
Penetration Testing Tool for Web Services Security
Christian Mainka, Juraj Somorovsky, Jörg Schwenk,

Horst Görtz Institute for IT Security
Ruhr University Bochum, Germany

{Christian.Mainka, Juraj.Somorovsky, Joerg.Schwenk}@rub.de

Abstract—XML-based SOAP Web Services are a widely used
technology, which allows the users to execute remote opera-
tions and transport arbitrary data. It is currently adapted in
Service Oriented Architectures, cloud interfaces, management
of federated identities, eGovernment, or millitary services. The
wide adoption of this technology has resulted in an emergence of
numerous – mostly complex – extension specifications. Naturally,
this has been followed by a rise in large number of Web Services
attacks. They range from specific Denial of Service attacks
to attacks breaking interfaces of cloud providers [1], [2] or
confidentiality of encrypted messages [3].

By implementing common web applications, the developers
evaluate the security of their systems by applying different
penetration testing tools. However, in comparison to the well-
known attacks as SQL injection or Cross Site Scripting, there
exist no penetration testing tools for Web Services specific attacks.
This was the motivation for developing the first automated
penetration testing tool for Web Services called WS-Attacker.
In this paper we give an overview of our design decisions
and provide evaluation of four Web Services frameworks and
their resistance against WS-Addressing spoofing and SOAPAction
spoofing attacks.

Index Terms—SOAP-based Web services, WS-Security, WS-
Addressing spoofing, SOAPAction spoofing, Penetration Testing
Tool

I. INTRODUCTION

Service-oriented architectures (SOAs) have been developed
as a new software paradigm, which enforces software modular-
ization and reuse. The key technology to implement SOA has
become the eXtensible Markup Language (XML), surrounded
with the related W3C-standards such as SOAP [4], WSDL [5],
or XML Schema [6]. It has been relatively quickly realized
that these architectures need to support flexible security mech-
anisms. Thus, the OASIS consortium has developed additional
standards describing application of security mechanisms in
SOAP messages (WS-Security [7]), building security poli-
cies (WS-Security Policy [8]), or exchanging authentication
(SAML [9]) and authorization tokens (XACML [10]).

Unfortunately, the complexity and a large number of these
standards have led to emergence of Web Services specific
attacks. A short overview of some well-known Web Service
specific attacks mainly taken from [11] can be seen in Table I.
The most important attacks are those breaking cryptographic
primitives defined in the XML messages. The so called XML
Signature Wrapping attacks described by McIntosh and Austel
in 2005 [12] allow an attacker to arbitrarly modify signed mes-
sages. The practical impact of these attacks has been shown by
its application on Amazon EC2 SOAP and Eucalyptus cloud
Web Service interfaces [1], [2] or on different SAML-based

XML Signature Wrapping Attack on XML Encryption
Oversize Payload Coercive Parsing
SOAPAction spoofing XML Injection
WSDL Scanning Metadata spoofing
Attack Obfuscation Oversized Cryptography
BPEL State Deviation Instantiation Flooding
Indirect Flooding WS-Addressing spoofing
Middleware Hijacking

TABLE I
OVERVIEW OF EXISTING WEB SERVICE SPECIFIC ATTACKS.

Single Sign-On frameworks [13]. Another relevant attack in
this area has been presented at CCS’11 [3]. It has been shown
that it is possible to decrypt arbitrary XML ciphertexts if a
server working as a plaintext validity oracle is given. The
development of countermeasures against this attack is not
trivial as many side-channels can be revealed by the server-
side implementation [14]. In addition to the attacks on cryp-
tographic data primitives, there exists a whole series of highly
efficient Denial of Service (DoS) attacks. The adversaries
could e.g. apply the HashDoS attack on the XML-structure1 or
force the server to execute expensive cryptographic algorithms.

The developers are usually familiar only with a small
number of the Web Services standards and therefore, they are
not able to identify vulnerabilities in the implemented Web
Services interfaces. Compared to attacks like SQL injection
and Cross Site Scripting (XSS) – which can be checked with
a number of penetration testing tools – there are no solutions
offering automated testing of XML-specific vulnerabilities. For
these reasons it was decided to develop the first automated
penetration testing tool for XML-based Web Services called
WS-Attacker. In this paper, the basic design decisions for creat-
ing this modularized tool are presented and a description of the
implementation and inclusion of new attacks considering the
interfaces of WS-Attacker is given. Afterwards, details of two
attack implementations already included in the framework are
deepened: WS-Addressing spoofing and SOAPAction spoof-
ing. The evaluation of their implementation is presented using
four widely used Web Services frameworks: Apache Axis2,
JBossWS native, JBossWS CXF and .NET Web Services. WS-
Attacker is offered as an open-source implementation2 to a
wide range of Web Services developers.

The rest of the paper is organized according to the structure

1https://bugzilla.redhat.com/show bug.cgi?id=CVE-2012-0841
2http://sourceforge.net/projects/ws-attacker

delineated below: Section II gives an overview of paper
relevant technologies. Section III briefly describes the WS-
Addressing spoofing and SOAPAction spoofing attacks. Ba-
sic design and implementation decisions are summarized in
Sections IV and V. The evaluation results are included in
Section VI and the conclusion in Section VII.

II. FOUNDATIONS

This section introduces the fundamentals of XML and
Web Services relevant aspects for further description of the
penetration testing framework.

A. XML Security

The eXtensible Markup Language (XML) [15] is a specifi-
cation offering a possibility for flexible storage of tree-based
data. Due to their flexibility, the XML documents gained in
recent years much popularity. They are currently used for data
transmission, data storage, or in case of a Web Service for
function invocation calls.

Since XML documents often contain confidential and re-
liable data, the W3C consortium has developed standards
that describe the XML syntax for applying cryptographic
primitives to arbitrary XML data. The resulting standards have
become XML Encryption [16] and XML Signature [17]. Using
XML Encryption to XML data ensures its confidentiality.
In parallel, XML Signature guarantees data integrity and
authenticity. Both can be applied to arbitrary data in the
document.

B. SOAP-based Web Services

SOAP is a standard which describes message exchange with
a Web Service [4]. SOAP messages basically consist of an
Envelope element with two child elements named Header
and Body: The SOAP header can contain meta information
such as nonces, timestamps, or XML Signatures. The SOAP
body is used for storing a Web Service operation and its
parameters. The concrete structure of the SOAP message used
to communicate with a Web Service and the binding infor-
mation is described in the Web Service Description Language
(WSDL) [5].

SOAP does not specify any concrete transport protocol. In
most cases HTTP is used. This allows to define additional data
in the HTTP headers and filter the messages using standard
HTTP firewalls. One example of an additional HTTP header
is the SOAPAction field, which redundantly corresponds the
SOAP body operation. According to the SOAPAction field,
the firewall can decide e.g. if the message sender can execute
the given operation.

An example of a SOAP message including HTTP parame-
ters is given in Listing 1.
POST / w e b s e r v i c e HTTP / 1 . 1
SOAPAction: addUser

<s o a p e n v : E n v e l o p e>
<s o a p e n v : H e a d e r />
<soapenv:Body>

<addUser>
<name>Bob< / name>

< / addUser>
< / soapenv:Body>

< / s o a p e n v : E n v e l o p e>

Listing 1. SOAP message transfered over HTTP with an additional
SOAPAction parameter.

C. Web Services Addressing

Web Services Addressing (WS-Addressing) [18] is a stan-
dard supporting the message routing definition directly inside
of the exchanged SOAP messages. This makes the routing data
independent of the underlying protocol and of any transport
characteristics.

An example of WS-Addressing defined in the SOAP mes-
sage header gives Listing 2. Using this message the client
accesses the shops’ services defined in the wsa:To element. He
executes the function buy article in the wsa:Action element.
If the article is in the store, the message can be forwarded to
the billing service in the wsa:ReplyTo property. Otherwise, the
message is forwarded to a service defined in the wsa:FaultTo
element, which handles reordering and informs the client about
the next processing steps.

<s o a p e n v : H e a d e r xmlns :wsa = ’ . . . / a d d r e s s i n g ’>
<wsa:To>s e r v i c e s / shop< / wsa:To>
<w s a : A c t i o n>b u y a r t i c l e< / w s a : A c t i o n>
<wsa:ReplyTo>

<wsa :Addre s s>s e r v i c e s / b i l l i n g< / wsa :Addre s s>
< / wsa:ReplyTo>
<w s a : F a u l t T o>

<wsa :Addre s s>s e r v i c e s / o u t o f s t o c k< / y
wsa :Addre s s>

< / w s a : F a u l t T o>
< / s o a p e n v : H e a d e r>

Listing 2. WS-Addressing applied in the SOAP header

D. Web Services Security

SOAP-based Web Services are commonly exchanged over
HTTP. This allows to use SSL/TLS [19] as a secure transport
mechanism. This mechanism however does not bring advan-
tages if the SOAP messages are transfered over more than
one endpoints. Therefore, the OASIS group has maintained
the Web Service Security (WS-Security) [7], which specifies
how to:

1) Sign and verify (parts of) SOAP messages using XML
Signature.

2) Encrypt and decrypt (parts of) SOAP messages using
XML Encryption.

3) Add security tokens (like timestamps, credentials) to
SOAP messages.

This allows to secure the messages on the message-level
and protect them during the whole transport even over a large
number of endpoints.

III. WEB SERVICES ATTACKS

The following section gives an overview of existing attack
classes used against Web Services relevant for this paper.

A. Web Service Specific vs. Non-Specific Attacks

Web Services use XML-based messages sent over different
protocols. They can execute operations on a remote system
or access a database. The XML-based SOAP messages can
contain different data giving the client access rights to a service
operation or addressing a next Web Service, which should be
invoked. Considering these facts, a Web service interface can
be vulnerable to the following groups of attacks:

• Non-specific Web Service attacks are abusing weaknesses
in the back-end of an application, e.g. Buffer Overflows
or SQL Injection.

• Specific Web Service attacks exploit vulnerabilities on
SOAP and XML. They attack the XML-parser with De-
nial of Service attacks, build unexpected SOAP messages,
or attack the confidential data transmitted in the SOAP
message.

The preferred way to build secure Web Services is checking
for security by means of an attack framework. If the service
resists these attacks, it is a good indicator for security. Non-
specific Web Service attacks are well-known from web appli-
cations. Information about them can be found on the OWASP
web site3. A good all-in-one tool for testing web applications
is the Web Application Attack and Audit Framework (w3af)4.
Currently, there is nevertheless no automated vulnerability
scanner which uses web service specific attacks. The only
possibility to attack Web Services is to do manual tests, e.g.
using soapUI5.

B. SOAPAction Spoofing

SOAPAction spoofing is a Web Service specific attack [11],
which misuses the SOAPAction parameter in the HTTP header.
The basic idea of the attack can be explained using the follow-
ing example. Consider a Web Service with two operations: Op-
erationA and OperationB. The WSDL for this service defines
the SOAPAction for each operation in the operation element.
Let ActionA and ActionB be the corresponding actions. A valid
SOAP message for OperationA contains the corresponding
names in both fields: the SOAPAction parameter is set to
ActionA and the name of the first SOAP body element is
OperationA.

A SOAPAction spoofing attack changes the SOAPAction
header to a different action as shown in Listing 3.

POST / w e b s e r v i c e HTTP / 1 . 1
H o s t : s o a p A c t i o n S p o o f i n g H o s t
SOAPAction: ” ActionB ”

<s o a p e n v : E n v e l o p e>
<s o a p e n v : H e a d e r />
<soapenv:Body>

<OperationA />
< / soapenv:Body>

< / s o a p e n v : E n v e l o p e>

Listing 3. SOAPAction spoofing attack message

3http://owasp.org
4http://w3af.sourceforge.net/
5http://www.soapui.org/

HTTP-Header:
ActionB

SOAP Body:
OperationA

HTTP-Firewall

Allow: B
Deny: A

Web Service

Fig. 1. Attacking a Web Service with SOAPAction spoofing.

In some cases, this message can provoke an unwanted
reaction. Consider an HTTP Firewall, which handles incoming
requests and a Web Service with two operations. If the firewall
only checks the SOAPAction header, the message in Listing 3
is illegally allowed and will be forwarded to the Web Service,
see Figure 1. The Web Service logic executes the SOAP
body operation, because it does not check authentication –
it believes, that the firewall performs this task.

If OperationB is a public operation like getServerTime and
OperationA one, that needs authentication, e.g. deleteAllUsers,
the SOAPAction spoofing attack can be used to execute
deleteAllUsers without any authentication. A real life example
for this attack was published in January 20106: SourceSec
Security Research has found a vulnerability in D-Link routers,
which allowed administrative access using SOAPAction spoof-
ing.

C. WS-Addressing Spoofing

WS-Addressing spoofing is a further Web Service specific
attack [11]. The idea of this attack is depicted in Figure 2:
The attacker sends a SOAP request to the server containing a
WS-Addressing header, which provokes the server to send the
SOAP response to a different endpoint.

The specification has three different methods for doing this:

• ReplyTo: The server sends the response to any different
endpoint. This will only work if the request was valid
and no error occurs.

• FaultTo: The server sends any SOAP Fault to a different
endpoint. For attacking a Web Service, a SOAP Body
without any children can be used, as this will always
return a SOAP Fault. Thus, the impact by this method is
more powerful, as provoking SOAP Faults is much easier
as a valid request.

• To: The server uses a different endpoint for everything,
including valid responses and SOAP Faults.

Using WS-Addressing for asynchronous message exchange
raises different attack possibilities, e.g. flooding another Web
Service, or even Distributed Denial of Service is possible.
Thereby, only one of the three methods mentioned above is
sufficient. A countermeasure against WS-Addressing spoofing
is the verification of the endpoint reference (Whitelist), ideally
before any computation.

6Hacking D-Link Routers With HNAP: http://www.sourcesec.com/Lab/
dlink hnap captcha.pdf

SOAP Envelope

SOAP Header

WS Addressing

http://serverB

SOAP Body

Server A
initial

Web Service

Server B
another

Web Service

W
S

A
dd

re
ss

in
g

ht
tp

://
se

rv
er

B

Fig. 2. Idea of WS-Addressing spoofing.

IV. CONCEPT FOR A WEB SERVICES PENETRATION
TESTING TOOL

This section describes the basic idea of the Web Services
penetration testing tool WS-Attacker and deals with its re-
quirements from different points of view.

A. Requirements for Plugin Developers

The requirements for plugin developers can be summarized
to the following aspects:

1) It must be easy to implement new attacks, where each
attack is represented by a WS-Attacker plugin.

2) Any attack category must be supported (spoofing at-
tacks, Denial of Service, etc.)

3) Open for extension: there must be support even for
prospective, not yet invented, attacks.

In general, a plugin author has the task to create the attack-
plugin without knowing WS-Attacker’s internals. It must be
as easy as possible to create new attacks and any kind of
attacks must be supported. This is why WS-Attacker will only
provide a plugin interface and some helper classes – each
attack request must be sent by the plugin itself.

B. Requirements for Framework Users

The requirements for framework users must be seen from a
different point of view. They can be summarized as followed:

1) The framework must be easy to use.
2) Only a few clicks should be necessary to test a Web

Service.
3) The users do not need any knowledge about XML

or Web Services and especially, they do not need any
knowledge about XML Security.

A typical WS-Attacker user might be a company, which
provides a Web Service either for their clients, or for its
internal processes. This service should be secure against all
known attacks. By using WS-Attacker, the company can easily
check for vulnerabilities.

C. Processing Steps

For setting up the configuration to attack a Web Service,
the framework will work as follows:

1) The user has to load a WSDL. This can be a local file
or a URL.

2) The framework has to analyze it and extract all possible
operations. Then, the user selects the operation which
will be attacked.

3) The framework must be able to generate a valid request
stub for the selected operation and provide input fields
for message parameters.

4) The user submits a test request. The response to this
request represents the normal state of the Web Service.
Each attack plugin will get this request-response pair as
a reference to build the attack vector.

5) The plugins have to be configured and enabled.
6) The framework runs the enabled plugins.
7) Results generated by the plugins are presented to the

user.
The plugin architecture allows to extend the framework with

new attacks. Each plugin represents exactly one attack and the
framework uses a plugin manager to hold and activate these
plugins. Thus, the main framework responsibilities are parsing
of a WSDL and generating the SOAP request content out of
it. After the attack plugins finish, the framework will present
the results.

D. Framework Results

WS-Attacker distinguishes between three types of results:
1) It displays whether the attack was successful or not.
2) It gives an integer rating to view the impact of the attack.
3) It produces a kind of log entries that can be filtered by

their importance level and may contain additional infos,
e.g. concrete SOAP messages.

It is very important to distinguish between those kinds of
results: The first one is just an indicator for the detection
of a vulnerability in general, so the result will be True or
False. The second one rates the potential risk of an attack. As
an example, a Denial of Service attack might stop a server
for several minutes or even completely so that a reboot is
necessary. Furthermore, the rating can be used to describe the
level of difficulty to apply the attack. The last results can be
seen as an advanced log: Each plugin can produce a Log Entry
which belongs to a display level. The user can then change
this level to filter in and out those entries to view only the
ones he is interested in.

V. WS-ATTACKER – IMPLEMENTATION DETAILS

This section gives an overview of implementation details.

A. Overview

The general components of WS-Attacker are shown in
Figure 3. The program is divided into two parts:

• Framework: This is the main part of WS-Attacker. Its
task is to set up the environment for attacking Web
Services and manage the processing steps described in
Section IV-C.

• Plugin Architecture: WS-Attacker can hold any number
of plugins, where each plugin represents an attack.

Loading a WSDL

Selecting an Operation

Generate Request Content

Submitting a Test Request

Configure Attacks

Start Attacks

Present Results

Attack Plugin 1

Attack Plugin 2

Attack Plugin n

Holds n Plugins

Framework Plugin Architecture

WS-Attacker

Fig. 3. General overview of WS-Attacker components and processing steps.

B. SoapUI as Back-end

As mentioned in Section IV-C, a Web Service testing
framework like WS-Attacker needs to create requests from a
WSDL, edit the request parameters, and send it to the server.
Using Java, there are a few possibilities for doing this:

1) Implement own classes handling these steps. This in-
cludes building an XML and an XSD parser. To send a
request, some helper methods must be provided unless
the plugin authors want to use raw HTTP sockets.

2) Use the Java SAAJ tools from javax.xml.soap [20]:
This package can manipulate SOAP messages and pro-
vides some helper classes for sending requests.

3) Use a third party solution.
The first approach is very complex and time-consuming. A

lot of tests needs to be created to find bugs. It is just simpler,
faster and safer to rely on standards.

The second approach seems to be very promising, since
it uses standard Java packages and SAAJ is very flexible
for creating and manipulating SOAP messages. Nevertheless,
there are some problems:

1) Each XML element is saved as a single object. However,
especially for Web Service attacks, one must be able to
create malformed messages, e.g. create only open tags
and no end tags. There are also problems when adding
special characters as they are escaped automatically.

2) SAAJ does not provide a WSDL parser, so there is no
possibility to create the basic SOAP request content for
a defined operation.

Where (1) could be wrapped by serializing SAAJ objects
and sending a manual request via custom HTTP sockets,
problem (2) can not be solved as easily as (1).

There are two possibilities for creating a request from a
WSDL. The first one uses the WSDL parser wsdl4java, which
can parse a WSDL file and extract the operation name as well
as the endpoint URI, but which is not able to generate the
SOAP request content. It can only be generated by means of an
XSD parser, which can extract the information from the Types

Testsuite

CurrentInterface

CurrentOperation

CurrentRequest

PluginManager

AbstractPlugin

AbstractOption

Result

GuiView

additional GUI classes

· · ·

Operation Architecture Plugin Architecture

GUI

Framework

WS-Attacker

Fig. 4. The internal structure of WS-Attacker.

section of a WSDL. The second makes use of the Axis2 tool
wsdl2java. This one can create a request but generates Java
code, giving no direct access to the SOAP request content.

All these problems lead to the third approach: Use a third
party tool: soapUI is the perfect solution for doing this. It is
written in Java. The LGPL license allows to use it for custom
programs. SoapUI is able to parse WSDL files, generate
requests out of it and also to support helper methods for
Basic Authentication, WS-Security etc. Sending requests to
the server is just as easy. SoapUI uses strings to save the
SOAP request content, which allows us to manipulate them
and create malformed requests.

C. Program Structure

A more detailed overview of WS-Attacker’s internal struc-
ture is shown in Figure 4. Mainly, there are two parts: The
Plugin Architecture and the Operation Architecture.

• The Operation Architecture represents everything that
has to do with creating Web Service requests and can be
seen as the main part of the framework.

• The Plugin Architecture represents the plugin system.
This is the place for the attack plugins.

The Operation Architecture has a Testsuite, which acts like
a wrapper for soapUI. It can load a WSDL and select the
CurrentInterface as well as a CurrentOperation to generate the
CurrentRequest. The CurrentRequest will also be sent to the
Web Service server to learn the normal state and the behavior
on correctly formated messages. Therefore, each attack plugin
can use that response for comparing it to the attack response.

The PluginManager holds all available attack plugins. Each
plugin extends the AbstractPlugin class and can have one or
more AbstractOptions, for example a signature file or some
other configuration parameters. The WS-Attacker GUI will
read these options and present a graphical input method to the
framework user. To distinguish between different data types,
sub-interfaces of AbstractOptions like AbstractOptionInteger
and AbstractOptionBoolean were built.

The results of the attack are collected in the Result object. It
can be compared to an advanced log file, which the GUI will
use to present the results to the user. Results can be filtered by
the plugin source and a level, which indicates how important

a result is. The user can choose whether he wants to see only
the most important results, e.g. which parts of the attack was
successful, or even SOAP request and response contents.

D. Attack Plugin Interface

In general, an attack plugin has the following tasks:
1) Running the attack using the given operation, request

and plugin options.
2) Generating some results which shall be displayed to the

user.
3) Giving a rating about the outcome of the attack.
Thus, while processing the attack, information about what is

happening must be saved as logging results. The user will see
those results in real-time and can filter them according to their
level. If he only wants to know the most important pieces of
information, he can filter only critical results. Nevertheless,
if he wants to see the SOAP request/response contents, he
chooses the tracing level.

Furthermore, each plugin needs to rate the attack success.
Therefore, a plugin author is responsible for the following two
steps:

1) Giving an integer rating for the attack, which means,
he has to set a maximum number of points (integer),
that can be reached during the attack and increase the
reached points depending on the attack success.

2) Implementing a wasSucessful() method to give a
Boolean result.

E. Extending AbstractPlugin

In order to build attack plugins, each plugin must extend
the AbstractPlugin interface. Listing 4 gives an overview of
its methods, which can be divided into the following parts:

p u b l i c a b s t r a c t c l a s s A b s t r a c t P l u g i n {

/ / a t t a c k i d e n t i t y
p u b l i c S t r i n g getName () , g e t A u t h o r ()

, g e t V e r s i o n () , g e t D e s c r i p t i o n ()
, g e t C a t e g o r y () ;

/ / s u c c e s s i n t e r f a c e
p u b l i c boolean w a s S u c c e s s f u l () ;
p u b l i c i n t g e t C u r r e n t P o i n t s () ;
p u b l i c i n t g e t M a x P o i n t s () ;

/ / r e s u l t l o g
f i n a l vo id r e s u l t (l e v e l , c o n t e n t) ;

/ / g e t t h e p l u g i n o p t i o n s
p u b l i c O p t i o n C o n t a i n e r g e t P l u g i n O p t i o n s () ;

/ / main p a r t
p u b l i c vo id s t a r t A t t a c k (t e s t R e q u e s t

, t e s t R e s p o n s e) ;
}

Listing 4. The AbstractPlugin interface (shorted).

• Attack identity contains methods to describe a plugin.
This includes an attack name, an author, a version and
a description. In addition, a plugin category must be set,
so that the GUI can sort conjugated attacks, e.g Spoofing
Attacks or DoS Attacks.

• Success interface implements the idea mentioned in
Section IV-D. The interface implements a wasSucessful()
function as well as a success rating, which can be seen
as a fraction: getCurrentPoints()

getMaxPoints() .
• Logging Results can be generated inside the implemen-

tation using the result() method. This is a helper method,
so it is final.

• Plugin Options can be accessed by the getPluginOp-
tions() method. It returns a container containing Objects
which extend an AbstractOption interface. This let the
GUI choose the correct input form, e.g. an input field or
a dropdown box.

• Main part: A plugin is started by the startAttack()
method. This is the place where the plugin author has
to implement his concrete attack.

Most of these methods will be used as subroutines in the
main part. The startAttack() method has two arguments which
hold the request/response pair of the test request. Those can be
used by the plugin for comparing the attack responses to the
normal-state. Inside this method, the author should generate
the results and depend if an attack was successful using the
success interface.

F. Minimal Implementation

This section gives a minimal implementation example for a
SOAPAction spoofing attack plugin. It will not give source
code examples, but rather describe the idea of building a
plugin.

In general, there are four steps to take:
1) Implementing the attack identity methods like getName()

and getDescription().
2) Implementing the success interface.
3) Implementing the plugin options (configuration param-

eters), if any are needed.
4) Implementing the attack itself.
The first step is obvious. After this, a success interface has

to be implemented. Therefore, it will be distinguished between
the following aspects depending on the SOAP response:

0) The response has a SOAP Fault. This is the only correct
handling for SOAPAction spoofing requests.

1) The response is not a SOAP message. Maybe it does not
even contain any XML. This leads to a server internal
error or misconfiguration. Eventually, some internals can
be revealed, as this failure must be unwanted from server
side – otherwise, the server would have sent a SOAP
Fault.

2) The server ignores the SOAPAction Header and executes
the first child of the SOAP Body. This could be used to
bypass authentication, e.g. if a Web Service firewall only
checks the SOAPAction header and the Web Service
logic always executes the operation defined in the SOAP
Body.

3) The server just executes the operation defined in the
SOAPAction Header. This can be abused to invoke
operations, which do not have any parameters (consider

an operation like deleteAllUsers), because the server will
search for them in the first SOAP Body child, which is
different to the one the server expects.

As mentioned before, an attack can have different levels
of success: Although (2) and (3) can be abused to executed
operations without any authorization, (3) is easier to use, as it
only needs to change the SOAPAction. The list above will be
used for the integer success interface, so that a framework user
can see what was successful and how dangerous it was. Addi-
tionally, a Boolean result will be implemented: wasSucessful()
will return true if the attack reached two or three points.
Again: The only correct handling for such requests is to send
a SOAP Fault.

Next step is to implement the plugin options, if necessary.
In case of SOAPAction spoofing, the attack can have two
different modes:

1) An automatic mode, which will generate a list of all
possible SOAPAction headers and send an attack request
for each of it.

2) A manual mode, which will let the user set the SOAP-
Action header manually. Therefore, a drop-down list
with all operations different to the current operation
are shown. The user can select the operation and the
corresponding SOAPAction will be displayed in an input
field. This field can also be edited.

In most cases, a user will start the attack in automatic mode,
but the manual mode provides a way to set up a SOAPAction
to anything the user chooses – e.g. if the user only wants
to check a specific action, because some action may cause
damage to the system.

As a last implementation step, the concrete attack must
be implemented. Therefore, one has to implement the star-
tAttack() method, which will the test request/response as a
parameter for comparison. The attack will work as follows:

1) Get a list of SOAPActions to be checked, depending on
automatic or manual mode.

2) Generate a new attack request as a copy of the compar-
ison request.

3) Repeat for each SOAPAction while the maximum points
are not reached:

a) Submit the attack request with the specified SOAP-
Action.

b) Search for the first body child in the response.
c) Compare this child to the one from the comparison

response, determine the kind of success and set the
points for this.

VI. EVALUATION

We tested feasibility of WS-Attacker using four widely
deployed Web Services frameworks: Apache Axis2 v1.6.17,
JBossWS Native 6.0, JBossWS CXF 7.08, and .NET Web
Services 3.09. We analyzed their resistance to the described

7http://axis.apache.org/axis2/java/core
8http://www.jboss.org/jbossws
9https://www.microsoft.com/download/en/details.aspx?id=14089

SOAPAction spoofing WS-Addressing spoofing
Success? Rating Success? Rating

Apache Axis2 True 3/3 True 2/3
JBossWS native True 2/3 false 0/3

JBoss CXF True 2/3 false 0/3
.NET WS True 3/3 false 0/3

TABLE II
ALL THE TESTED FRAMEWORKS REVEALED VULNERABILITIES. APACHE

AXIS2 WAS VULNERABLE TO BOTH PRESENTED ATTACKS.

SOAPAction and WS-Addressing spoofing attacks. Thereby,
each framework was equipped with two Web Services end-
points with default configurations.

The results of our analysis are provided in Table II. As can
be seen, all tested frameworks are vulnerable to SOAPAction
spoofing. Apache Axis2 and .NET WS got the maximum
rating, as the Web Service always executes the operation
defined in the SOAPAction header (3/3). JBossWS native and
JBossWS CXF do it vice versa: They execute the operation
defined in the SOAP body element, ignoring the SOAPAction
header (2/3). We decided to identify this behavior also as a
vulnerability as the Web Service could be compromised if it
would be put behind an HTTP firewall validating SOAPAction
headers.

For WS-Addressing, the only framework vulnerable for this
attack in this setup is Apache Axis2. The rating for this
attack is analoge to the WS-Addressing methods described in
Section III-C: One point if the Web Service accepts any host
for the replyTo method. Two points if the faultTo method
works, because generating SOAP Faults, e.g. by sending an
empty SOAP body, is much easier. This is what Axis2 does.
Three points if the to method is accepted, which means that
any response, valid or invalid, is sent to the specified host.

An exemplary attack result presenting the vulnerable
Apache Axis2 framework is depicted in Figure 5. Later
evaluation showed that this framework is vulnerable to SOAP-
Action spoofing even if XML Signature is applied. Thus, the
adversary could execute arbitrary function on a secured server
being in possession of a single validly signed document. The
only prerequisite is the equal number of parameters in the
original and the malicious operation.

VII. CONCLUSION

In this paper we presented the penetration testing tool for
Web Services called WS-Attacker. We showed our design deci-
sions, which enabled to construct a general framework extensi-
ble with Web Service specific attack plugins. Evaluation of the
implemented plugins – for SOAPAction and WS-Addressing
spoofing – was executed using four widely deployed Web
Services frameworks. The results proved feasibility of our
approach.

The future work will cover a large number of other Web
Service specific attacks, which bring additional design and
implementation challenges. We mention e.g. Denial of Service
and XML Signature Wrapping attacks, or attacks on XML

Fig. 5. Exemplary result window after penetration test execution on the Apache Axis2 framework.

Encryption. Additionally, an extension of our framework can
be seen in the direction of Single Sign-On, which is typically
realized using the XML-based SAML specification.

We hope that usage of WS-Attacker will force the devel-
opers to harden their services and make the area of secure
Web Services more attractive and accessible also for smaller
companies.

ACKNOWLEDGEMENTS

This work was sponsored by the XSpRES project funded by
the Federal Office for Information Security in Germany (BSI)
under the contract number 882/2010.

The authors would like to thank Meiko Jensen for many
fruitful discussions and his valuable input.

REFERENCES

[1] N. Gruschka and L. Lo Iacono, “Vulnerable Cloud: SOAP Message
Security Validation Revisited,” in ICWS ’09: Proceedings of the IEEE
International Conference on Web Services. Los Angeles, USA: IEEE,
2009.

[2] J. Somorovsky, M. Heiderich, M. Jensen, J. Schwenk, N. Gruschka, and
L. L. Iacono, “All Your Clouds are Belong to us – Security Analysis of
Cloud Management Interfaces,” in The ACM Cloud Computing Security
Workshop (CCSW), Oct. 2011.

[3] T. Jager and J. Somorovsky, “How To Break XML Encryption,” in
The 18th ACM Conference on Computer and Communications Security
(CCS), Oct. 2011.

[4] M. Gudgin, M. Hadley, N. Mendelsohn, J.-J. Moreau, H. F. Nielsen,
A. Karmarkar, and Y. Lafon, “Soap version 1.2 part 1: Messaging
framework (second edition),” Tech. Rep., April 2007. [Online].
Available: http://www.w3.org/TR/soap12-part1/

[5] J. J. Moreau, R. Chinnici, A. Ryman, and S. Weerawarana, “Web ser-
vices description language (WSDL) version 2.0 part 1: Core language,”
W3C, Candidate Recommendation, March 2006.

[6] C. M. Sperberg-McQueen, H. S. Thompson, M. Maloney, H. S.
Thompson, D. Beech, N. Mendelsohn, and S. S. Gao, “W3C xml
schema definition language (XSD) 1.1 part 1: Structures,” W3C, Last
Call WD, Dec. 2009. [Online]. Available: http://www.w3.org/TR/2009/
WD-xmlschema11-1-20091203/

[7] A. Nadalin, C. Kaler, R. Monzillo, and P. Hallam-Baker, “Web Services
Security: SOAP Message Security 1.1 (WS-Security 2004),” OASIS
Standard, 2006.

[8] C. Kaler and A. Nadalin, “Web Services Security Policy Language (WS-
SecurityPolicy) 1.1,” 2005.

[9] S. Cantor, J. Kemp, R. Philpott, and E. Maler, “Assertions and Protocol
for the OASIS Security Assertion Markup Language (SAML) V2.0,”
OASIS Standard, 15.03.2005, 2005, http://docs.oasis-open.org/security/
saml/v2.0/saml-core-2.0-os.pdf.

[10] T. Moses, “eXtensible Access Control Markup Language (XACML)
Version 2.0,” OASIS Standard, 2005.

[11] M. Jensen, N. Gruschka, and R. Herkenhöner, “A survey of attacks on
web services,” Computer Science - R&D, vol. 24, no. 4, pp. 185–197,
2009.

[12] M. McIntosh and P. Austel, “XML signature element wrapping attacks
and countermeasures,” in SWS ’05: Proceedings of the 2005 Workshop
on Secure Web Services. New York, NY, USA: ACM Press, 2005, pp.
20–27.

[13] J. Somorovsky, A. Mayer, J. Schwenk, M. Kampmann, and M. Jensen,
“On breaking saml: Be whoever you want to be,” in Submission.

[14] J. Somorovsky and J. Schwenk, “Technical Analysis of Countermeasures
against Attack on XML Encryption – or – Just Another Motivation
for Authenticated Encryption,” in Submission, http://www.w3.org/2008/
xmlsec/papers/xmlEncCountermeasuresW3C.pdf .

[15] T. Bray, J. Paoli, E. Maler, F. Yergeau, and C. M. Sperberg-
McQueen, “Extensible markup language (XML) 1.0 (fifth edition),”
W3C, W3C Recommendation, Nov. 2008. [Online]. Available:
http://www.w3.org/TR/2008/REC-xml-20081126/

[16] D. Eastlake, J. Reagle, T. Imamura, B. Dillaway, and E. Simon, “XML
Encryption Syntax and Processing,” W3C Recommendation, 2002.

[17] D. Eastlake, J. Reagle, D. Solo, F. Hirsch, and T. Roessler, “XML Signa-
ture Syntax and Processing (Second Edition),” W3C Recommendation,
2008.

[18] D. Box, E. Christensen, F. Curbera, D. Ferguson, J. Frey, M. Hadley,
C. Kaler, D. Langworthy, F. Leymann, B. Lovering, S. Lucco, S. Millet,
N. Mukhi, M. Nottingham, D. Orchard, J. Shewchuk, E. Sindambiwe,
T. Storey, S. Weerawarana, and S. Winkler, “Web Services Addressing
(WS-Addressing),” W3C, Tech. Rep., August 2004. [Online]. Available:
http://www.w3.org/Submission/ws-addressing/

[19] T. Dierks and C. Allen, “The TLS Protocol Version 1.0,” RFC 2246
(Proposed Standard), Internet Engineering Task Force, Jan. 1999,
obsoleted by RFC 4346, updated by RFCs 3546, 5746. [Online].
Available: http://www.ietf.org/rfc/rfc2246.txt

[20] E. Hewitt, Java SOA Cookbook. O’Reilly Media, Inc., 2009.

