Processing “client_id” in
Authentication Request

Description. When processing OpenID Connect Authentication Requests, Key-
cloak parses the client_id parameter. If the client_id is valid and includes curly
braces ({ or }), Keycloak responds with an internal server error.

Steps to reproduce:

1. Set-up a new OpenID Connect client with a client_id including curly braces.

2. Send a valid Authentication Request to the /auth/realms/<realm-name>
/protocol/openid-connect/auth endpoint:

https://keycloak.local:8443/auth/realms/master/protocol/openid-connect/auth?scope=openid&state=a&response_type=code&client_id=test&redirect_uri=data%3Atext%2Fhtml%2C%253Cscript%253Ealert%25281%2529%253C%252Fscript%253E&nonce=b
https://keycloak.local:8443/auth/realms/master/protocol/openid-connect/auth?scope=openid&state=a&response_type=code&client_id=test&redirect_uri=data%3Atext%2Fhtml%2C%253Cscript%253Ealert%25281%2529%253C%252Fscript%253E&nonce=b
https://keycloak.local:8443/auth/realms/master/protocol/openid-connect/auth?scope=openid&state=a&response_type=code&client_id=test&redirect_uri=data%3Atext%2Fhtml%2C%253Cscript%253Ealert%25281%2529%253C%252Fscript%253E&nonce=b
https://keycloak.local:8443/auth/realms/master/protocol/openid-connect/auth?scope=openid&state=a&response_type=code&client_id=test&redirect_uri=data%3Atext%2Fhtml%2C%253Cscript%253Ealert%25281%2529%253C%252Fscript%253E&nonce=b


5.2 Identity Provider Analysis Details 63

1 GET /auth/realms/<realm-name>/protocol/openid-connect/auth?scope ⌋

=openid&response_type=code&redirect_uri=[REDACTED]&state=[RE ⌋

DACTED]&nonce=[REDACTED]&client_id=bitbucket.local%7b3-1%7d
HTTP/1.1

→˓

→˓

→˓

2 Host: keycloak.local
3 [...]

Listing 5.7: Kecloak: Authentication Response including valid (pre-registered)
client_id containing curly braces.

3. Keycloak responds with an internal server error with HTTP status code 500.
The server log file reflects 3-1 which was included in our crafted client_id:

1 10:21:54,750 ERROR
[org.keycloak.services.error.KeycloakErrorHandler] (default
task-7) Uncaught server error:
java.lang.IllegalArgumentException: RESTEASY003720: path
param 3-1 has not been provided by the parameter map

→˓

→˓

→˓

→˓

2 [...]

Listing 5.8: Keycloak: The Internal Server Error leads to the above error being
written to the application log, including the 3-1 that was part of the
pre-registered client_id.

An authenticated user with administrative privileges may register a Client that uses
an OpenID Connect-wise valid client_id that leads to a limited Denial-of-Service
of Keycloak, as on each login flow using this client_id an internal server error
occurs.

5.2.1.7 [Bug] “sector_identifier_uri” Supports HTTP Without TLS

Description. If OpenID Connect Dynamic Client Registration is used, the Client
can specify multiple valid redirect_uri values by providing a sector_identifier_-
uri that “references a JSON file containing an array of redirect_uri values” [35,
Section 5.]. The OpenID Connect Dynamic Client Registration specification addi-
tionally states that the “value of the sector_identifier_uri MUST be a URL using the
https scheme” [35, Section 5.]. Keycloak instead accepts sector_identifier_uri
with HTTP without TLS. As a result, the information Keycloak uses to determine



64 5 Security Evaluation

legitimate redirect_uri values is therefore potentially not integrity and confiden-
tiality protected.

Steps to reproduce. The following steps need to be performed in order to repo-
duce the issue.

1. Launch a simple web server at http://poc.local

2. Send an authenticated request to dynamic client registration endpoint at https:
//keycloak.local:8443/auth/realms/master/clients-registrations/openid-
connect

1 POST /auth/realms/master/clients-registrations/openid-connect
HTTP/1.1→˓

2 Host: keycloak.local:8443
3 Content-Type: application/json
4 Authorization: Bearer [REDACTED]
5 Content-Length: 162
6

7 {
8 "redirect_uris":
9 ["https://client.example.org/callback"],

10 "sector_identifier_uri":
11 "http://poc.local/sector_identifier.json"
12 }

Listing 5.9: Keycloak: Dynamic Client Registration with sector_identifier_uri
using http (HTTP headers stripped).

3. The incoming request can be observed within the access log of the web server.
Keycloak fetches the resource using plain http:

1 Serving HTTP on 0.0.0.0 port 80 (http://0.0.0.0:1337/) ...
2 127.0.0.1 - - [22/May/2020 17:22:48] "GET /sector_identifier.json

HTTP/1.1" 200 -→˓

Listing 5.10: Keycloak: Dynamic Client Registration with sector_identifier_uri
using http – the listener receives an incoming request using plain http.

http://poc.local
https://keycloak.local:8443/auth/realms/master/clients-registrations/openid-connect
https://keycloak.local:8443/auth/realms/master/clients-registrations/openid-connect
https://keycloak.local:8443/auth/realms/master/clients-registrations/openid-connect


5.2 Identity Provider Analysis Details 65

5.2.1.8 [Bug] Missing Check for “iss” Claim within JWT Validation on Client
Authentication

Description. The OpenID Connect Core specification specifies a set of possi-
ble Client Authentication mechanisms. Among this set client_secret_jwt and
private_key_jwt utilize JSON Web Tokens. According to the specification, “iss”
and “sub” claim of the JWT must contain equally “"client_id" of the OAuth Client”
if a JWT is used for Client Authentication [33, Section 9.].

An excerpt of Keycloak’s Client Authentication Code in /org/keycloak/authenti-
cation/authenticators/client/JWTClientAuthenticator.java is shown below:

1 RealmModel realm = context.getRealm();
2 String clientId = token.getSubject();
3 if (clientId == null) {
4 throw new RuntimeException("Can't identify client. Issuer

missing on JWT token");→˓

5 }

Listing 5.11: Keycloak: The JWT validation for the Client Authentication deter-
mines the clientId solely based on the “sub” claim.

Keycloak solely determines the client_id based on the “sub” claim of the JWT
and chooses the public key that is used to verify the token’s signature based on this.
In doing so the “iss” claim is completely ignored.

As there is no check for the “iss” value, one could assume a potential key confusion,
as normally the public key to verify the token’s signature is based on the “iss” claim.
But as Keycloak uses the implicit equality of “sub” and “iss” claim defined within
the specification, a malicious actor would still have to forge a signature for the
victim-client’s secret key in order to bypass the Client Authentication. Thus, this is
only an issue regarding compliance with the specification, but does not result in an
immediate security issue.



66 5 Security Evaluation

5.2.2 Analysis of GitLab

GitLab implements Service Provider and Identity Provider parts of the OpenID
Connect specification. As Identity Provider it additionally distinguishes between
user and system OAuth applications.

Section Vulnerability Type Attacker Model Severity
5.2.2.1 Broken Authentication Malicious Service Provider Medium
5.2.2.2 IDOR Malicious Administrative User Low

Table 5.7: Overview of the most relevant observations and findings in GitLab’s Iden-
tity Provider implementation.

5.2.2.1 [Broken Authentication] Missing “code” Parameter Invalidation After
Permissions Are Revoked (CVE-2020-13294)

Attacker Model. The attacker model applied in the following is a malicious Ser-
vice Provider (section 3.3).

Description. GitLab can be configured to act as OpenID Connect Identity Provid-
er. If this is the case, in a Single Sign-On scenario a Relying Party allows GitLab
users to sign in using their existing account. As defined at the OpenID Connect 1.0
specification, the user has to give explicit consent which information is shared with
the relying party: “Once the End-User is authenticated, the Authorization Server
MUST obtain an authorization decision before releasing information to the Relying
Party” [33, Section 3.1.2.4.].

Additionally, GitLab allows users to revoke their consent for already granted ac-
cesses. This causes previously issued tokens to be invalidated. But if the Service
Provider holds a valid code value in the moment the access is revoked, it can be
still redeemed for a fresh id_token and access_token/refresh_token at GitLab’s
Token Endpoint. As a result, the revoked application reappears at the “Autho-
rized applications” section having restored all previously granted permissions per-
manently.

Thus, a maliciously acting Service Provider could obtain sensitive data (id_token)
and bearer tokens (access_token/refresh_token) without user’s consent (as the
consent was explicitly revoked beforehand). Even worse, the malicious actor may
restore the previously given and then revoked consent persistently, resulting in future
access to resources and information.

Recommendation. To mitigate this issue, beside access_token and refresh_-
token, issued code values must be invalidated if a user revokes the permissions
of a Service Provider. In addition, the code must be one-time-usable and short-
living.



5.2 Identity Provider Analysis Details 67

Figure 5.8: GitLab: Missing code revocation.

5.2.2.2 [IDOR] System OAuth Application Configuration Allows IDOR to User
OAuth Applications

Attacker Model. The following issue could be exploited as an administrative
user (section 3.4) that has access to the administrative configuration GUI of Git-
Lab.

Description. In GitLab, users can register custom OAuth 2.0 Clients. Normally,
only the user that created a Client has access to its configuration. By directly access-
ing the configuration page of an OAuth 2.0 application, administrative users can ac-
cess and change the configuration of other user’s OAuth 2.0 applications, even though
the applications do not appear using the administrative GUI (as they are owned by
another user) and should be access-restricted. This is caused by an Insecure Direct
Object Reference (IDOR) flaw. Additionally, client_id and client_secret for
these applications created by users can be obtained that should normally only be
accessible for the owner of the application.

Steps to reproduce. To reproduce the behavior, the following steps can be per-
formed:

1. As normal user, create a new application at
http://gitlab.local/oauth/applications

http://gitlab.local/oauth/applications


68 5 Security Evaluation

2. As administrative user, observe that the new application is not visible at the
administrative configuration pane.

3. As administrative user, observe that the new application is not configurable
using http://gitlab.local/oauth/applications/8 (adjust ID of Applica-
tion). This is the direct link to the configuration of the application that the
owner uses to configure the application.

4. As administrative user, access the configuration pane for the new application at
http://gitlab.local/admin/applications/8 and http://gitlab.local/admin/
applications/8/edit. Note that the /admin/applications/ path is nor-
mally used for system OAuth applications exclusively.

Recommendation. The actual impact of this missing access restriction appears
to be limited, as administrative users may “impersonate” low privileged users and
intentionally access their OAuth 2.0 Application’s configuration panes. Neverthe-
less, the applications are not owned by the administrative user and client_id and
client_secret are considered as sensitive data. Thus, a working access control
must be implemented.

http://gitlab.local/oauth/applications/8
http://gitlab.local/admin/applications/8
http://gitlab.local/admin/applications/8/edit
http://gitlab.local/admin/applications/8/edit


5.2 Identity Provider Analysis Details 69

5.2.3 Analysis of Amazon Cognito (AWS)

As Identity Broker, Amazon Cognito also implements the Identity Provider part of
the OpenID Connect specification.

Section Vulnerability Type Attacker Model Severity

5.2.3.1 Insufficient Filtering Malicious Service Provider or LowMalicious Administrative User

Table 5.9: Overview of the most relevant observations and findings in Amazon Cog-
nito’s Identity Provider implementation.

5.2.3.1 [Insufficient Filtering] “redirect_uri” Is Allowed To Use Potentially
Dangerous Schemes

Attacker Model. A malicious administrative user (section 3.4) or a malicious Ser-
vice Provider (section 3.3) are considered as attacker models in the following.

Description. Amazon Cognito supports, just like previously described for Key-
cloak in subsubsection 5.2.1.5, dangerous schemes for registered redirect_uris.

In case of Amazon Cognito, multiple callback URIs are configured using one text
input field being separated using commas. As a result, due to the comma-limitation
no data URIs may be specified using this UI (otherwise the last part of a data
URI is misunderstood as new URI without scheme), but other potential dangerous
schemes like javascript are still allowed.

An example error response being sent to the redirect_uri endpoint using a java-
script URI is shown in the following:

1 HTTP/1.1 302 Found
2 Date: Wed, 12 Aug 2020 16:57:50 GMT
3 Location: javascript:alert(1)//

?error_description=id_token+expired+at+1597250052
&state=state_static&error=invalid_request

→˓

→˓

4 [...]

Listing 5.12: Amazon Cognito: Redirect to javascript URI.

Recommendation. To mitigate the above described issue, potential dangerous
schemes should be forbidden for redirect_uris, as they open an unnecessary attack
surface and there is to our knowledge no reasonable use-case for these schemes.



70 5 Security Evaluation

5.3 Service Provider Evaluation

Category Keycloak Bitbucket GitLab Salesforce Amazon
Cognito

Replay Attacks Ë Ë + + +

Signature Manipulation Ë + Ë + Ë

Token Recipient Confusion Ë Ë Ë + Ë

ID Spoofing Ë ○ Ë + Ë

Key Confusion Ë + Ë + Ë

Sub Claim Spoofing Ë Ë Ë Ë Ë

State Parameter ○ Ë Ë ○ ○

Leakage ○ ○ + Ë Ë

CSRF Ë ○ Ë ○ ○

SSRF + + ○ Ë ○

Open Redirect + + Ë + Ë

Login Confusion Ë ○ Ë ○ Ë

Mix-Up Attacks Ë N/A N/A Ë ○

Deprecated Grants Ë Ë Ë Ë +

Discovery ○ ○ + + +

Injection Ë ○ ○ + Ë

Ë: Secure / No attack found in this category
○: Insecure / One or more attacks found in this category
+: Theoretical issues identified or limited attack success

Table 5.10: Evaluation of Service Provider related Test and Attack Categories.

Table 5.10 presents the evaluation results of the analyzed Service Provider imple-
mentations.

Replay Attacks Keycloak and Bitbucket do not show any issues regarding Replay
Attacks, as both validate “exp”, “iat” and “nonce” claim of the JWT. GitLab
introduced JWT validation in v13.2. Previous versions did not verify the
contents of the id_token at all. From v13.2 GitLab verifies “exp” and nonce
but ignores the “iat” claim. Salesforce does not use the provided id_token at
all, but solely relies on the UserInfo Response. Amazon Cognito does not
use a nonce to prevent replay and only validates the “exp” claim.

Signature Manipulation If it is performed, the signature validation is sufficient and
does not accept the “none” algorithm. But Bitbucket and Salesforce do not
verify the id_token’s signature at all. As both use the Code Flow, the vali-
dation of the signature is not mandatory because the id_token is exchanged
using the trusted back-channel, according to specification.



5.3 Service Provider Evaluation 71

ID Spoofing Bitbucket’s OpenID Connect implementation allows ID spoofing by
design. Bitbucket only supports one external login provider. This Identity
Provider can authenticate any existing Bitbucket user by setting the public
username as “sub” claim (or alternate username field that could be speci-
fied). Thus, a configured Identity Provider could “spoof” any user account
including super-admin due to missing prior account linking. According to At-
lassian, this is intended behavior. GitLab has a bug within its configuration
parser, resulting in the theoretical possibility for “Issuer Confusion”: If two
OpenID Connect Identity Providers are configured and both use OpenID Con-
nect Discovery, the frontend uses the description and labels of the first Identity
Provider but the issuer and provided endpoints that are internally used are
determined from Discovery with the second Identity Provider.

Key Confusion No Key Confusion issues were found, but as mentioned earlier, Bit-
bucket and Salesforce do not validate the id_token’s signature at all.

Subclaim Spoofing If parsed, the id_token’s “sub” claim is checked to be equal to
the UserInfo Response’s “sub” claim within all implementations.

State Parameter Keycloak, Salesforce and Amazon Cognito did not invalidate the
state parameter after it was redeemed once. As a result, the Denial-of-Service
amplification attack introduced in this thesis could be launched using these
Service Providers as amplifying proxies.

Leakage Referer Leaks were observed in Keycloak and Bitbucket. In both cases,
no sufficient Referrer-Policy was defined. For Bitbucket there are references
to external pages on the error page that include OpenID Connect parameters
in its query parameters. Keycloak allows specifying harmless HTML that is
rendered within the Login form. In doing so, external images are allowed,
disclosing the Authentication Request as Referer header. GitLab has a
CLI tool that does not require further authentication. Using gitlab-psql, all
access_token values stored within the database are accessible.

CSRF Three out of five implementations implement an endpoint that starts the
OpenID Connect flow without CSRF protection, resulting in Login CSRF into
the user’s own account if the user has an active session at the Identity Provider.

SSRF SSRF is a general problem in OpenID Connect setups if a malicious admin-
istrative user (section 3.4) is considered as part of the threat model. Keycloak
and Bitbucket have blind SSRF issues that allow to send HTTP requests to
localhost or internal IPs. As these products are self-hosted, we classify this
as limited attack success. Additional to blind SSRF, malicious actors could
inject arbitrary headers or split requests in GitLab. These Service Provider
implementations are self-hosted so that the impact is generally considered less
severe, as the blind SSRF issue Amazon Cognito has that allows sending re-
quests to localhost in Amazon’s hosted environment. Furthermore, Amazon



72 5 Security Evaluation

Cognito provides error messages resulting in the possibility to perform port
scans and observe HTTP error codes.

Open Redirect If implemented, the non-normative parameter that specifies where
the user should be redirected to after successful authentication is correctly
validated to only redirect to allowed hosts. Bitbucket and Salesforce allow
specifying any path of the trusted host as the redirection target, including
session relevant and OpenID Connect flow relevant endpoints. Keycloak allows
to pass a parameter along with the logout that redirects the End-User to any
path at the Keycloak instance.

Login Confusion Bitbucket and Salesforce implement the necessary requirements
for login confusion: An Endpoint that starts an OpenID Connect flow that
is not CSRF protected and an Open Redirect or Covert redirect that allows
specifying the Login Initiation Endpoint as the redirection target.

Mix-Up Attacks Most of the implementations that support to set up multiple Iden-
tity Providers do not suffer from Mix-Up issues, as Keycloak and Salesforce
use a distinct endpoint per Identity Provider. Amazon Cognito uses one Redi-
rection Endpoint for all configured Identity Providers and does not implement
additional countermeasures, so that it is vulnerable for Mix-Up attacks.

Deprecated Grants Most Service-Provider implementations only support the Code
Flow. Among the tested Service Providers, only Amazon Cognito supports
the Implicit Flow in which access_token values are passed through the front-
channel, but default is the Code Flow.

Discovery Bitbucket and Keycloak allow performing the OpenID Connect Discovery
over HTTP without TLS. GitLab and Amazon Cognito enforce TLS for the
Configuration Endpoint, all other OpenID Connect endpoints may use plain
HTTP. In case of Amazon Cognito, the frontend validates the OpenID Connect
endpoints regarding their scheme, but endpoints that are configured using
OpenID Connect Discovery are allowed to use HTTP without TLS. Salesforce
does not implement OpenID Connect Discovery but allows to manually specify
endpoints using plain HTTP.

Injection Bitbucket throws an error in case the access_token includes a CRLF
sequence when it tries to use this token within the Token Request. The
stack trace is written to the application logs, including sensitive data like
the access_tokens. Salesforce is also a Java implementation and responds
with an internal server error, but without access to application logs, it could
not be proven that an equal error message is written to the logs. The most
severe issue regarding CRLF sequences was observed in GitLab, as it uses the
Identity Provider provided access_token within the context of HTTP headers
and does not strip the CRLF sequence. Therefore, the injection of a CRLF
sequence leads to an HTTP header and HTTP request injection within the
UserInfo Request.



5.4 Service Provider Analysis Details 73

5.4 Service Provider Analysis Details

In the following, the most significant observations regarding Service Provider imple-
mentations are described in detail.

5.4.1 Analysis of Keycloak

Keycloak can be configured as Identity Broker, serving as proxy-like service for mul-
tiple external Identity Provider. In this scenario Keycloak acts as Relying Party to
foreign Identity Providers, therefore Keycloak also implements the Service Provider
specific parts of the OpenID Connect specification.

Section Vulnerability Type Attacker Model Severity

5.4.1.1 Request Amplification Web Attacker or LowMalicious Identity Provider
5.4.1.2 Unhandled Exception N/A None

Table 5.11: Overview of the most relevant observations and findings in Keycloak’s
Service Provider implementation.

5.4.1.1 [Request Amplification] Reusable “state” Parameter at “redirect_uri”
Endpoint Enables Multiple Attack Vectors (CVE-2020-14302)

Attacker Model For the following attack, two attacker models could be con-
sidered (three if you additionally consider the high privileged malicious adminis-
trative user (section 3.4)). A web attacker (section 3.1) having no influence on
the target of the Token Request could only target the already configured Identity
Provider. A malicious Identity Provider (section 3.2) using the OpenID Connect
Discovery could additionally target arbitrary web servers accessible for the Service
Provider.

Description Keycloak as Service Provider provides dedicated redirect_uris for
each Identity Provider: https://keycloak.local/auth/realms/{realm}/broker/
{alias}/endpoint.

The redirect_uri endpoint does not invalidate state values if they are redeemed
once. As a result, multiple requests to this endpoint including the valid state
value result in requests to the configured Token Endpoint being initiated by Key-
cloak.

A malicious administrative user (section 3.4) or malicious Identity Provider (sec-
tion 3.2) could additionally increase the outgoing Token Request by choosing a

https://keycloak.local/auth/realms/{realm}/broker/{alias}/endpoint
https://keycloak.local/auth/realms/{realm}/broker/{alias}/endpoint


74 5 Security Evaluation

long path for the Token Endpoint URL and setting imaginary long Client Creden-
tials. As a result, one request to the Keycloak instance could be amplified multiple
times compared to the request that is received at the victim server’s end.

Steps to reproduce The steps to launch a Denial-of-Service attack using many
large requests through Keycloak as amplifying proxy are the following:

1. Configure the victim server as Token Endpoint with a long path and long Client
Credentials (if the attacker model is a regular web attacker (section 3.1), this
step is skipped).

2. Start an OpenID Connect flow and obtain a valid state value (i.e. save a
valid Authentication Response including the state).

3. After the Authentication Response is received, Keycloak tries to redeem the
received code value at the victim web server. This request can be multiple
times larger than the attacker’s request (Authentication Response).

4. Replay the obtained Authentication Response, on each try Keycloak sends
a new HTTP request to the victim server.

Recommendation To mitigate this issue, the state should not only be bound to
the End-User’s session, but additionally be a one-time-usable value.

5.4.1.2 [Bug] Unhandled NullPointerException If “state” is Missing in
Authentication Response

Description. If Keycloak receives an Authentication Response after successful
login at the Identity Provider that does not include an OpenID Connect state
parameter, an unhandled NullPointerException occurs.

Steps to reproduce:

1. Send a request to Keycloak’s Redirect URI Endpoint without state parameter:

1 GET /auth/realms/master/broker/midp/endpoint?code=aabbccddeeff
HTTP/1.1→˓

2 Host: keycloak-sp.local:9443

Listing 5.13: Keycloak: Missing state at Authentication Response (Request).



5.4 Service Provider Analysis Details 75

2. Observe the HTTP 502 error code of the response:

1 HTTP/1.1 502 Bad Gateway
2 [...]
3

4 [...]
5 <header class="login-pf-header">
6 <h1 id="kc-page-title"> We are sorry...</h1>
7 </header>
8 <div id="kc-content">
9 <div id="kc-content-wrapper">

10 <div id="kc-error-message">
11 <p class="instruction">Unexpected error when authenticating

with identity provider</p>→˓

12 </div>
13 [...]

Listing 5.14: Keycloak: Missing state at Authentication Response (Response).

And the corresponding log entries:

1 11:10:11,370 ERROR
[org.keycloak.broker.oidc.AbstractOAuth2IdentityProvider]
(default task-11) Failed to make identity provider oauth
callback: java.lang.NullPointerException

→˓

→˓

→˓

Listing 5.15: Keycloak: Missing state at Authentication Response (application log).

Recommendation. Keycloak always utilizes the state value. Nevertheless, the
error case if an Identity Provider omits the state within the Authentication
Response should be handled and an adequate error message should be displayed.



76 5 Security Evaluation

5.4.2 Analysis of Bitbucket

Bitbucket only implements the Service Provider part of the OpenID Connect specifi-
cation. It distinguishes between two authentication modes:

a) An external Identity Provider is used as secondary authentication provider.

b) An external Identity Provider is used as primary authentication provider dis-
abling access using credentials.

Section Vulnerability Type Attacker Model Severity
5.4.2.1 SSRF Malicious Administrative User Medium
5.4.2.2 Login CSRF Web Attacker Medium
5.4.2.3 Login Confusion Web Attacker Medium
5.4.2.4 Sensitive Information Disclosure N/A Low

5.4.2.5 Missing Best Practice Malicious Administrative User or LowWeb Attacker with Code Execution
5.4.2.6 Log Injection Malicious Identity Provider Low
5.4.2.7 Unhandled Exception N/A None

Table 5.12: Overview of the most relevant observations and findings in Bitbucket’s
Service Provider implementation.

5.4.2.1 [SSRF] Filter Bypassed: OpenID Connect Configuration Allows
Authenticated SSRF to Localhost

Attacker Model. The attacker model that is applied for this attack is a malicious
administrative user (section 3.4) that is allowed to configure the OpenID Connect
and “SSO 2.0” settings of the Bitbucket instance.

Description. Bitbucket does not validate the “Issuer URL” in accordance to the
specification that requires an URL that is “using the https scheme with no query or
fragment component that the OP asserts as its Issuer Identifier” [34, Section 3.].
Additionally, Bitbucket does not remove the questionmark character “?” from the
“Issuer URL”. As a result, it is possible to omit the last part of the URL that is
appended by Bitbucket on Configuration Request and therefore send requests to
arbitrary URL paths.

The OpenID Connect Discovery can be considered as intentional SSRF for authen-
ticated users with administrative privileges. To mitigate the risk that is caused
by this design, there is a blacklist in place that prevents administrative users from
setting the host of the issuer to localhost or 127.0.0.1, because there could be
services running on localhost that must not be accessible to external entities. This



5.4 Service Provider Analysis Details 77

filter can be bypassed using IPv4-mapped IPv6 addresses [22, Section 2.2] as host
name, additionally arbitrary ports can be specified.

Thus, combining the two flaws, an authenticated administrative user (section 3.4)
can launch a SSRF attack against Bitbucket targeting services that are running
on localhost by setting the “Issuer URL” to http://[0:0:0:0:0:ffff:127.0.0.1]:
1337/testfile?. This results in a GET request over HTTP to a service that is
accessible on localhost port 1337 and path /testfile.

The incoming request on an HTTP listener running on localhost as presented within
the access log is given in the following:

1 Serving HTTP on 0.0.0.0 port 1337 ...
2 127.0.0.1 - - [27/Apr/2020 18:10:51] "GET

/testfile?/.well-known/openid-configuration HTTP/1.1" 404 -→˓

Listing 5.16: Bitbucket: SSRF to localhost on arbitrary port with arbitrary path.

Recommendation. To mitigate this issue, the existing blacklist should be hard-
ened regarding IPv4-mapped IPv6 addresses. Additionally, the issuer must not
include a query or fragment component.

5.4.2.2 [CSRF] Intentional Login CSRF

Attacker Model. In the following the web attacker model (section 3.1) is consid-
ered.

Description. The OpenID Connect 1.0 Core specification defines a mechanism
how third parties may trigger an OpenID Connect login flow. The specification
introduces the “target_link_uri” that instructs the Service Provider where the user
should be redirected after successful login [33, Section 4.].
Additionally, Bitbucket implements a non-normative endpoint that starts an OpenID
Connect login flow if an Identity Provider is configured as external login provider.
This endpoint accepts the next GET parameter that instructs Bitbucket where the
user should be redirected after successful login.

Both endpoints do intentionally not implement CSRF mitigations, so that with
a request to https://bitbucket.test/plugins/servlet/oidc/initiate-login
or https://bitbucket.test/plugins/servlet/external-login an OpenID Con-
nect login flow is started. If a user already has an active session at the Identity
Provider and previously consented to share information with Bitbucket as Service

http://[0:0:0:0:0:ffff:127.0.0.1]:1337/testfile?
http://[0:0:0:0:0:ffff:127.0.0.1]:1337/testfile?
https://bitbucket.test/plugins/servlet/oidc/initiate-login
https://bitbucket.test/plugins/servlet/external-login


78 5 Security Evaluation

Provider, the Identity Provider immediately responds with the Authentication
Response when the Authentication Endpoint is queried.

As a result, in case a user has an active session at the Identity Provider, a third party
can login the user to his Single Sign-On connected Bitbucket account using this login
CSRF attack. The attack is shown in Figure 5.13.

Figure 5.13: Bitbucket: A malicious actor can start an OpenID Connect authenti-
cation flow resulting in login CSRF.

As OpenID Connect is a complex protocol with multiple parties that highly depends
on redirects being made in the user’s browser, the risk resulting from CSRF vul-
nerabilities significantly increases. The “target_link_uri” and “next” parameters
for instance allow to chain an authenticated request after the authentication was
successful. In doing so, the Referer of this request is a trusted origin, potentially
bypassing additional referrer-based CSRF mitigations.

Recommendation. Fett et al. already recommended in 2017 that “login initiation
endpoints [should] not to be implemented (they are not a mandatory feature), or to re-
quire explicit confirmation by the user” [15, Section III; A. 7)].



5.4 Service Provider Analysis Details 79

5.4.2.3 [Login Confusion] Redirect + CSRF Enable Login Confusion

Attacker Model. The attacker model for this attack is an unauthenticated web
attacker (section 3.1). We assume that the victim browses an attacker controlled
website. Prerequisites for this attack are that the victim has two accounts at Bit-
bucket. For user A our victim uses credentials, user B is authenticated using an
External Login Provider. Additionally, the victim has an active session at the Iden-
tity Provider.

Description. As previously described in subsubsection 5.4.2.2, Bitbucket imple-
ments two endpoints that enable intentional login CSRF. Furthermore, both end-
points allow GET parameters which hold information where the user should be
redirected to after successful authentication. Whilst this parameter is sanitized to
prevent Covert Redirects to external destinations, any path of the Bitbucket in-
stance is allowed as final destination, including session related endpoints like the
Logout Endpoint (that terminates the user’s session) or the Single Sign-On Login
Initiation Endpoint. This enables the following Login Confusion attack, that is
visualized in Figure 5.14:

1. Prerequisite: The victim has an active session at the Identity Provider and
previously used this account to authenticate as user B at Bitbucket.

2. The victim visits an attacker controlled website and is redirected to https:
//bitbucket.test/login?next=/plugins/servlet/external-login.

3. Bitbucket serves a regular Login Form, the victim authenticates using her
credentials for user A (1).

4. After successful authentication, Bitbucket redirects the victim to the Login
Initialization Endpoint, as this was the previously provided destination (2).

5. Bitbucket receives the GET request to the Login Initiation Endpoint and
launches a new OpenID Connect Login flow accordingly.

6. The victim has, per our prerequisites, an active session at the Identity Provider.
As a result, there is a silent redirect with the Authentication Response to
the redirect_uri endpoint including valid code and state parameters.

7. Bitbucket validates the state and redeems the code at the Identity Provider’s
Token Endpoint. The Identity Provider responds with id_token and access_-
token.

8. After validating the identity of user B, the victim is logged in as user B,
although she entered her credentials for user A and did not perform any ad-
ditional interactions.

https://bitbucket.test/login?next=/plugins/servlet/external-login
https://bitbucket.test/login?next=/plugins/servlet/external-login


80 5 Security Evaluation

Figure 5.14: Bitbucket: A malicious actor can utilize a login CSRF vulnerability
combined with the next parameter to launch a Login Confusion attack.

To conclude the previous steps: The victim authenticates using credentials for user
A but is then logged in as user B after multiple intransparent redirects and without
further user interaction. This underlines the conclusion Fett et al. [15, Section III;
A. 7)] drew in 2017: Endpoints that provide OpenID Connect related functionality
require Cross-Site-Request-Forgery protection.

Recommendation. To mitigate this behavior, the Initiate Login Endpoint and
External Login Endpoints should be removed entirely. Alternatively, token- or
referrer-based mitigations could be implemented. Furthermore should endpoints
that have effects on the session be entirely excluded from “target_link_uri” and
“next” parameters, as a silent request to these endpoints has unforeseen effects on
the current user session and the application’s behavior.



5.4 Service Provider Analysis Details 81

5.4.2.4 [Sensitive Information Disclosure] Referer Leaks OIDC “code”
Parameter to Third Parties

Attacker Model. Even though the following section describes a flaw that leads
to disclosure of sensitive information to third parties, there is no actual active at-
tacker present. Due to the overall setup as self-hosted service, Atlassian normally
does not receive any information about ongoing OpenID Connect authentication
processes. Nevertheless, the below presented flaw leads to disclosure of sensitive
OpenID Connect parameters to Atlassian.

Description. During authentication using a custom OpenID Connect Identity
Provider, Bitbucket returns an error after the user was sent to the redirect_uri
in case the user’s identifier (i.e. “sub” claim of the OIDC id_token) can not be
found in Bitbucket’s user base. The following error is written to the application
log:

1 2020-05-04 13:29:44,644 ERROR [http-nio-7990-exec-4]
@1GWJER3x809x186x0 16qfs24 172.17.0.1,172.17.0.1 "GET
/plugins/servlet/oidc/callback HTTP/1.1"
c.a.p.a.i.w.f.ErrorHandlingFilter Received SSO request for
user [sub value], but the user doesn't exist in the product

→˓

→˓

→˓

→˓

Listing 5.17: Bitbucket: User could not be found in user base.

As a result the user receives a generic error message (Figure 5.15, Listing 5.18) that
is displayed as direct response to the OpenID Connect Authentication Response
redirect, so that the URL still includes sensitive OpenID Connect parameters like
code and state: https://bitbucket.local/plugins/servlet/oidc/callback?state=[RE-
DACTED]&session_state=[REDACTED]&code=[REDACTED].
The code value is very valuable, as it is used by the Service Provider to obtain the
access_token and id_token from the Identity Provider. Furthermore, the error
page includes references to external resources. Bitbucket Server is a self-hosted
software, so that Atlassian can be considered as third party in this case and should
not receive any OpenID Connect parameters. As there is no Referrer-Policy
present on this error page, the full path of the referring website including OpenID
Connect state and code is disclosed to third parties if a user clicks one of the links
to external resources, as shown in Listing 5.19.

Recommendation. To mitigate this issue, a proper Referrer-Policy should be
specified, so that sensitive OpenID Connect related information is not disclosed
to third parties. Additionally, a redirect to a neutral error page like https://
example.com/error would prevent leakage for outdated browsers that do not un-
derstand the Referrer-Policy header.

https://bitbucket.local/plugins/servlet/oidc/callback?state=[REDACTED]&session_state=[REDACTED]&code=[REDACTED]
https://bitbucket.local/plugins/servlet/oidc/callback?state=[REDACTED]&session_state=[REDACTED]&code=[REDACTED]
https://example.com/error
https://example.com/error


82 5 Security Evaluation

Figure 5.15: Bitbucket: A generic error message is shown if the user does not exist,
including links to external resources (Screenshot).

1 <ul>
2 <li data-key="footer.license.free.eval"> [...] <a

href="http://www.atlassian.com/software/bitbucket/">
Atlassian Bitbucket</a> evaluation license</li>

→˓

→˓

3 </ul><ul> [...]
4 <li data-key="footer.links.documentation"><a

href="http://docs.atlassian.com/bitbucketserver/ docs-072/
Bitbucket+Server+documentation?utm_campaign=in-app-help
&amp;utm_medium=in-app-help&amp;utm_source=stash"
target="_blank">Documentation</a></li>

→˓

→˓

→˓

→˓

5 <li data-key="footer.links.jac"><a
href="https://jira.atlassian.com/browse/BSERV"
target="_blank">Request a feature</a></li>

→˓

→˓

6 [...]
7 </ul>

Listing 5.18: Bitbucket: A generic error message is shown if the user does not exist,
including links to external resources (Sources).



5.4 Service Provider Analysis Details 83

1 GET /browse/BSERV HTTP/1.1
2 Host: jira.atlassian.com
3 Referer:

https://bitbucket.local:7443/plugins/servlet/oidc/callback
?state=DJoFR895ZYP59zZm1rwdqjXgfcrwzqf0u1gEXNZPWC8
&session_state=ce18a9f7-3979-4d2c-bc45-d989eab882ee
&code=6cb99d4a-c1e0-46dd-91e9-2c4aa0b052ed.[...]

→˓

→˓

→˓

→˓

4 [...]

Listing 5.19: Bitbucket: Third Party request including sensitive information within
the Referer header.

5.4.2.5 [Missing Best Practice] Default Password for Java Keystore

Attacker Model. The following section describes a security misconfiguration. In
order to exploit this, either a malicious administrative user (section 3.4) could be
considered that already has high privileges on the system leading to near negligible
impact. Alternatively, a web attacker (section 3.1) that gains code execution on
the Service Provider’s host can be considered. In this case, the malicious entity
could effectively break the OpenID Connect setup by adding his certificate to the
truststore.

Description. Docker installations of Bitbucket Server use the default Java key-
store with default password to establish trust on remote connections. This truststore
is for instance used for Single Sign-On requests to Identity Providers.

Steps to reproduce. In order to reproduce the issue, the following steps need to
be performed:

1. Create new container "bitbucket-test":

1 docker run --name="bitbucket-test" -p 7990:7990 -p 7999:7999
atlassian/bitbucket-server→˓

Listing 5.20: Bitbucket: Default password for Java keystore (Step 1).

2. Wait until container is up and running. Then spawn shell inside container:



84 5 Security Evaluation

1 # docker exec -it bitbucket-test bash
2 root@f5dbfd8dd533:/var/atlassian/application-data/bitbucket#

Listing 5.21: Bitbucket: Default password for Java keystore (Step 2).

3. Access default keystore with default password changeit:

1 root@f5dbfd8dd533:/var/atlassian/application-data/bitbucket# file
/opt/java/openjdk/jre/lib/security/cacerts→˓

2 /opt/java/openjdk/jre/lib/security/cacerts: Java KeyStore
3 root@f5dbfd8dd533:/var/atlassian/application-data/bitbucket#

keytool -list -keystore
/opt/java/openjdk/jre/lib/security/cacerts

→˓

→˓

4 Enter keystore password:
5 Keystore type: jks
6 Keystore provider: SUN
7 Your keystore contains 93 entries
8 verisignclass2g2ca [jdk], May 18, 1998, trustedCertEntry,
9 Certificate fingerprint (SHA1):

B3:EA:C4:47:76:C9:C8:1C:EA:F2:9D:95:B6:CC:A0:08:1B:67:EC:9D→˓

10 [...]

Listing 5.22: Bitbucket: Default password for Java keystore (Step 3).

A malicious actor with code execution on the Bitbucket instance can import his own
certificate that then would be accepted by Bitbucket Server for OpenID Connect
back-channel communication:

1 # keytool -import -file /tmp/malicious.der -keystore
$JAVA_HOME/jre/lib/security/cacerts→˓

Listing 5.23: Bitbucket: Default password for Java keystore (Step 4).

For Single Sign-On scenarios, it is crucial that the Service Provider – in this case
Bitbucket Server – is able to create a trusted connection to the Identity Provider.



5.4 Service Provider Analysis Details 85

Otherwise, a malicious actor may perform impersonation attacks on the Single Sign-
On flow. The OpenID Connect specification elaborates on this in [34, Section
7.2.].

As Bitbucket Server uses the default truststore instead of a custom truststore with
unique strong password, modifying the default truststore with known credentials
changes the trust behaviour of the Bitbucket Server installation.

Recommendation. To mitigate the risk, a unique strong password should be set
for the truststore on creation of the Docker container.

5.4.2.6 [Log Injection] Insufficient filtering of “access_token” in UserInfo
Request

Attacker Model. The attacker model for this attack is a malicious Identity
Provider (section 3.2) that provides malicious information to a victim Service Provider.

Description. If a custom “Username claim” is specified, Bitbucket queries the
UserInfo Endpoint using the previously obtained access_token. In doing so, Bit-
bucket fails to properly sanitize the bearer token before setting the HTTP header to
its value. As a result, if the token includes a CRLF sequence, an unhandled exception
occurs in sun.net.www.protocol.http.HttpURLConnection.checkMessageHeader
caused by the illegal characters. This exception including the access_token is writ-
ten in plain text and without stripping sensitive information or dangerous charac-
ters to the application log file situated at /var/atlassian/-application-data/-
bitbucket/log/atlassian-bitbucket.log. An example is shown in Listing 5.24.

1 2020-07-09 21:31:23,098 ERROR [http-nio-7990-exec-10]
o.a.c.c.C.[.[.[/].[plugins] Servlet.service() for servlet
[plugins] in context with path [] threw exception

→˓

→˓

2 java.lang.IllegalArgumentException: Illegal character(s) in
message header value: Bearer
AccessTok [HERE IS THE CRLF SEQUENCE]

→˓

→˓

3 en
4 at sun.net.www.protocol.http.HttpURLConnection

.checkMessageHeader(HttpURLConnection.java:542)→˓

5 [...]

Listing 5.24: Bitbucket: Injected CRLF sequences are reflected within the applica-
tion log file (I).

Beside the storage of sensitive information in log files, this yields additional secu-
rity risks. Bitbucket comes with a GUI log analyzer that parses the application



86 5 Security Evaluation

log. Using the log injection, it is possible to spoof log entries that are rendered
and presented to administrative users. As the log analyzer uses regular expres-
sions to search for known issues and only renders a trusted description and markup
(no attacker controlled contents), no further injection issues within the frontend
representation of injected log entries could be observed. Nevertheless, if the log
analyzer is configured to run periodically and sends mails on recognized errors,
a malicious actor can trick Bitbucket to send notification mails to administrative
users.

Additionally, there are other situations when Bitbucket does not sanitize Identity
Provider provided contents and writes these values without any sanitization to the
application logs. For instance, if Bitbucket is not able to map the provided user
identifier (either from id_token or UserInfo depending on the “Username claim”
configuration) the observed identifier is logged to the application log. In doing so,
CRLF sequences are not sanitized and are directly written to the application log.
An example is shown in Listing 5.25.

1 2020-07-10 16:19:03,191 ERROR [http-nio-7990-exec-1]
@1PUTJUQx979x631x0 tu2ic5 172.17.0.1,172.17.0.5 "GET
/plugins/servlet/oidc/callback HTTP/1.1"
c.a.p.a.i.w.f.ErrorHandlingFilter Received SSO request for
user Toni Te [HERE IS THE CRLF SEQUENCE]

→˓

→˓

→˓

→˓

2 st, but the user doesn't exist in the product
3 com.atlassian.plugins.authentication.impl.web.usercontext

.AuthenticationFailedException: Received SSO request for user
Toni Te [HERE IS THE CRLF SEQUENCE]

→˓

→˓

4 st, but the user doesn't exist in the product
5 [...]

Listing 5.25: Bitbucket: Injected CRLF sequences are reflected within the applica-
tion log file (II).

Recommendation. To mitigate this issue, Identity Provider provided values need
to be carefully sanitized. Special attention needs to be payed to the context in which
the values are used.

5.4.2.7 [Bug] Unhandled NullPointerException if “state” Is Missing In
Authentication Response

Description. Bitbucket itself issues a state on each Authentication Request.
Thus, an Identity Provider is supposed to include this state in the Authentication



5.4 Service Provider Analysis Details 87

Response, in order to prevent CSRF attacks. If the state is not valid, Bitbucket cor-
rectly shows a corresponding error message, but if the parameter is entirely missing,
there is an internal server error caused by a NullPointerException.

The request given in Listing 5.26 could be send to the redirect_uri endpoint with
arbitrary code value.

1 GET /plugins/servlet/oidc/callback?code=test HTTP/1.1
2 Host: bitbucket.local:7443

Listing 5.26: Bitbucket: Authentication Response without state parameter.

The stacktrace given in listing 5.27 is logged to Bitbucket’s application log file.

1 2020-05-15 13:40:41,470 ERROR [http-nio-7990-exec-9]
@SNOOPWx820x116x0 172.17.0.1,172.17.0.1 "GET /mvc/error500
HTTP/1.1" c.a.s.i.web.ErrorPageController There was an
unhandled exception loading [/plugins/servlet/oidc/callback]

→˓

→˓

→˓

2 java.lang.NullPointerException: null
3 at com.atlassian.plugins.authentication.impl

.web.oidc.OidcConsumerServlet

.doGet(OidcConsumerServlet.java:102)
→˓

→˓

4 at com.atlassian.applinks.core.rest.context
.ContextFilter.doFilter(ContextFilter.java:24)→˓

5 at com.atlassian.applinks.core.rest.context
.ContextFilter.doFilter(ContextFilter.java:24)→˓

6 at com.atlassian.applinks.core.rest.context
.ContextFilter.doFilter(ContextFilter.java:24)→˓

7 [...]

Listing 5.27: Bitbucket: Stacktrace of the uncatched NullPointerException that
is thrown if no state parameter is present within Authentication
Response.

Reverse Engineering of the closed source application reveals the following code
snippet of the doGet() method that is responsible for the state validation, given
in Listing 5.28. The implementation does not consider the case “no state is
provided” (in line 7 only the case is catched that the state is present but un-
known):



88 5 Security Evaluation

1 protected void doGet(HttpServletRequest request,
HttpServletResponse response) throws IOException {→˓

2 this.applicationStateValidator.checkCanProcess
AuthenticationRequest();→˓

3 AuthenticationSuccessResponse successResponse =
parseResponse(request);→˓

4

5 OidcConfig oidcConfig =
this.ssoConfigService.getOidcConfigOrFail();→˓

6

7 SessionData sessionData =
(SessionData)this.sessionDataService.getSessionData(request,
response,
successResponse.getState().getValue()).orElseThrow(() ->
new AuthenticationFailedException("Unknown state in
response"));

→˓

→˓

→˓

→˓

→˓

8 [..]

Listing 5.28: Bitbucket: Missing handling of NullPointerExceptions if no state is
present within Authentication Response.

Recommendation. To mitigate this issue, the NullPointerException needs to
be catched and an adequate error message needs to be passed to the user inter-
face.



5.4 Service Provider Analysis Details 89

5.4.3 Analysis of GitLab

GitLab can be configured to use external login providers using various protocols,
including LDAP, SAML and OpenID Connect. In the following, observations regard-
ing the OpenID Connect Client implementation are presented.

Section Vulnerability Type Attacker Model Severity

5.4.3.1 CRLF Injection and SSRF Malicious Identity Provider High -
Critical*

5.4.3.2 Unencrypted Communication Man-in-the-Middle Low
5.4.3.3 Parser Error Malicious Administrative User Low

*Depending on the actual setup, this can be escalated to Remote Code Execution.

Table 5.16: Overview of the most relevant observations and findings in GitLab’s
Service Provider implementation.

5.4.3.1 [CRLF Injection] HTTP Header And HTTP Request Injection in
UserInfo Request

Attacker Model. For this attack, the attacker model is a malicious Identity
Provider (section 3.2).

Description. If GitLab is configured to use an external OpenID Connect login
provider, it obtains the access_token from the Identity Provider’s Token Endpoint
and redeems this token as bearer token when requesting the Identity Provider’s
UserInfo Endpoint. In doing so, GitLab does not correctly sanitize the token value
for usage in the context of HTTP headers. As a result, a malicious Identity Provider
can inject CRLF sequences into the access_token that are then directly injected
into the request that is performed by GitLab, resulting in HTTP header injection
and HTTP request splitting.
Additionally, the target of the UserInfo Request can be arbitrarily chosen without
restrictions regarding localhost or private IPs within the Configuration Response,
so that the malicious Identity Provider can send arbitrary controlled HTTP requests
(verb, headers, body) to arbitrary internal hosts, external hosts or localhost.
An attack flow is presented in Figure 5.17. Note that for illustration purposes, the
target of the UserInfo Request was not altered, but could point to an arbitrary
host. If a Redis instance is present either on localhost or within the internal network,
the impact of this attack can even be escalated to Remote Code Execution, as it
was previously shown for other SSRF vulnerabilities with the ability to add HTTP
headers in the context of GitLab [19].

Recommendation. It is recommended to mitigate this issue by carefully sani-
tizing Identity Provider provided values. Special attention needs do be paid to the
values that are injected into HTTP headers.



90 5 Security Evaluation

Figure 5.17: GitLab: CRLF injection leads to request splitting.

5.4.3.2 [Unencrypted Communication] “id_token” Not Used And HTTP
Without TLS Supported

Attacker Model. The following section outlines a violation of the specification
that enables a man-in-the-middle attacker (section 3.5) to influence the authenti-
cation process. Notably, GitLab supports TLS but does not enforce it, so that
the Service Provider could be configured in a more secure manner than described
below. With v13.2 GitLab coincidentally introduced id_token validation, just
few days after we noticed and reported that this was completely missing. There-
fore the id_token validation part in the following only applies for versions prior
v13.2.

Description. OpenID Connect is an OAuth 2.0 based protocol that adds an iden-
tity layer on top of OAuth 2.0 [33]. Hence, in contrast to OAuth 2.0, which is in-
tended to be used for authorization, OpenID Connect is intended for authentication
purposes. As extension for OAuth 2.0, OpenID Connect introduces the id_token
and the UserInfo Endpoint.



5.4 Service Provider Analysis Details 91

If the openid_connect “omniauth_provider” is used, GitLab behaves not compli-
ant to the OpenID Connect specification, as the id_token is completely omitted
and only information obtained from the UserInfo Endpoint is used. In contrast,
the specification requires that “Clients MUST validate the ID Token in the To-
ken Response” [33, Section 3.1.3.7.] and that “The sub Claim in the UserInfo
Response MUST be verified to exactly match the sub Claim in the ID Token; if
they do not match, the UserInfo Response values MUST NOT be used” [33, Section
5.3.2.].

Additionally, the UserInfo Response can be optionally signed or encrypted accord-
ing to the specification [33, Section 5.3.2.], which is not enforced by GitLab either.
According to specification, “Communication with the UserInfo Endpoint MUST uti-
lize TLS” [33, Section 5.3.], but GitLab supports http and https.

Thus, GitLab relies on the potentially neither integrity nor confidentiality protected
UserInfo Response. If the GitLab instance is configured to communicate with the
Identity Provider using plain HTTP, a man-in-the-middle attacker can arbitrarily
modify the UserInfo Response and bypass the authentication.

Recommendation. To mitigate this issue, TLS must be enforced for communica-
tion with Identity Provider endpoints. In addition, the id_token should be parsed
and validated in accordance to the validation steps required within the specification
[33, Section 3.1.3.7.].

5.4.3.3 [Bug] Erroneous OpenID Connect Configuration Parsing

Attacker Model. The following bug could be theoretically exploited by a ma-
licious administrative user (section 3.4) that has permissions to configure OpenID
Connect Identity Providers. As the Identity Provider’s Configuration Endpoint is
fetched, an Identity Provider that is compromised or becomes rogue at some point
in time after initial configuration could additionally benefit from this bug, if the
erroneous configuration was not initially observed.

Description. GitLab’s documentation does not clearly indicate if one or more
external OpenID Connect Identity Providers can be configured. It was observed
that if two Identity Providers are configured at a time and the second Identity
Provider has OpenID Connect Discovery enabled, the second Identity Provider can
overwrite the first Identity Provider’s endpoints, even though the frontend shows
the “label” of the first Identity Provider.

A syntactical correct excerpt of a docker-compose.yml file is given in listing 5.29.



92 5 Security Evaluation

1 environment:
2 GITLAB_OMNIBUS_CONFIG: |
3 external_url 'http://gitlab.local'
4 gitlab_rails['omniauth_allow_single_sign_on'] = true
5 gitlab_rails['omniauth_block_auto_created_users'] = false
6 gitlab_rails['omniauth_external_providers'] =

['openid_connect']→˓

7 gitlab_rails['omniauth_allow_bypass_two_factor'] =
['openid_connect']→˓

8 gitlab_rails['omniauth_providers'] = [
9 {

10 'name' => 'openid_connect',
11 'label' => 'Correct IdP',
12 'args' => {
13 'name' => 'openid_connect',
14 'scope' => ['openid', 'profile'],
15 'response_type' => 'code',
16 'issuer' => 'https://a.com',
17 'discovery' => true,
18 'client_auth_method' => 'query',
19 'client_options' => {
20 'identifier' => 'test.test',
21 'secret' => 'password',
22 'redirect_uri' => 'http://gitlab.local/users/auth/ ⌋

openid_connect/callback'→˓

23 }
24 }
25 },
26 {
27 'name' => 'openid_connect',
28 'label' => 'Malicious IdP',
29 'args' => {
30 'name' => 'openid_connect',
31 'scope' => ['openid', 'profile'],
32 'response_type' => 'code',
33 'issuer' => 'https://b.com',
34 'discovery' => true,
35 'client_auth_method' => 'query',
36 'client_options' => {
37 'identifier' => 'test.test',
38 'secret' => 'password2',
39 'redirect_uri' => 'http://gitlab.local/users/auth/ ⌋

openid_connect/callback'→˓

40 }
41 }
42 }
43 ]

Listing 5.29: GitLab: docker-compose.yml including multiple OpenID Connect Iden-
tity Providers.



5.4 Service Provider Analysis Details 93

GitLab uses the OpenID Configuration Endpoint of the second Identity Provider dis-
playing the “label” of the first Provider on the Login Endpoint, so that a malicious
Identity Provider could theoretically launch an Identity Spoofing attack. In doing
so, the malicious Identity Provider would adapt the benign Identity Provider’s con-
figuration with exception of the Token Endpoint. As a result, the user would start
the OpenID Connect flow with the benign Identity Provider that is indicated in
the frontend and also configured as first Identity Provider within the configuration.
After successful authentication using the Code Flow, GitLab would receive the code
and redeem it with its Client Credentials at the Token Endpoint. This endpoint is
controlled by the malicious Identity Provider, so that GitLab would send the valid
code to an attacker-controlled server.
This observation is considered a bug rather than a vulnerability, because based on
our observations, the configuration is only parsed on startup of the Docker con-
tainer. Thus, only administrative users on the GitLab host can specify an erroneous
configuration that would enable a malicious Identity Provider to launch an Identity
Spoofing attack. These administrative users already are in charge of high permis-
sions and can control the complete GitLab instance, so that the only scenario in
which a third party would benefit from this behavior is, if an administrative user
triggers the behavior by accident and does not notice the Mix-Up between the two
Identity Providers.

Recommendation. To mitigate the above described issue, there should be an
error if multiple omniauth_providers with type openid_connect are present within a
configuration file. Alternatively, the possibility to register multiple OpenID Connect
Identity Providers could be implemented.



94 5 Security Evaluation

5.4.4 Analysis of Salesforce Lightning

Salesforce Lightning allows to configure Auth. Providers for organizations. In doing
so, it does not support OpenID Connect Discovery but allows administrative users
to manually configure OpenID Connect endpoints.

Section Vulnerability Type Attacker Model Severity
5.4.4.1 Login Confusion Web Attacker Medium

5.4.4.2 Request Amplification Web Attacker or LowMalicious Identity Provider

Table 5.18: Overview of the most relevant observations and findings in Salesforces’s
Service Provider implementation.

5.4.4.1 [Login Confusion] “startUrl” Parameter Allows “Login Confusion” Due
to Intransparent Redirects

Attacker Model. For the following attack scenarios, the web attacker model (sec-
tion 3.1) is applied.

Description. Salesforce supports a non-normative GET parameter that specifies
where the user should be redirected after successful authentication. There is basic
validation applied to the startUrl parameter, but the following issues were identi-
fied within this validation:

• Endpoints that perform session-relevant actions are allowed as redirection tar-
get. The user does not receive any indication prior the redirect to these end-
points after login, resulting in unforeseen behavior.

– Logout endpoint: If the startUrl parameter is set to
%2Fsecur%2Flogout.jsp, the user is immediately logged out after suc-
cesful authentication.

– SSO Account linking: If the startUrl parameter is set to an Account
Linking Endpoint for a registered Authentication Provider, e.g. https://-
login.salesforce.com/?startURL=/services/auth/oauth/identifier/name,
the account linking process is triggered immediately after authentication
without additional user interaction. As a result, there is an immedi-
ate prompt to link the SSO account to the user’s account that logged
in before, if the user has an active session at the corresponding Iden-
tity Provider. Alternatively a malicious Identity Provider could always
respond with an Authentication Response and try to link an attacker-
controlled dummy account into a victim’s account. In order to complete
the linking, the End-User has to approve the dialogue and give consent.

%2Fsecur%2Flogout.jsp
https://login.salesforce.com/?startURL=/services/auth/oauth/{identifier}/{name}
https://login.salesforce.com/?startURL=/services/auth/oauth/{identifier}/{name}


5.4 Service Provider Analysis Details 95

– Login Confusion: The same Login Confusion patter that was previously
outlined for Bitbucket (subsubsection 5.4.2.3) can be applied to Sales-
force, if the startUrl parameter is set to an “OAuth-Only Initialization
URL” for a registered Authentication Provider, after Login with creden-
tials, a second login flow using OpenID Connect can be performed.

• The validation routine for the redirection target allows any subdomain of
*.salesforce.com. This could potentially be turned into a covert redirect
in case an attacker manages to find a forgotten and dangling subdomain. If a
DNS entry for a subdomain of *.salesforce.com points to a cloud service, e.g.
for a temporary campaign, but is not removed after it is not needed anymore,
it may be possible for some cloud services to re-claim and therefore hijack this
reference to the cloud service. Frans Rosén gave a talk on different variants of
“subdomain takeovers” at OWASP AppSec EU 2017 [16].
During the analysis, saturn.salesforce.com was found that apparently ful-
fills the requirements having a dangling CNAME record, but as of 2020, Heroku
prevents arbitrary registration of dangling domains using random subdomains
of *.herokudns.com [37]:

1 user@laptop:~$ dig saturn.salesforce.com
2 [...]
3 ;; ANSWER SECTION:
4 saturn.salesforce.com. 268 IN CNAME closed-othnielia-

faezuoinck1tonw5fxq3r0t3.herokudns.com.→˓

Listing 5.30: Salesforce: CNAME entry to Heroku that is not used anymore.

• Special characters like %0A (= linefeed) lead to mutations of the redirect
target. Example: https://login.salesforce.com/?startURL=javascript:
//%0aprompt(1) results in a redirect to:

1 https://eu13.salesforce.com/https://login.salesforce.com/https:/ ⌋

/login.salesforce.com/
https://login.salesforce.com/https://login.salesforce.com/ja ⌋

vascript://prompt(1)

→˓

→˓

→˓

Listing 5.31: Salesforce: Redirection target after mutation by Salesforce.

Even though no harmful mutation was found, this behavior indicates that the
validation routine performs unnecessary and potentially dangerous mutations.

*.salesforce.com
*.salesforce.com
saturn.salesforce.com
*.herokudns.com
https://login.salesforce.com/?startURL=javascript://%0aprompt(1)
https://login.salesforce.com/?startURL=javascript://%0aprompt(1)


96 5 Security Evaluation

Recommendation. To mitigate these issues, multiple actions should be taken:

• Session relevant endpoints should be explicitly excluded from the nextUrl
parameter, as redirects to these endpoints have unforeseen effect on the current
user session and the application’s behavior.

• The dangling DNS entry for saturn.salesforce.com should be removed if
it is not needed anymore. Additionally, a whitelist for trusted subdomains of
*.salesforce.com should be introduced. Other subdomains should be handled
like force.com (End-User has to confirm redirect to page, third party domains
like lauritz-holtmann.de already result in direct error message instead).

• The redirect target needs to be sanitized regarding dangerous characters, as the
layers of the web application stack may treat illegal characters and sequences
like CRLF differently.

5.4.4.2 [Request Amplification] Reusable “state” Parameter At “redirect_uri”
Endpoint Enables Multiple Attack Vectors

Attacker Model. For the following attack, two attacker models could be consid-
ered. A web attacker (section 3.1) having no influence on the target of the Token
Request could only target the already configured Identity Provider. A malicious ad-
ministrative user (section 3.4) could additionally target arbitrary web servers being
accessible for the Service Provider.

Description. Salesforce as Service Provider provides dedicated redirect_uris for
each Identity Provider. The Redirection Endpoint does not invalidate state values
if they are redeemed once. As a result, multiple request to this endpoint including
the valid state value result in requests to the configured Token Endpoint being
initiated by Salesforce. As the “Token Endpoint URL” may be chosen arbitrarily,
this behavior could be described as intentional SSRF and administrative users that
may configure “Auth. Providers” may decide where Salesforce will send the Token
Request to. A malicious administrative user (section 3.4), could additionally in-
crease the outgoing Token Request by choosing a long path for the Token Endpoint
URL and setting imaginary long client credentials. As a result, one request to Sales-
force could be amplified multiple compared to the request that is received at the
victim server’s end.

Steps to reproduce. The steps to launch a Denial-of-Service attack using many
large requests through Salesforce as amplifying proxy are the following:

1. Configure the victim server as Token Endpoint with long path and long client
credentials (if the attacker model is a regular web attacker (section 3.1), this
step is skipped).

saturn.salesforce.com
*.salesforce.com
force.com
lauritz-holtmann.de


5.4 Service Provider Analysis Details 97

2. Start OpenID Connect flow and obtain a valid state value (i.e. save valid
Authentication Response including state)

3. After the Authentication Response is received, Salesforce tries to redeem
received code value at victim web server. This request can be multiple times
larger than attacker’s request.

4. Replay obtained Authentication Response. On each try Salesforce sends a
new HTTP request to the victim server.

Recommendation. To mitigate this issue, the state should be a one-time-usable
value.



98 5 Security Evaluation

5.4.5 Analysis of Amazon Cognito (AWS)

Amazon Cognito is an Identity and Access Management (IAM) service. Cognito
implements Identity Provider and Service Provider parts of the OpenID Connect
specification. As part of the AWS family, Amazon Cognito is a hosted service within
the Amazon Cloud.

Section Vulnerability Type Attacker Model Severity

5.4.5.1 SSRF Malicious Identity Provider or HighMalicious Administrative User
5.4.5.2 Mix-Up Attack Malicious Identity Provider Medium

5.4.5.3 Request Amplification Web Attacker or LowMalicious Identity Provider
5.4.5.4 Unencrypted Communication Man-in-the-Middle Low
5.4.5.5 Token Handling N/A None

Table 5.19: Overview of the most relevant observations and findings in Amazon Cog-
nito’s Service Provider implementation.

5.4.5.1 [SSRF] SSRF to “localhost” Allows Portscan And Sending HTTP
Requests To Internal Hosts

Attacker Model. The attacker model that is applied in the following is a ma-
licious administrative user (section 3.4). Amazon Cognito is a hosted service, ad-
ministrative users only have access to the configuration interface, the underlying
infrastructure in Amazon’s hosted environment should not be accessible to external
users. Alternatively, a malicious Identity Provider (section 3.2) could be consid-
ered as attacker model, as the actual configuration is fetched using OpenID Con-
nect Discovery from the Registration Endpoint so that the endpoints are Identity
Provider-controlled.

Description. Amazon Cognito allows specifying custom OpenID Connect Identity
Providers for user pools. An administrative user can choose to “Run discovery”,
triggering an OpenID Connect Discovery that requests the Configuration Endpoint
of the Identity Provider.

Amazon does not restrict the endpoints observed using OpenID Connect Discovery
regarding internal IP addresses or localhost, so that SSRF to the local network
and localhost is possible. A malicious actor can utilize this to perform port scans
or send nearly arbitrary HTTP requests to hosts intentionally not exposed to the
internet.

An example Configuration Response is presented in Listing 5.32.



5.4 Service Provider Analysis Details 99

1 {
2 "issuer":"https://example.com/",
3 "authorization_endpoint":"https://example.com/auth",
4 "token_endpoint":"http://127.0.0.1:22",
5 "userinfo_endpoint":"http://127.0.0.1:22",
6 "jwks_uri":"https://example.com/jwks",
7 "registration_endpoint":"https://example.com/register",
8 "response_types_supported":["code","token id_token"],
9 "subject_types_supported":["public","pairwise"],

10 "id_token_signing_alg_values_supported":["RS256"]
11 }

Listing 5.32: Amazon Cognito: Configuration Response including localhost as Token
Endpoint and UserInfo Endpoint.

Portscan. The following error messages can be used to determine which ports are
internally open on localhost, as the error message sent to the redirect_uri (https:
//a.com/cb?error_description=[ERROR]&error=invalid_request) differs, depend-
ing on the underlying Transmission Control Protocol (TCP) connection (if it can
not be established) or the HTTP error code Amazon receives in response to the
Token Request:

• If the Token Endpoint is specified as http://localhost:22, the error message
is “Connection reset”, so that we assume Port 22 to be open.

• If the Token Endpoint is specified as http://localhost:20, the error message
is “Connect to 127.0.0.1:20 [/127.0.0.1] failed: Connection refused”, so that we
assume Port 20 to be closed.

• If the Token Endpoint is specified as http://test123.ngrok.io, the error mes-
sage is “test Error – 502 error getting token”, so that we assume that there
was an HTTP request to the specified target but the webserver responded with
HTTP Error Code 502.

Arbitrary HTTP requests. Beside the feedback an attacker receives that en-
ables him to determine the status of the connection, there is no information on the
actual response to the HTTP request. Thus, this gadget can be considered as blind
SSRF to the local network, as having no direct feedback a malicious entity could still
control a GET request (UserInfo Request) and a POST request (Token Request)
regarding scheme (http or http), host (potentially localhost or internal IP), path and
query parameters.

https://a.com/cb?error_description=[ERROR]&error=invalid_request
https://a.com/cb?error_description=[ERROR]&error=invalid_request
http://localhost:22
http://localhost:20
http://test123.ngrok.io


100 5 Security Evaluation

Combining port scan and blind SSRF, a malicious administrative user (section 3.4)
or malicious Identity Provider (section 3.2) could:

1. Gather information: Which ports are open on localhost? Are there other hosts
accessible? If HTTP error codes are reflected, which web service is running at
this destination (fingerprinting)?

2. If a service could be identified: Use blind SSRF to directly target internally
accessible service.

Recommendation. A blacklist is never perfect. Nevertheless Amazon Cognito
should introduce a restriction for internal IPs and localhost as OpenID Connect end-
points, as there is no legitimate use-case in the context of a hosted service.

5.4.5.2 [Spec] Mix-Up Attack

Attacker Model. The attacker model that is applied in the following is a ma-
licious Identity Provider (section 3.2). Prerequisite is that Amazon Cognito has
multiple Identity Providers configured, at least one Honest Identity Provider (H-
IdP) and one Malicious Identity Provider (M-IdP). Additionally, it is assumed that
the attacker can modify the first request-response pair to Amazon Cognito, as it
is for instance described in the Attacker Model A2 of the OAuth 2.0 Security Best
Current Practices [48, Section 3.]. Alternatively and without the possibility to mod-
ify the first request-response pair, a Malicious Identity Provider could immediately
redirect a victim user to the Honest Identity Provider’s Authentication Endpoint.
In this case, the user could notice the redirect, but if she still authenticates at the
Honest Identity Provider, the tokens are disclosed to the Malicious Identity Provider
[48, Section 3.].

Description. Amazon Cognito is vulnerable to Mix-Up attacks that were intro-
duced by Fett at al. in 2016 [14]. Amazon Cognito supports multiple Identity
Providers that use a single Redirection URI: https://subdomain.auth.us-east-
2.amazoncognito.com/oauth2/idpresponse. In doing so, the user’s choice which
Identity Provider should be used is stored within the state. An attacker can con-
fuse Amazon Cognito to disclose the OpenID Connect code from the Honest Iden-
tity Provider to the Malicious Identity Provider. As a result, the Malicious Identity
Provider “can either exchange the code for an access token (for public clients) or per-
form an authorization code injection attack” [48, Section 4.4.1.].

Steps to reproduce. To reproduce the behavior, the following steps need to be
performed:

1. The victim End-User chooses the Honest Identity Provider at the “Hosted UI”,
resulting in a request to Amazon Cognito including the identity_provider
(= “name”) and client_id parameter of the Honest Identity Provider.

https://subdomain.auth.us-east-2.amazoncognito.com/oauth2/idpresponse
https://subdomain.auth.us-east-2.amazoncognito.com/oauth2/idpresponse


5.4 Service Provider Analysis Details 101

2. The Attacker changes the selection to Malicious Identity Provider and forwards
it to Amazon Cognito (adjusts identity_provider and client_id).

3. Amazon Cognito responds with a redirect to the Malicious Identity Provider
including a state bound to Malicious Identity Provider. An excerpt of the
state, base64 decoded, is given in the following:

1 {
2 "userPoolId":"us-east-2_AAAAAAAA",
3 "providerName":"Malicious IdP",
4 "clientId":"AAAAAAAAAAAAAAAAAAA",
5 "redirectURI":"https://sp.com/cb",
6 "responseType":"code",
7 "providerType":"OIDC",
8 "scopes":["openid"],
9 [...]

10 }

Listing 5.33: Amazon Cognito: Payload of the OpenID Connect state decoded (ex-
cerpt).

4. The attacker modifies the redirect, the new redirection target is the Authen-
tication Endpoint of the Honest Identity Provider including the valid state
(bound to the Malicious Identity Provider).

5. After authenticating the End-User, the Honest Identity Provider redirects the
End-User to the shared Redirection Endpoint including a code and the state
that is bound to the Malicious Identity Provider.

6. Amazon Cognito redeems the code at the Malicious Identity Provider’s Token
Endpoint, disclosing the valid code that was issued by the Honest Identity
Provider.

Alternatively, the following steps to reproduce can be considered, if the attacker can
not modify the first request-response pair:

1. The victim End-User chooses the Malicious Identity Provider at the “Hosted
UI”, resulting in a request to Amazon Cognito including the identity_provider
and client_id parameters of the Malicious Identity Provider.

2. Amazon Cognito responds with a redirect to the Malicious Identity Provider
including a state bound to the Malicious Identity Provider.



102 5 Security Evaluation

3. The Malicious Identity Provider immediately redirects the victim to the Au-
thentication Endpoint of the Honest Identity Provider, including the valid
state, redirect_uri and client_id. The following steps are performed as
seen before.

Recommendation. It is recommended to use a dedicated Redirection Endpoint
per Identity Provider. If this is not possible, the recommendations according to the
OAuth 2.0 Security Best Current Practices are, to either use a non-normative “iss”
parameter within the Authentication Response enabling the Service Provider to
compare this value with the Identity Provider it will send the code to or alter-
natively include an id_token within the front-channel Authentication Response
and utilize the “iss” claim for this purpose. Note that the OpenID Connect specific
mitigation utilizes the Hybrid Flow with only an id_token and the code within the
front-channel [48, Section 4.4.].

5.4.5.3 [Request Amplification] Reusable “state” Parameter At “redirect_uri”
Endpoint Enables Multiple Attack Vectors

Attacker Model. For the following attack, multiple attacker models could be
considered. A web attacker (section 3.1) having no influence to the target of the
Token request could only target the already configured Identity Provider. A mali-
cious administrative user (section 3.4) could additionally target arbitrary web servers
being accessible for the Service Provider using manual configuration. If OpenID
Connect Discovery is used, a malicious Identity Provider (section 3.2) could also
specify an arbitrary web server as Token Endpoint and issue large client creden-
tials.

Description Amazon Cognito as Service Provider allows specifying custom OpenID
Connect Identity Providers for user pools. The redirect_uri endpoint does not
invalidate state values if they are redeemed once. As a result, multiple requests
to this endpoint including the valid state value result in requests to the configured
Token Endpoint being initiated by Amazon.
As the “Token Endpoint URL” may be chosen arbitrarily, this behavior could be
described as intentional SSRF and administrative users that are allowed to configure
“Auth. Providers” may decide where Amazon will send the Token Request to. The
same applies to the configuration using OpenID Connect Discovery, so that a mali-
cious Identity Provider also could specify where Amazon sends its Token Request
to. A malicious administrative user could additionally increase the outgoing Token
Request by choosing a long path for the Token Endpoint URL and setting imagi-
nary long client credentials. The same applies to a malicious Identity Provider that
could simply issue large credentials to Amazon Cognito. As a result, one request to
Amazon could be amplified multiple times compared to the request that is received
at the victim server’s end.



5.4 Service Provider Analysis Details 103

Steps to reproduce The steps to reproduce are comparable to the occurrence of
this behavior in Keycloak (5.4.1.1) or Salesforce (5.4.4.2).

Recommendation. To mitigate this issue, the state should be a one-time-usable
value.

5.4.5.4 [Unencrypted Communication] OpenID Connect Discovery Allows
Specifying OIDC Endpoints Using HTTP Without TLS

Attacker Model. This attack utilizes the man-in-the-middle attacker model (sec-
tion 3.5). In the following, it is described that using OpenID Connect Discovery the
missing validation of endpoints can lead to insecure configurations. Amazon Cognito
supports TLS but does not enforce it for critical OpenID Connect endpoints if they
are specified during Discovery.

Description. Amazon Cognito allows specifying OpenID Connect Identity Provider
for user pools. When configuring the Identity Provider’s endpoints manually, Cog-
nito enforces that all Endpoints must use HTTP with TLS. But in contrast, if
Amazon receives an OpenID Connect Configuration Response including End-
points using HTTP without TLS, it accepts and uses these endpoints. An example
Configuration Response that is accepted (note that the Token Endpoint uses
HTTP only) is given in Listing 5.34.

1 {
2 "issuer":"https://a.ngrok.io/",
3 "authorization_endpoint":"https://a.ngrok.io/auth",
4 "token_endpoint":"http://b.ngrok.io",
5 "userinfo_endpoint":"https://a.ngrok.io/userinfo",
6 "jwks_uri":"https://a.ngrok.io/jwks",
7 "registration_endpoint":"https://a.ngrok.io/register",
8 "response_types_supported":["code","token id_token"],
9 "subject_types_supported":["public","pairwise"],

10 "id_token_signing_alg_values_supported":["RS256"]
11 }

Listing 5.34: Amazon Cognito: Insecure Configuration due to missing validation of
Configuration Response.

Recommendation. To mitigate this issue, consistently allow only OpenID Con-
nect Endpoints using HTTP with TLS .



104 5 Security Evaluation

5.4.5.5 [Spec] OpenID Connect Token Handling

Description. Amazon Cognito allows to configure “App clients” that use OpenID
Connect to authenticate against an Amazon Cognito “User Pool”. In doing so, minor
specification related issues were identified.

Recommendation. Amazon Cognito’s token handling should be hardened re-
garding the following aspects:

1. There is no possibility for end users to revoke access_tokens at the Identity
Provider. According to the documentation, the Service Provider could imple-
ment an API call (“An app can use the GlobalSignOut API to allow individual
users to sign themselves out from all devices.” [2]), but the End-Users should
be able to manage the permissions themselves at the Identity Provider (via
Hosted UI).

2. Redeemed refresh_tokens are not rotated. According to the OAuth 2.0 Se-
curity Best Current Practices, “Authorization server MUST utilize” either
“sender-constrained refresh tokens” or “refresh token rotation” [48, Section
4.12.2.].

3. If a code is redeemed it is invalidated correctly. Further tries to redeem the
code yield errors, but do not cause previously issued tokens for this code to
be invalidated. RFC6749 and the OAuth 2.0 Security Best Current Practices
recommend that, “the AS SHOULD revoke all tokens issued previously based
on that code” [48, Section 4.2.4.].



6 Lessons Learned

The following chapter outlines the lessons learned within this master’s thesis. At
first, a high level summary of the expectations and evaluation results is given. After-
ward, common findings among the test-set are derived and based on these patterns
additions to previously known security considerations are proposed. Finally, the
Responsible Disclosure processes with the maintainers and vendors are broadly out-
lined.

6.1 Expectations and Results

In chapter 5, the results and observations based on the initially defined tests and ex-
pectations for secure OpenID Connect implementations (section 2.3) were discussed.
It has been observed, that most of the previously known attacks were not possible
among the test-set. Especially, the basic assertions made within the specification
[33, Section 16.] and the security best practices [48] were fulfilled.
Nevertheless, the evaluation also shows that the analyzed products and services have
security issues regarding their OpenID Connect implementations. The severity of
the individual vulnerabilities that were discovered during execution of this thesis
varies from None (security relevant bug that still could not be exploited due to
outer limitations) to Critical (e.g. SSRF that can be escalated to Remote Code
Execution). Even previously discussed issues like the unauthenticated SSRF by de-
sign that is present if the request_uri is implemented [15, Section III; A. 8)], a
vulnerability with High severity, were present within the test-set.
Some observations and issues were present in multiple implementations among the
test-set. In the following, these issues and pitfalls are derived to patterns within the
overall analysis results.

6.2 Derived Common Issue Patterns

The evaluation leads to the conclusion that there are some more common issues that
could be found in multiple implementations independently.

1. It has been observed for multiple Identity Providers that the redirect_uri
allows any possible scheme. This is potentially dangerous, as browsers treat



106 6 Lessons Learned

dangerous schemes like data or javascript very differently. Additionally,
the vague specification of the redirect_uri was made having native clients
in mind, so that there are very few legitimate use-cases for these schemes as
redirect_uri values in OpenID Connect setups.

2. Multiple Identity and Service Provider implementations were vulnerable to
different types of Server-Side Request Forgery vulnerabilities.
The Identity Provider’s request_uri parameter is already known to be vul-
nerable for Server-Side Request Forgery by design since 2017 [15, Section III;
A. 8)]. Notably, this could be exploited by any unauthenticated user.
In 2017, Mladenov and Mainka pointed out [26, Section 2.1.2] that a malicious
Discovery Service could be used to launch a SSRF attack and in doing so per-
form port scans or retrieve data. Additionally, having access to the endpoint
configuration, administrative users could launch SSRF attacks on the Service
Provider by design. Depending on the actual setup, this yields serious secu-
rity implications, especially considering hosted services like Amazon Cognito.
Nevertheless, SSRF to internal IPs and localhost was a commonly observed
issue.

3. The OpenID Connect Core specification already enforces TLS for communi-
cation with Authorization, Token and UserInfo Endpoint, so does the OpenID
Connect Dynamic Client Registration regarding the Client Configuration End-
point. Nevertheless, the majority of the analyzed implementations allow per-
forming the discovery using unencrypted communication or allow to specify
OpenID Connect endpoints using HTTP without TLS.

4. Error messages and pages need extra attention. During the analysis, multiple
Service Provider implementations presented error pages as a direct response
to erroneous Authentication Responses. As a result, the GET parameters
of this page include OpenID Connect values like state and code. If there
are external resources like images, scripts, styles or links to external resources
on any endpoint that receives sensitive information via query parameters, the
Referer header could leak sensitive OpenID Connect parameters.

5. The Service Provider’s Initiate Login Endpoint implements Login Cross-Site-
Request-Forgery by design and per specification [33, Section 4.]. This behavior
is well known and was previously discussed [15, Section III; A. 7)]. Besides this
endpoint, non-normative endpoints to start an external OpenID Connect login
without Cross-Site-Request-Forgery protection were observed. If the state is
correctly validated, these endpoints still allow to log in a victim End-User into
her own account.
If there are additional non-normative parameters that indicate where the user
should be redirected to after successful authentication including Login Initia-
tion Endpoints, Login Confusion attacks are possible, as described in subsub-
section 2.3.4.11.



6.3 Derived OpenID Connect Security Considerations 107

6. OpenID Connect state parameter handling at the Service Provider’s Redirec-
tion Endpoint showed multiple more common issues. Some of the analyzed
implementations did not handle the unexpected behavior of not receiving a
state if it was present within the Authentication Request. As a result,
unhandled exceptions occur.
Further, multiple implementations correctly bound the state to the user ses-
sion but failed to make it one-time-usable, increasing the attack surface for
token-reuse and Denial-of-Service Amplification attacks.

7. Service Providers often treat Identity Provider provided contents as trustwor-
thy. It has been shown in this master’s thesis that this behavior in general
yields injection issues (as previously outlined as “Injection Attacks” by Mainka
et al. in [26, Section 2.1.3]). Striking among the test-set were CRLF -related
issues, as missing sanitization leads to HTTP header injections in Service
Provider initiated requests and injections to application log files.

6.3 Derived OpenID Connect Security Considerations

In addition to previously known security considerations [26][33, Section 16.][48], it
has been shown that the following aspects need extra attention. Some of these con-
siderations have been made earlier but with a less severe indication. In terms of RFCs
and specifications this would mean that a “MAY” or “SHOULD” would become a
necessary requirement being reflected as “MUST”.

1. The specification needs to be tightened regarding the redirect_uri definition.
The scheme of this URI MUST NOT be data, javascript, vbscript or any
other scheme that is not HTTP(S) or related to a dedicated native client.

2. The Identity Provider SHOULD restrict allowed request_uri values by al-
lowing the Service Provider to specify the request_uris parameter that is an
“array of request_uri values”, at registration [35, Section 2.].
Currently, only if the OpenID Connect Dynamic Client Registration is used,
the Identity Provider can require the Service Provider to “pre-register re-
quest_uri values using the request_uris parameter” [33, Section 6.2.]. This
should be moved from the Registration Extension to the Core Specification.

3. Identity and Service Providers SHOULD globally restrict outgoing HTTP re-
quests to localhost and private IPs [52, Section 3.] in the context of OpenID
Connect. There MAY be a configurable option to allow these connections.
Further, error messages that are returned in case an OpenID Connect request
fails MUST NOT include connection-specific details that could give an attacker
information on the underlying transport layer (for instance error messages that
indicate if a TCP connection was refused or reset).



108 6 Lessons Learned

4. As the Specification already outlines [34, Section 7.2.], OpenID Connect Ser-
vice and Identity Providers MUST support and MUST use TLS for communi-
cation with the Configuration, Token and UserInfo Endpoint.

5. Error messages SHOULD not be shown as a direct response to erroneous
OpenID Connect requests, if the error page includes external resources, with-
out omitting the sensitive GET parameters from Referer headers. This
could either be done using a prior redirect to a generic path (e.g. https:
//example.com/error) or by defining a restrictive Referrer-Policy (e.g.
“origin-when-cross-origin” or “strict-origin-when-cross-origin”).

6. Service Providers MUST use a state value to prevent Cross-Site-Request-
Forgery login into arbitrary accounts, if no other CSRF protection is imple-
mented. If the state was present within the Authentication Request, it
MUST be included within the Authentication Response. If this is not the
case, the Service Provider needs to fail safely (i.e. not ignore that the state is
missing and proceed anyway, but handle the occurring exception adequately).
In addition, the state value MUST be invalidated after it was redeemed once
to prevent amplification attacks.

7. As previously advised by Fett et al. [15, Section III; A. 7)], the optional Initiate
Login Endpoint SHOULD NOT be implemented if it is not explicitly needed.
The same applies to non-normative external login endpoints. If these endpoints
are implemented, token- or Referer header-based Cross-Site-Request-Forgery
mitigations MUST be in place. In case there is a non-normative GET pa-
rameter that controls the redirection target after successful authentication,
session relevant endpoints like External Login Endpoints or Logout Endpoints
SHOULD NOT be allowed as redirection target.

8. Identity Provider provided contents MUST be handled as third party input.
Therefore, strict and context-aware sanitization MUST be performed before
using these values.

6.4 Responsible Disclosure

All vendors were informed about the observations being presented within this mas-
ter’s thesis. In the following, a short overview of the communication and disclosure
processes is given.

During this master’s thesis, different depths and extents of Proof-of-Concepts that
were attached with the initial report were iterated. In the beginning, we attached a
tutorial on how a developer could set-up a Keycloak instance with proxies and TLS so
that an issue regarding a Service Provider implementation could be validated. This
process turned out to be time-consuming and error-prone, as the tutorial needed to
be adjusted for each finding. Thus, for later Responsible Disclosure processes the

https://example.com/error
https://example.com/error


6.4 Responsible Disclosure 109

custom NodeJS implementations which were introduced within this thesis were pre-
configured and sent to the developers alongside the advisories.

6.4.1 Keycloak

Keycloak is an open-source software that is maintained by Red Hat. There is a
Jira issue tracker for Keycloak issues that allows to flag reported issues as “Secu-
rity Sensitive Issue”: https://issues.redhat.com/browse/KEYCLOAK. Using this
channel, 13 tickets for individual findings were opened and discussed with the main-
tainers and developers of Keycloak. The issues were triaged and categorized by
Red Hat employees either as security hardening (violation of specification or general
best practices without direct exploitability) or security vulnerability that received a
CVE.
All reported and fixed issues that are public can be observed using the follow-
ing link: https://issues.redhat.com/browse/KEYCLOAK-15246?filter=-2&jql=
reporter%20in%20(lauritz)%20order%20by%20created%20DESC.

6.4.2 Bitbucket

Atlassian as vendor of Bitbucket offers multiple communication channels. We de-
cided to use the Bugcrowd program (https://bugcrowd.com/atlassian) for severe
security-relevant findings. After the triage that was performed by Bugcrowd, direct
contact was held with Atlassian’s security staff. We filed six reports, among these re-
ports four reports were accepted and two reports were marked as “not applicable” in
regard to their policy. In addition, two non-security-relevant bugs were reported via
https://getsupport.atlassian.com/servicedesk.

6.4.3 GitLab

For GitLab, there are multiple channels to communicate bugs and security issues.
For one less relevant finding, a GitLab issue was created on https://gitlab.com/
gitlab-org/gitlab/-/issues/.
For the more severe issues https://hackerone.com/gitlab was used as a direct
communication channel with GitLab’s Security Team. After submission of four
issues found within the Service Provider implementation, the security team notified
us that they do not consider rogue Identity Providers as part of their threat model
and closed all issues accordingly. Highlighting the impact and hints for escalation
to Remote Code Execution did not lead to reconsideration.
One additional report on an Identity Provider flaw was immediately closed with
an unclear explanation. After weeks of discussion, it was reopened and triaged as
duplicate, because parts of the issue were covered in a two-year-old unfixed report.
As we elaborated further on the impact, there was immediate progress in this case.

https://issues.redhat.com/browse/KEYCLOAK
https://issues.redhat.com/browse/KEYCLOAK-15246?filter=-2&jql=reporter%20in%20(lauritz)%20order%20by%20created%20DESC
https://issues.redhat.com/browse/KEYCLOAK-15246?filter=-2&jql=reporter%20in%20(lauritz)%20order%20by%20created%20DESC
https://bugcrowd.com/atlassian
https://getsupport.atlassian.com/servicedesk
https://gitlab.com/gitlab-org/gitlab/-/issues/
https://gitlab.com/gitlab-org/gitlab/-/issues/
https://hackerone.com/gitlab


110 6 Lessons Learned

As a result the issue has been fixed within weeks in v13.2.3 and was acknowledged
as CVE-2020-13294.

6.4.4 Salesforce

Even though Salesforce has a Responsible Disclosure Policy [40], communication
with the vendor turned out to be quite challenging. We reported our observations
at the End of July. As we did not receive a reply, additional contact attempts
were made using different mail addresses, previously known contact persons and
the German sales support. The only working communication channel that could be
established was through the German sales staff. After repeatedly asking for status
updates and offering assistance during triage (e.g. answering further questions or
providing test environments for Proof-of-Concepts), the very first direct mail from
Salesforce’s security team was received 36 days after our initial mail. The security
team claimed that our reports were received and were considered as advisories.
Additionally, the Salesforce PSIRT informed us that they consider the cases to be
closed and will not perform further investigations so that we likewise did not perform
further actions.

6.4.5 Amazon Cognito

As Amazon Cognito is part of AWS, we addressed our reports to aws-security@-
amazon.com. The Security Staff replied and asked for a call, so that we were able
to present an overview of our findings to the AWS Security Staff and Amazon Cog-
nito Developers on August 19th, 2020. We presented a demo on some observa-
tions and gave further hints regarding the impact and mitigation of the reported
issues.

mailto:aws-security@amazon.com
mailto:aws-security@amazon.com


7 Conclusion

In this master’s thesis, four real-life OpenID Connect Identity Provider and five
real-life Service Provider implementations were analyzed regarding their security.
The evaluation regarding the initially developed test and evaluation catalog as well
as the observations that were made parenthetically resulted in new variants of pre-
viously known attack classes and particular attacks on OpenID Connect implemen-
tations. Furthermore, two specification-wise inaccuracies were discovered that lead
to real-life security implications.
These evaluation results and derived patterns should not fall into oblivion with com-
pletion of this thesis, so that concrete patterns and hints for security best practices
were derived. These aspects will be additionally covered in blog posts to increase
awareness.
During the execution phase, custom NodeJS-based OpenID Connect Service Provider
and Identity Provider implementations were created that assist researchers during
testing and reporting, as they allow to provide lightweight retest environments for
complex OpenID Connect scenarios. These implementations are open source and
available on Github12.
Finally, we performed more than 35 individual Responsible Disclosure or Bug Report
processes and assisted vendors and maintainers during triage and fix. As far as possi-
ble, we will encourage vendors to make our reports public after the issues are fixed, so
that others can learn from these reports. In the beginning, filing a report for a com-
plex OpenID Connect Setup including multiple parties was challenging. Hopefully,
our reports give insights that could be adapted for comparable Responsible Disclo-
sure attempts on complex Single Sign-On scenarios.

7.1 Future Work

During this thesis we mainly focused on Service Provider and Identity Provider
implementations separately. We encountered multiple products, for instance Key-
cloak and Amazon Cognito, which implement both parts of the specification, but
for a higher mean: The services can be used for identity brokerage and federa-
tion. As in this case, one entity unites different roles within the protocol, there

1Custom OpenID Connect Service Provider: https://github.com/lauritzh/oidc-custom-sp
2Custom OpenID Connect Identity Provider: https://github.com/lauritzh/oidc-custom-idp

https://github.com/lauritzh/oidc-custom-sp
https://github.com/lauritzh/oidc-custom-idp


should be further research regarding Identity and Access Management (IAM) ser-
vices combining Service Provider and Identity Provider parts of OpenID Connect
1.0 specification.

One of the more common issue patterns were CRLF injections in Identity Provider
given values. Identity Providers are third parties, nevertheless, some applications
treat every Identity Provider provided value as trusted. As Mainka et al. previously
showed [26], there is a risk of injection flaws regarding Identity Provider controlled
contents. As among our test-set, the CRLF injection was such a common issue, the
evaluation of this specific pattern (second order vulnerabilities that exploit edge-
cases and different character sets that are allowed in different contexts) among a
larger set of Service Providers could yield interesting results. Beside CRLF injec-
tions, there is a broad field of more sophisticated injections like template injections
that should be also applied to a broader test-set of OpenID Connect implementa-
tions.

The specification allows redirect_uris with potentially dangerous schemes. To de-
termine the impact if an Identity Provider supports data, javascript and other re-
served schemes, there should be a thorough evaluation of the HTTP Location header
handling among popular User Agents. In doing so, beside JavaScript execution
especially data URIs using different MIME types like application/postscript,
application/pdf and other application/* types should be evaluated, as some
User Agents render contents with these MIME types if they are observed as data
URI.

Finally, Server-Side Request Forgery played a relevant role during our research. De-
pending on the threat model and if the software is self-hosted or a cloud service,
turning genuine OpenID Connect requests like the Token Request in an attack ve-
hicle to target localhost is just one step ahead. Keycloak aims to fix this by adding
a “Trusted Hosts” policy that is intended to define a global policy on where the in-
stance may communicate to. This mechanism could possibly become a standardized
part of the specification and a thorough analysis regarding up- and downsides of the
method should be applied.



List of Figures

2.1 Idealized Single Sign-On scenario with front- and back-channel. . . . 8
2.2 Single Sign-On front-channel communication using redirect. . . . . . 8
2.3 Protocol Flow: OAuth 2.0 Authorization Code Flow including most

significant parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.4 Protocol Flow: OAuth 2.0 Authorization Implicit Flow including most

significant parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.5 Protocol Flow: OpenID Connect Authorization Code Flow including

most significant parameters. . . . . . . . . . . . . . . . . . . . . . . . 14
2.6 Protocol Flow: OpenID Connect Implicit and Hybrid Flow including

most significant parameters. . . . . . . . . . . . . . . . . . . . . . . . 16
2.7 HTTP status code 307 Redirect in a Single Sign-On scenario disclos-

ing End-User’s credentials. . . . . . . . . . . . . . . . . . . . . . . . . 24
2.8 Reusable state: Denial-of-Service Amplification using Token Request. 36
2.9 CRLF injection within HTTP header leads to arbitrary header injection. 39

4.1 High Level overview of the local docker-based test environment. . . . 48
4.2 High Level overview of the remote test environment. . . . . . . . . . 49

5.3 Keycloak: Configuration options for the Request Object. . . . . . . . 55
5.4 Keycloak: The Client Registration allows using weak secrets. The

weak client_secret is also displayed on the configuration page. . . 60
5.5 Keycloak: JavaScript execution using data URI as Location header. 61
5.6 Keycloak: Client configuration with data-URI as redirect_uri. . . 61
5.8 GitLab: Missing code revocation. . . . . . . . . . . . . . . . . . . . . 67
5.13 Bitbucket: A malicious actor can start an OpenID Connect authen-

tication flow resulting in login CSRF. . . . . . . . . . . . . . . . . . 78
5.14 Bitbucket: A malicious actor can utilize a login CSRF vulnerability

combined with the next parameter to launch a Login Confusion attack. 80
5.15 Bitbucket: A generic error message is shown if the user does not exist,

including links to external resources (Screenshot). . . . . . . . . . . . 82
5.17 GitLab: CRLF injection leads to request splitting. . . . . . . . . . . 90



List of Tables

5.1 Evaluation of Identity Provider related Test and Attack Categories. . 51
5.2 Overview of the most relevant observations and findings in Keycloak’s

Identity Provider implementation. . . . . . . . . . . . . . . . . . . . 54
5.7 Overview of the most relevant observations and findings in GitLab’s

Identity Provider implementation. . . . . . . . . . . . . . . . . . . . 66
5.9 Overview of the most relevant observations and findings in Amazon

Cognito’s Identity Provider implementation. . . . . . . . . . . . . . . 69
5.10 Evaluation of Service Provider related Test and Attack Categories. . 70
5.11 Overview of the most relevant observations and findings in Keycloak’s

Service Provider implementation. . . . . . . . . . . . . . . . . . . . . 73
5.12 Overview of the most relevant observations and findings in Bitbucket’s

Service Provider implementation. . . . . . . . . . . . . . . . . . . . . 76
5.16 Overview of the most relevant observations and findings in GitLab’s

Service Provider implementation. . . . . . . . . . . . . . . . . . . . . 89
5.18 Overview of the most relevant observations and findings in Sales-

forces’s Service Provider implementation. . . . . . . . . . . . . . . . 94
5.19 Overview of the most relevant observations and findings in Amazon

Cognito’s Service Provider implementation. . . . . . . . . . . . . . . 98

A.1 Applied evaluation table for Identity Providers, only negative findings
are explained in detail. . . . . . . . . . . . . . . . . . . . . . . . . . . 121

B.1 Applied evaluation table for Service Providers, only negative findings
are explained in detail. . . . . . . . . . . . . . . . . . . . . . . . . . . 131



Bibliography

[1] Amazon: AWS customer success, 2020. https://aws.amazon.com/solutions/
case-studies, as of September 30, 2020.

[2] Amazon: Using tokens with user pools, 2020. https://docs.aws.amazon.com/
cognito/latest/developerguide/amazon-cognito-user-pools-using-
tokens-with-identity-providers.html, as of September 30, 2020.

[3] Atlassian: Bitbucket server 7.0 release notes, 2020. https://
confluence.atlassian.com/bitbucketserver/bitbucket-server-7-0-
release-notes-990546638.html, as of September 30, 2020.

[4] A. Barth, C. Jackson, and John C. Mitchell: Securing Frame Communication in
Browsers, 2008. https://www.adambarth.com/papers/2008/barth-jackson-
mitchell.pdf, as of September 30, 2020.

[5] BuiltWith Pty Ltd: Websites using Facebook Login Button including
Historical. https://trends.builtwith.com/websitelist/Facebook-Login-
Button/Historical, as of September 30, 2020.

[6] BuiltWith Pty Ltd: Find out what websites are Built With. https://
builtwith.com/, Online as of September 30, 2020, 2020. "Build lists of websites
from our database of 38,047+ web technologies and over a quarter of a billion
websites showing which sites use shopping carts, analytics, hosting and many
more. Filter by location, traffic, vertical and more.".

[7] Christoph Kerschbaumer: Blocking top-level navigations to data urls for firefox
59, 2014. https://blog.mozilla.org/security/2017/11/27/blocking-top-
level-navigations-data-urls-firefox-59/, as of September 30, 2020.

[8] Cure53, Dr.-Ing. M. Heiderich, M. Rupp, Dr. N. Kobeissi, BSc. C. Kean, MSc.
S. Moritz, B. Walny, BSc. T.-C. Hong: Pentest-Report Keycloak 8.0 Audit &
Pentest 11.2019. https://cure53.de/pentest-report_keycloak.pdf, as of
September 30, 2020.

[9] D. Crockford: RFC4627: The application/json media type for javascript ob-
ject notation (JSON), 2006. https://tools.ietf.org/html/rfc4627, as of
September 30, 2020.

https://aws.amazon.com/solutions/case-studies
https://aws.amazon.com/solutions/case-studies
https://docs.aws.amazon.com/cognito/latest/developerguide/amazon-cognito-user-pools-using-tokens-with-identity-providers.html
https://docs.aws.amazon.com/cognito/latest/developerguide/amazon-cognito-user-pools-using-tokens-with-identity-providers.html
https://docs.aws.amazon.com/cognito/latest/developerguide/amazon-cognito-user-pools-using-tokens-with-identity-providers.html
https://confluence.atlassian.com/bitbucketserver/bitbucket-server-7-0-release-notes-990546638.html
https://confluence.atlassian.com/bitbucketserver/bitbucket-server-7-0-release-notes-990546638.html
https://confluence.atlassian.com/bitbucketserver/bitbucket-server-7-0-release-notes-990546638.html
https://www.adambarth.com/papers/2008/barth-jackson-mitchell.pdf
https://www.adambarth.com/papers/2008/barth-jackson-mitchell.pdf
https://trends.builtwith.com/websitelist/Facebook-Login-Button/Historical
https://trends.builtwith.com/websitelist/Facebook-Login-Button/Historical
https://builtwith.com/
https://builtwith.com/
https://blog.mozilla.org/security/2017/11/27/blocking-top-level-navigations-data-urls-firefox-59/
https://blog.mozilla.org/security/2017/11/27/blocking-top-level-navigations-data-urls-firefox-59/
https://cure53.de/pentest-report_keycloak.pdf
https://tools.ietf.org/html/rfc4627


[10] Dr. Torsten Lodderstedt: OpenID Connect @ Deutsche Telekom.
https://www.gsma.com/identity/wp-content/uploads/2014/03/OpenID-
Connect-at-Deutsche-Telekom-Torsten-Lodderstedt.pdf, 2014. Online,
as of September 30, 2020.

[11] Ed. D. Hardt: RFC6749: The OAuth 2.0 authorization framework, 2012. https:
//tools.ietf.org/html/rfc6749, as of September 30, 2020.

[12] Ed. T. Bray: RFC8259: The JavaScript Object Notation (JSON) data inter-
change format, 2017. https://tools.ietf.org/html/rfc8259, as of Septem-
ber 30, 2020.

[13] D. Fett, P. Hosseyni, and R. Kästers: An extensive formal security analysis
of the OpenID financial-grade API. In 2019 2019 IEEE Symposium on Se-
curity and Privacy (SP), pp. 1054–1072, Los Alamitos, CA, USA, may 2019.
IEEE Computer Society. https://doi.ieeecomputersociety.org/10.1109/
SP.2019.00067.

[14] D. Fett, R. Küsters, and G. Schmitz: A comprehensive formal security anal-
ysis of OAuth 2.0. In Proceedings of the 2016 ACM SIGSAC Conference on
Computer and Communications Security, CCS ’16, p. 1204–1215, New York,
NY, USA, 2016. Association for Computing Machinery, ISBN 9781450341394.
https://doi.org/10.1145/2976749.2978385.

[15] D. Fett, R. Küsters, and G. Schmitz: The web sso standard OpenID Connect:
In-depth formal security analysis and security guidelines. In 2017 IEEE 30th
Computer Security Foundations Symposium (CSF), pp. 189–202, Aug 2017.

[16] Frans Rosén: DNS hijacking using cloud providers – no verification
needed, 2017. https://de.slideshare.net/fransrosen/dns-hijacking-
using-cloud-providers-no-verification-needed-76812183, as of Septem-
ber 30, 2020.

[17] JBoss Developers: Keycloak: Open source identity and access management.
https://www.keycloak.org/, as of September 30, 2020.

[18] Job van der Voort: GitLab 7.7 and GitLab ci 5.4 with GitHub importer and
OAuth authorization, 2015. https://about.gitlab.com/releases/2015/01/
22/gitlab-7-7-and-ci-5-4-released/, as of September 30, 2020.

[19] Jobert Abma: Evaluating ruby code by injecting rescue job on the sys-
tem_hook_push queue through web hook, 2017. https://hackerone.com/
reports/299473, as of September 30, 2020.

[20] W. Li and C.J. Mitchell: Analysing the security of google’s implementation of
openid connect. In J. Caballero, U. Zurutuza, and R.J. Rodríguez (eds.): De-
tection of Intrusions and Malware, and Vulnerability Assessment, pp. 357–376,
Cham, 2016. Springer International Publishing, ISBN 978-3-319-40667-1.

https://www.gsma.com/identity/wp-content/uploads/2014/03/OpenID-Connect-at-Deutsche-Telekom-Torsten-Lodderstedt.pdf
https://www.gsma.com/identity/wp-content/uploads/2014/03/OpenID-Connect-at-Deutsche-Telekom-Torsten-Lodderstedt.pdf
https://tools.ietf.org/html/rfc6749
https://tools.ietf.org/html/rfc6749
https://tools.ietf.org/html/rfc8259
https://doi.ieeecomputersociety.org/10.1109/SP.2019.00067
https://doi.ieeecomputersociety.org/10.1109/SP.2019.00067
https://doi.org/10.1145/2976749.2978385
https://de.slideshare.net/fransrosen/dns-hijacking-using-cloud-providers-no-verification-needed-76812183
https://de.slideshare.net/fransrosen/dns-hijacking-using-cloud-providers-no-verification-needed-76812183
https://www.keycloak.org/
https://about.gitlab.com/releases/2015/01/22/gitlab-7-7-and-ci-5-4-released/
https://about.gitlab.com/releases/2015/01/22/gitlab-7-7-and-ci-5-4-released/
https://hackerone.com/reports/299473
https://hackerone.com/reports/299473


[21] W. Li, C.J. Mitchell, and T. Chen: Mitigating CSRF attacks on OAuth 2.0
and OpenID Connect. CoRR, abs/1801.07983, 2018. http://arxiv.org/abs/
1801.07983.

[22] M. Blanchet: RFC5156: Special-use IPv6 addresses, 2008. https://
tools.ietf.org/html/rfc5156, as of September 30, 2020.

[23] M. Jones and D. Hardt: RFC6750: The OAuth 2.0 authorization framework:
Bearer token usage, 2012. https://tools.ietf.org/html/rfc6750, as of
September 30, 2020.

[24] M. Jones, J. Bradley, and N. Sakimura: RFC7519: JSON Web Token (JWT),
2015. https://tools.ietf.org/html/rfc7519, as of September 30, 2020.

[25] C. Mainka: On message-level security. doctoralthesis, Ruhr-Universität
Bochum, Universitätsbibliothek, 2017.

[26] C. Mainka and V. Mladenov: OpenID Connect Security Considerations, 2017.
https://www.nds.ruhr-uni-bochum.de/media/ei/veroeffentlichungen/
2017/01/13/OIDCSecurity_1.pdf, as of September 30, 2020.

[27] C. Mainka, V. Mladenov, and J. Schwenk: Do not trust me: Using malicious
IdPs for analyzing and attacking single sign-on. CoRR, abs/1412.1623, 2014.
http://arxiv.org/abs/1412.1623.

[28] C. Mainka, V. Mladenov, J. Schwenk, and T. Wich: Sok: Single sign-on security
— an evaluation of OpenID Connect. In 2017 IEEE European Symposium on
Security and Privacy (EuroS P), pp. 251–266, April 2017.

[29] S. Matsumoto, S. Hitz, and A. Perrig: Fleet: Defending sdns from mali-
cious administrators. In Proceedings of the Third Workshop on Hot Top-
ics in Software Defined Networking, HotSDN ’14, p. 103–108, New York,
NY, USA, 2014. Association for Computing Machinery, ISBN 9781450329897.
https://doi.org/10.1145/2620728.2620750.

[30] Max Moroz: A couple more common OAuth 2.0 vulnerabilities, 2017. https:
//blog.avuln.com/article/4, as of September 30, 2020.

[31] V. Mladenov: On the security of single sign-on. doctoralthesis, Ruhr-Universität
Bochum, Universitätsbibliothek, 2017.

[32] Mozilla: 307 temporary redirect, 2020. https://developer.mozilla.org/en-
US/docs/Web/HTTP/Status/307, as of September 30, 2020.

[33] OpenID Foundation: OpenID Connect core 1.0 incorporating errata set 1, 2014.
https://openid.net/specs/openid-connect-core-1_0.html, as of Septem-
ber 30, 2020.

http://arxiv.org/abs/1801.07983
http://arxiv.org/abs/1801.07983
https://tools.ietf.org/html/rfc5156
https://tools.ietf.org/html/rfc5156
https://tools.ietf.org/html/rfc6750
https://tools.ietf.org/html/rfc7519
https://www.nds.ruhr-uni-bochum.de/media/ei/veroeffentlichungen/2017/01/13/OIDCSecurity_1.pdf
https://www.nds.ruhr-uni-bochum.de/media/ei/veroeffentlichungen/2017/01/13/OIDCSecurity_1.pdf
http://arxiv.org/abs/1412.1623
https://doi.org/10.1145/2620728.2620750
https://blog.avuln.com/article/4
https://blog.avuln.com/article/4
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status/307
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status/307
https://openid.net/specs/openid-connect-core-1_0.html


[34] OpenID Foundation: OpenID Connect discovery 1.0 incorporating errata set 1,
2014. https://openid.net/specs/openid-connect-discovery-1_0.html, as
of September 30, 2020.

[35] OpenID Foundation: OpenID Connect dynamic client registration 1.0 incor-
porating errata set 1, 2014. https://openid.net/specs/openid-connect-
registration-1_0.html, as of September 30, 2020.

[36] P. Jones, G. Salgueiro, M. Jones, and J. Smarr: RFV7033: WebFinger, 2013.
https://tools.ietf.org/html/rfc7033, as of September 30, 2020.

[37] Patrik Hudak: Heroku proofs, 2018. https://github.com/EdOverflow/can-i-
take-over-xyz/issues/38, as of September 30, 2020.

[38] Portswigger: Burp Suite, 2020. https://portswigger.net/burp, as of Septem-
ber 30, 2020.

[39] T. Saito, S. Shibata, and T. Kikuta: Comparison of OAuth/OpenID Connect
security in america and japan. In L. Barolli, K.F. Li, T. Enokido, and M. Tak-
izawa (eds.): Advances in Networked-Based Information Systems, pp. 200–210,
Cham, 2021. Springer International Publishing, ISBN 978-3-030-57811-4.

[40] Salesforce: Responsible disclosure policy, 2020. https://
trust.salesforce.com/en/security/responsible-disclosure-policy/, as
of September 30, 2020.

[41] Salesforce: Thanks to our trailblazing customers, we’re #1 in sales applications,
2020. https://www.salesforce.com/campaign/worlds-number-one-SALES/,
as of September 30, 2020.

[42] D. Serpanos and R.J. Lipton: Defense against man-in-the-middle attack in
client-server systems. Proceedings. Sixth IEEE Symposium on Computers and
Communications, pp. 9–14, 2001.

[43] Statista GmbH: Sicherheit im Netz: Der große Passwort-Stress. https://
de.statista.com/infografik/7705/der-grosse-passwort-stress/, 2017.
Online, as of September 30, 2020.

[44] Statista GmbH: Internetnutzung: So erstellen die Deutschen ihre Pass-
wörter. https://de.statista.com/infografik/17492/so-erstellen-die-
deutschen-ihre-passwoerter/, 2019. Online, as of September 30, 2020.

[45] R. Steinegger, A. Hotz, N. Hintz, and S. Abeck: Migration von OpenID Connect
in eine bestehende Anwendungslandschaft. Sept. 2017.

[46] A. Sudhodanan, S. Khodayari, and J. Caballero: Cross-Origin State Inference
(COSI) attacks: Leaking web site states through XS-Leaks, 2019.

https://openid.net/specs/openid-connect-discovery-1_0.html
https://openid.net/specs/openid-connect-registration-1_0.html
https://openid.net/specs/openid-connect-registration-1_0.html
https://tools.ietf.org/html/rfc7033
https://github.com/EdOverflow/can-i-take-over-xyz/issues/38
https://github.com/EdOverflow/can-i-take-over-xyz/issues/38
https://portswigger.net/burp
https://trust.salesforce.com/en/security/responsible-disclosure-policy/
https://trust.salesforce.com/en/security/responsible-disclosure-policy/
https://www.salesforce.com/campaign/worlds-number-one-SALES/
https://de.statista.com/infografik/7705/der-grosse-passwort-stress/
https://de.statista.com/infografik/7705/der-grosse-passwort-stress/
https://de.statista.com/infografik/17492/so-erstellen-die-deutschen-ihre-passwoerter/
https://de.statista.com/infografik/17492/so-erstellen-die-deutschen-ihre-passwoerter/


[47] A. Swinnen: Authentication bypass on airbnb via OAuth tokens theft,
2017. https://www.arneswinnen.net/2017/06/authentication-bypass-on-
airbnb-via-oauth-tokens-theft/, as of September 30, 2020.

[48] T. Lodderstedt, J. Bradley, A. Labunets, and D. Fett: OAuth 2.0 security best
current practice, 2020. https://tools.ietf.org/html/draft-ietf-oauth-
security-topics-15, as of September 30, 2020.

[49] T. Lodderstedt, M. McGloin, and P. Hunt: RFC6819: OAuth 2.0 threat model
and security considerations, 2013. https://tools.ietf.org/html/rfc6819, as
of September 30, 2020.

[50] Terence Eden: Incorrect details on OAuth permissions screen allows DMs to be
read without permission, 2018. https://hackerone.com/reports/434763, as
of September 30, 2020.

[51] Xianbo Wang, Wing Cheong Lau, Ronghai Yang, and Shangcheng
Shi: Make redirection evil again: Url parser issues in OAuth, 2019.
https://i.blackhat.com/asia-19/Fri-March-29/bh-asia-Wang-Make-
Redirection-Evil-Again-wp.pdf, as of September 30, 2020.

[52] Y. Rekhter, B. Moskowitz, D. Karrenberg, and G. de Groot: RFC1597: Address
allocation for private internets, 1994. https://tools.ietf.org/html/rfc1597,
as of September 30, 2020.

https://www.arneswinnen.net/2017/06/authentication-bypass-on-airbnb-via-oauth-tokens-theft/
https://www.arneswinnen.net/2017/06/authentication-bypass-on-airbnb-via-oauth-tokens-theft/
https://tools.ietf.org/html/draft-ietf-oauth-security-topics-15
https://tools.ietf.org/html/draft-ietf-oauth-security-topics-15
https://tools.ietf.org/html/rfc6819
https://hackerone.com/reports/434763
https://i.blackhat.com/asia-19/Fri-March-29/bh-asia-Wang-Make-Redirection-Evil-Again-wp.pdf
https://i.blackhat.com/asia-19/Fri-March-29/bh-asia-Wang-Make-Redirection-Evil-Again-wp.pdf
https://tools.ietf.org/html/rfc1597




A Evaluation Table for Identity Providers

Table A.1: Applied evaluation table for Identity Providers, only negative findings
are explained in detail.

Vulnerability Keycloak GitLab Salesforce Amazon
Cognito

“Sub” claim
Spoofing
“Sub” claim dif-
fers in UserInfo
Response and ID
Token [26, Sec-
tion 3.1.6]

Ë Ë Ë Ë

Redirect URI
“redirect_uri”
is not correctly
checked against
pre-registered
value for SP [33,
Section 3.1.2.1.]

Ë Ë Ë Ë

Redirect URI
supports dan-
gerous schemes
[new]

E.g. data,
javascript
allowed

Ë Ë E.g.
javascript
supported

HTTP
HTTP status
code 307 for
redirection [15,
Section III, A. 5)]

Ë Ë Ë Ë

Request Object,
request_uri and
Registration
Object



Vulnerability Keycloak GitLab Salesforce Amazon
Cognito

SSRF using “re-
quest_uri” [15,
Section III, A. 8)]

Default
configura-
tion sup-
ports “re-
quest_uri”

N/A N/A N/A

Registration Ob-
ject allows to
overwrite pre-
configured values
[new]

Ë N/A N/A N/A

Mismatch be-
tween contents of
Request Object
and values of
OIDC Request
(GET parame-
ters) possible [33,
Section 6.2.]

Ë N/A N/A N/A

Only secure sign-
ing methods al-
lowed for JWT
signatures

Per default
“any” al-
gorithm
including
“none” is
allowed

N/A N/A N/A

Access/Refresh
Token and Client
Credentials pro-
tection
Insecure storage
of refresh/access
tokens e.g. in
accessible DB or
on file system [49,
Section 5.3.3.]

N/A access_-
tokens are
accessi-
ble using
“gitlab-
psql” with-
out further
authentica-
tion

N/A N/A



Vulnerability Keycloak GitLab Salesforce Amazon
Cognito

Insecure storage
of “client_id” and
“client_secret”
[49, Section
5.3.3.]

If built-
in H2
database
is used:
Default
credentials!

N/A N/A N/A

Weak Client
Credentials [33,
Section 16.19]:
“For instance,
for HS256, the
client_secret
value MUST
contain at least
32 octets (and
almost certainly
SHOULD contain
more [. . . ])”

Clients can
choose
weak
“client_secret”

Ë Ë Ë

Online Guessing
of Client Creden-
tials [49, Section
4.3.5.]

No rate
limiting
+ Oracle
at token
endpoint

Ë N/A N/A

“access_token”
and “re-
fresh_token”
are long-living
(and no scope
limitation was
performed to
limit impact) [49,
Section 3.2.]

Ë Ë No “re-
fresh_token”
at all, test
indicates
that “ac-
cess_token”
is longer
than 60
minutes
valid

Ë

“Cache-Control”
misconfiguration
may leak sensitive
information [49,
Section 4.6.6.]

Ë Ë Ë Ë



Vulnerability Keycloak GitLab Salesforce Amazon
Cognito

“refresh_token”
is not bound to
“client_id” [49,
Section 3.3.]

Ë Ë N/A Ë

No “re-
fresh_token”
rotation: It is ad-
vised to set a new
“refresh_token”
on each refresh
request to pre-
vent reuse. [48,
Section 4.12.2.]

New “re-
fresh_token”
is issued
if old one
is used,
but the old
token is not
invalidated

Ë N/A No “re-
fresh_token”
rotation

No possibility
for End-Users
to revoke “ac-
cess_token” and
“refresh_token”
[new]

Ë Ë Ë No End-
User re-
vocation
imple-
mented

Code protection
Miss of Client
authentication:
(whereas possible
– if client_secret
was issued) au-
thentication is
enforced when
code is redeemed
[49, Section
5.2.3.]

Ë Ë Ë Ë

“code” has too
long expiry time
(> 10 minutes)
[11, Section
4.1.2.]

Default
value 60
minutes

Ë Code is
longer than
10 minutes
valid

Ë

“code” is more
than one-time us-
able [11, Section
4.1.2.]

Ë Ë Ë Ë



Vulnerability Keycloak GitLab Salesforce Amazon
Cognito

The “code” is
not bound to the
“client_id” it was
issued for [11,
Section 4.1.2.]

Ë Ë Ë Ë

The “code” is
not bound to the
“redirect_uri”
used as the redi-
rection target of
the client in the
End-User authen-
tication process
[11, Section
4.1.2.]

Ë Ë Allowed to
use another
valid and
registered
“redi-
rect_uri”
in token re-
quest than
in user au-
thorization
in frontend

Ë

“code” injection
due to missing
binding be-
tween “nonce”
and “code” in
“id_token”.
Other mitigations
do not work if
attacker may
choose victim’s
“nonce” value!
[48]

Ë Ë Ë Ë

Race condition
when redeeming
“code” [30]

Ë Ë N/A N/A

Missing invalida-
tion of “code” if
access is revoked
[30]

Ë Code is not
invalidated
if user
revokes
permissions

Ë N/A (Users
can not re-
voke access)

Denial-of-Service



Vulnerability Keycloak GitLab Salesforce Amazon
Cognito

DoS by request-
ing many tokens
for one user [49,
Section 4.4.1.11.]

Ë Ë N/A N/A

PKCE
IdP does not sup-
port PKCE [48,
Section 2.1.]

Ë Not imple-
mented

Ë Ë

IdP does not
indicate if it
supports PKCE,
“either by (a)
publish the ele-
ment‘code_challenge-
_methods_support-
ed’ in their
AS metadata
([RFC8418])
containing the
supported PKCE
challenge meth-
ods (which can
be used by the
client to detect
PKCE support)
or (b) provide
a deployment-
specific way to
ensure or de-
termine PKCE
support by the
AS” [48, Section
2.1.]

Ë N/A Ë Ë

Audience Confu-
sion



Vulnerability Keycloak GitLab Salesforce Amazon
Cognito

IdP allows clients
“to influence
their "client_id"
or "sub" value
or any other
claim if that can
cause confusion
with a genuine
resource owner”
[48, Section 2.6.]

Clients can
choose their
clientId
on their
own. Ad-
ditionally,
Keycloak
allows
to add
colliding
clientIds
like “Test”
and “test”
that could
cause con-
fusion at a
genuine RP.

Ë Ë Ë

Consent Screen
Incorrect in-
formation on
consent screen,
SP receives
more rights than
specified and
consented by
resource owner
on consent screen
[50]

Ë Ë Ë Ë

Dynamic Client
Registration
No access control
for Dynamic
Client Registra-
tion, anyone may
register clients
(instead of using
initial access
token or trusted
hosts policy)

Ë N/A Initial ac-
cess_token
required
to regis-
ter client,
BUT: The
token can
be reused
for multiple
clients

N/A



Vulnerability Keycloak GitLab Salesforce Amazon
Cognito

“sector_identifier-
_uri” supports
HTTP without
TLS (optional pa-
rameter but if it
is supported, this
is mandatory)
[35, Section 5.]

URI is al-
lowed to use
HTTP

N/A N/A N/A

SSRF using URIs
from Client Meta-
data [new]

N/A N/A N/A N/A

logo_uri,
client_uri, pol-
icy_uri, tos_uri
are vulnerable
to client side
vulnerabilities
like XSS [new]

N/A N/A N/A N/A

Client Authenti-
cation
client_secret_jwt/
private_key_jwt:
none-Algorithm
is supported
(“Signature Ex-
clusion”)

Ë N/A N/A N/A

client_secret_jwt/
private_key_jwt:
SSRF using jku
and other claims

Ë N/A N/A N/A

client_secret_jwt/
private_key_jwt:
Token exp date is
not checked

Ë N/A N/A N/A

client_secret_jwt/
private_key_jwt:
JTI is not checked

Ë N/A N/A N/A



Vulnerability Keycloak GitLab Salesforce Amazon
Cognito

client_secret_jwt/
private_key_jwt:
Required param-
eter [33] are not
enforced

“iss” is not
checked at
all, instead
Keycloak
solely relies
on “sub”

N/A N/A N/A

client_secret_jwt/
private_key_jwt:
Key Confusion
[26]

Ë N/A N/A N/A





B Evaluation Table for Service Providers

Table B.1: Applied evaluation table for Service Providers, only negative findings are
explained in detail.

Vulnerability Keycloak Bitbucket GitLab Salesforce Amazon
Cognito

Replay Attacks
ID Token Replay Ë Ë “exp” and

“nonce”
checked,
“iat” not

Not veri-
fied at all,
but only
Code Flow
available

No “nonce”,
“iat” not
verified

Signature Manip-
ulation
No signature val-
idation at all [26,
Section 3.1.2]

Ë No sig-
nature
verification
at all

Ë Not veri-
fied at all,
but only
Code Flow
available

Ë

Support of
“none” algorithm
[26, Section 3.1.2]

Ë No sig-
nature
verification
at all

Ë Not veri-
fied at all,
but only
Code Flow
available

Ë

Token Recipient
Confusion
“aud” claim of
“id_token” is not
validated [26, Sec-
tion 3.1.3]

Ë Ë Ë No
id_token
validation
at all

Ë

ID spoofing



Vulnerability Keycloak Bitbucket GitLab Salesforce Amazon
Cognito

ID spoofing in the
ID token [26, Sec-
tion 3.1.4]

Ë External
Login
provider
can au-
thenticate
any inter-
nal user
with any
privileges
without
further con-
sent needed
from inter-
nal user

Ë Information
is only
retrieved
from User-
Info end-
point but
checked
correctly

Ë

ID spoofing in the
ID token - email
[26, Section 3.1.4]

Ë Ë Ë Information
is retrieved
from User-
Info end-
point but
checked
correctly

Ë

Issuer Confusion
[26, Section 3.1.4]

Ë Ë Parser issue
enables Is-
suer confu-
sion

No dis-
covery
imple-
mented,
but unsafe
endpoints
are sup-
ported
during
manual
configura-
tion

Ë

Key Confusion
Key Confusion
with wrong refer-
ences [26, Section
3.1.5]

Ë No sig-
nature
verification
at all

Ë Not veri-
fied at all,
but only
Code Flow
available

Ë



Vulnerability Keycloak Bitbucket GitLab Salesforce Amazon
Cognito

Key Confusion
with session
overwriting [26,
Section 3.1.5]

Ë No sig-
nature
verification
at all

Ë Not veri-
fied at all,
but only
Code Flow
available

Ë

Key confusion
using asymmetric
key (as string,
only n or e)

Ë No sig-
nature
verification
at all

Ë Not veri-
fied at all,
but only
Code Flow
available

Ë

Sub claim spoof-
ing
UserInfo Re-
sponse and
id_token are
checked regarding
their “sub” claim
[26, Section 3.1.6]

Ë Ë Ë Ë Ë

State parameter
CSRF Session
Donation [15,
Section III, A 2)]

Ë Ë Ë Ë Ë

“state” is used
to carry applica-
tion state but is
not integrity pro-
tected [48, Sec-
tion 4.7.1.]

Ë Ë Ë Ë Ë

“state” is reusable
enabling DoS
Amplification
[new]

State is re-
usable

Ë Ë State is re-
usable

State is re-
usable

Leakage



Vulnerability Keycloak Bitbucket GitLab Salesforce Amazon
Cognito

state or au-
thorization
“code” are leaked
through Ref-
erer header [15,
Section III, A 2)]

Admin-
istrative
users can
inject re-
sources
to login
screen,
resulting
in “state”
disclosure
through
Referer

Referer
leaks OIDC
parameters
on error
page

Ë Ë Ë

Insecure storage
of refresh/access
tokens e.g. in
accessible DB or
on file system [49,
Section 4.1.2.]

Ë N/A (stor-
age mech-
anism not
identified)

access_tokens
are acces-
sible using
“gitlab-
psql” with-
out further
authentica-
tion

N/A N/A

SP passes “ac-
cess_token” via
query parameter
[49, Section 4.4.]

Ë Ë Ë Ë Ë

CSRF
Login Initiation
Endpoint enabled
(allows inten-
tional CSRF) [15,
Section III, A 7)]

Ë Intentional
CSRF
possible

Ë Ë Ë

Non-normative
External Login
endpoint without
CSRF protection
[new]

Ë CSRF Lo-
gin into
victim
account
possible

Ë CSRF Lo-
gin into
victim
account
possible

CSRF Lo-
gin into
victim
account
possible

SSRF



Vulnerability Keycloak Bitbucket GitLab Salesforce Amazon
Cognito

SSRF to local-
host or private
IPs (may allow
Portscan or Blind
SSRF) [26, Sec-
tion 2.1.2]

Discovery
allows blind
SSRF to
localhost

Discovery
allows blind
SSRF to
localhost
(filter by-
passed,
arbitrary
paths and
GET pa-
rameters,
HTTP and
HTTPS)

UserInfo
Request al-
lows SSRF
to localhost
+ CRLF
injection
allows RCE
if Redis
Instance is
present

Ë Discovery
allows
SSRF
with Error
Message
disclosure
allowing
Portscans,
To-
ken/User-
Info Re-
quest
allow blind
SSRF)

Open Redirect
Covert Redirect
after successful
authentication
[48, Section
4.9.1.]

Redirect to
any relative
path

Redirect to
any relative
path

Ë Redirect to
any relative
path

Ë

HTTP Referer
header-based
open redirect:
User is redirected
to the referer
he came from
when starting
OAuth/OIDC
flow [47]

Ë Ë Ë Ë Ë

Login Confusion
Login CSRF and
Covert Redirect
to relative path
can be chained
to “Login Con-
fusion” attack
[new]

Ë CSRF +
Redirect
can be
chained
to Login
confusion

Ë CSRF +
Redirect
can be
chained
to Login
confusion

Ë

Mix-Up Attacks



Vulnerability Keycloak Bitbucket GitLab Salesforce Amazon
Cognito

SP does not
use “either (a)
a distinct redi-
rect URI per
IdP or (b) check
the‘iss’and‘client_id’in
the id_token” [48,
Section 4.4.]

Ë Only one
IdP sup-
ported at a
time

Only one
IdP sup-
ported at a
time

Ë Mix-up
possible:
No distinct
Redirection
Endpoint
+ No ad-
ditional
counter-
measures
imple-
mented

Deprecated
Grants
SP uses depre-
cated Implicit
Flow (risking
token leakage)
[48, Section 2.1.2]

Ë Ë Ë Ë Implicit
flow can be
configured

SP uses depre-
cated Resource
Owner Password
Credentials Grant
[48, Section 2.4]

Ë Ë Ë Ë Ë

Discovery
Unsafe URLs
(HTTP with-
out TLS) are
supported [34,
Section 7.2]

HTTP
without
TLS sup-
ported

HTTP
without
TLS sup-
ported

Discovery
endpoint
enforces
HTTPS,
but ob-
served
endpoints
are allowed
to use
HTTP

No dis-
covery
imple-
mented,
but unsafe
endpoints
are sup-
ported
during
manual
configura-
tion

Ë

Denial of service



Vulnerability Keycloak Bitbucket GitLab Salesforce Amazon
Cognito

DoS using ma-
licious Endpoint
Attack [26, Sec-
tion 2.1.4]

Higher
Memory
Consump-
tion ob-
served, but
no actual
DoS

Ë Timeout
“Rack::Time-
out::Request-
Timeout-
Exception
(Request
ran for
longer than
60000ms)”

N/A N/A

Injection
XSS using IdP
provided values
[26, Section 2.1.3]

Ë Ë Ë Ë Ë



Vulnerability Keycloak Bitbucket GitLab Salesforce Amazon
Cognito

CRLF injec-
tion using IdP
provided values
[new]

Log In-
jection:
Sensitive
Data in log
files

HTTP
Request
splitting in
UserInfo re-
quest: “ac-
cess_token”
is not san-
itized,
resulting
in SSRF
to chosen
endpoint
(set using
discov-
ery) with
arbitrary
injected
headers.
As GitLab
is often
configured
with a
Redis in-
stance, if
the instance
is present
RCE may
be a conse-
quence.

Ë Internal
Server Er-
ror: We can
not prove
a log injec-
tion, but
as Sales-
force uses
Java like
Bitbucket
and shows
comparable
behavior,
potentially
there is
a log in-
jection,
too.

Ë



C Source Code: Malicious Identity and
Service Providers

The most recent version of each implementation could be found on Github:

• Malicious Identity Provider: https://github.com/lauritzh/oidc-custom-
idp.

• Malicious Service Provider: https://github.com/lauritzh/oidc-custom-
sp.

https://github.com/lauritzh/oidc-custom-idp
https://github.com/lauritzh/oidc-custom-idp
https://github.com/lauritzh/oidc-custom-sp
https://github.com/lauritzh/oidc-custom-sp

	Glossary
	Acronyms
	Introduction
	Motivation
	Related Work
	Research Question
	Contribution
	Organization of this Thesis

	Foundations
	JSON
	JWT, JWS and JWE

	Single Sign-On (SSO)
	General Concept
	OAuth 2.0
	OpenID Connect 1.0

	Single Sign-On Security
	Identity Provider Security
	Identity Provider Attacks and Flaws
	Service Provider Security
	Service Provider Attacks and Flaws


	Attacker Models
	Web Attacker
	Malicious Identity Provider
	Malicious Service Provider
	Malicious Administrative User
	Man-in-the-Middle

	Selection and Test Environment
	Selection of OpenID Connect Implementations
	Identity Provider Selection
	Service Provider Selection

	Setup
	Custom Implementations
	Local Test Environment
	Remote Test Environment


	Security Evaluation
	Identity Provider Evaluation
	Identity Provider Analysis Details
	Analysis of Keycloak
	Analysis of GitLab
	Analysis of Amazon Cognito (AWS)

	Service Provider Evaluation
	Service Provider Analysis Details
	Analysis of Keycloak
	Analysis of Bitbucket
	Analysis of GitLab
	Analysis of Salesforce Lightning
	Analysis of Amazon Cognito (AWS)


	Lessons Learned
	Expectations and Results
	Derived Common Issue Patterns
	Derived OpenID Connect Security Considerations
	Responsible Disclosure
	Keycloak
	Bitbucket
	GitLab
	Salesforce
	Amazon Cognito


	Conclusion
	Future Work

	List of Figures
	List of Tables
	Bibliography
	Evaluation Table for Identity Providers
	Evaluation Table for Service Providers
	Source Code: Malicious Identity and Service Providers

