
Not so Smart: On Smart TV Apps

Marcus Niemietz, Juraj Somorovsky, Christian Mainka, Jörg Schwenk
Horst Görtz Institute for IT-Security
Ruhr-University Bochum, Germany

{firstname.lastname}@rub.de

Abstract—One of the main characteristics of Smart TVs
are apps. Apps extend the Smart TV behavior with various
functionalities, ranging from usage of social networks or payed
streaming services, to buying articles on Ebay. These actions
demand usage of critical data like authentication tokens and
passwords, and thus raise a question on new attack scenarios
and general security of Smart TV apps.

In this paper, we investigate attack models for Smart TVs
and their apps, and systematically analyze security of Smart TV
devices. We point out that some popular apps, including Face-
book, Ebay or Watchever, send login data over unencrypted
channels. Even worse, we show that an arbitrary app installed
on devices of the market share leader Samsung can gain
access to the credentials of a Samsung Single Sign-On account.
Therefore, such an app can hijack a complete user account
including all his devices like smartphones and tablets connected
with it. Based on our findings, we provide recommendations
that are of general importance and applicable to areas beyond
Smart TVs.

Keywords-Internet of Things; Smart TV; App; Single Sign-
On; OAuth; TLS; File System; XXE; XHR; Privacy; Samsung

I. INTRODUCTION

Only some years ago, a television (TV) was a medium
to watch news, broadcasts, documentaries, or blockbusters.
This behavior has changed with the vision of Internet of
Things: devices are connected via the Internet to achieve a
more comfortable and better life for people. So-called smart
devices collect your calender appointments, weather-forecast
information, Email, and Facebook messages. Legacy per-
sonal computers are less frequently used, because a lot of
daily tasks can be accomplished using a smartphone, tablet,
or smartwatch. Even the traditional TV has changed: Smart
TVs are devices that combine a TV with a computer that is
connected to the Internet. In some cases, this computer is
integrated into the TV, in other cases one can extend a TV to
a Smart TV by using digital media streamer like Google’s
Chromecast or Amazon’s Fire TV. According to Strategy
Analytics, there were close to 580 million Smart TV devices
by the end of 2014 [1]. Gartner’s 2014 consumer survey
pointed out that almost 25 percent of U.S. and 32 percent
of German households have a Smart TV [2]. Furthermore,
Gartner forecasts that 87 percent of the shipped TVs will be
Smart TVs in 2018. These data illustrate that such devices
are attractive for attackers due to their distribution and way
of connection.

Smart TV Apps. An important feature of a Smart TV are
applications, which are also known as apps. Similarly to
apps used on smartphones, Smart TVs come usually with
some pre-installed apps. Further apps can be installed using
Smart TV app stores or, in some cases, users can develop
their own apps and install them directly from a USB flash
drive.

The apps allow Smart TV users for using social networks
like Facebook, streaming services like Netflix or Watchever,
playing games like Angry Birds, or browsing common web-
sites. Consequently, many of the apps operate with critical
data such as login credentials or Single Sign-On (SSO)
access tokens. In case an attacker can access these tokens,
he is able to impersonate Smart TV users and access their
confidential data. This raises several questions regarding
Smart TV apps and their security.

Contribution. In this paper, we present a security case study
on Smart TV apps. We first analyze different attack models.
Based on these models, we analyze attack possibilities,
which are new in the context of Smart TVs, but of general
importance for apps used in similar scenarios. Afterwards,
we evaluate these attacks using real Smart TV devices:

• We show that even trivial security mechanisms, like
encryption with TLS, are not used by some Smart TV
apps during the login procedures. In this relation, we
discovered critical security vulnerabilities and privacy
violations.

• On the example of the Smart TV market share leader
Samsung, we show that Smart TV apps can be used to
automatically get full file system read access. There-
fore, we were able to steal all of the TV’s saved data
including SSO usernames and passwords.

• Furthermore, we detected many critical vulnerabilities
by just starting an app created by the attacker. To name
some examples, we were able to steal Wi-Fi passwords,
SSO data, and secret OAuth credentials. To exploit
these vulnerabilities, we inter alia bypassed Samsung’s
app browser engine restrictions and took advantage
of incorrectly implemented system features like XML
parsing procedures.

• We show that the exploitation of one TV can lead
to impersonation attacks on millions of other TVs by
stealing hard-coded OAuth credentials. More precisely,

we could extract OAuth credentials for Samsung, Ebay,
and Facebook apps on our Samsung device. These
credentials have to be kept private since they are used to
authenticate the apps, and are shared amongst millions
of other Samsung TVs.

Attack Generalization. Even though our attacks are used
to gain credentials and other confidential data from Smart
TVs and their apps, our attacker model and analysis strategy
can be applied to different scenarios beyond Smart TVs as
well, where the devices meet the following prerequisites:

• Connection to the Internet
• App rendering engines from a browser
• Installed attacker’s app from an app store or via an

attached storage device
This includes cars with technologies like BMW Con-

nected Drive to use Twitter or Facebook directly from
the board computer.1 Nowadays, even glasses (e.g., Google
Glass) and smart watches have apps.
Responsible Disclosure. We informed the manufacturers
about the detected vulnerabilities to make Smart TV devices
more secure.

II. TESTED DEVICES

For our tests we picked five devices from two categories.
First, we chose two Smart TVs: Samsung UE22H5670 and
Grundig 42VLE922BL. Second, we chose devices that can
be used to provide a Smart TV functionality: Apple TV,
Google Chromecast, and Amazon Fire TV. All devices
were tested with their latest available software versions (see
Table I). We selected these devices for different reasons.
According to Strategy Analytics, Samsung is the Smart TV
market share leader with 25,4% in Q4’12 and 26,4% in
Q4’13 [3]. A manufacturer that is not listed in the TOP-5
market share list is Grundig and thus suitable as a Smart TV
manufacturer with devices that do not have a high market
share. Furthermore, digital media streamers like Apple TV,
Google Chromecast, and Amazon Fire “proved to be the
fastest growing device category” [1] in Q3 2013.

Manufacturer Device Version
Samsung UE22H5670 2606
Grundig 42VLE922BL J5GRMR
Apple TV 7.0.3
Google Chromecast 27946
Amazon Fire TV 53.1.1.0

Table I
FIVE TESTED SMART TV DEVICES FROM DIFFERENT MANUFACTURERS.

A THOROUGH ANALYSIS WAS EXECUTED FOR THE HIGHLIGHTED
DEVICE OF THE MARKET SHARE LEADER SAMSUNG.

In our work, we first tested these five Smart TV models
for eavesdropping attacks and report on our findings in

1http://www.bmw.com/com/de/insights/technology/connecteddrive/2013/
index.html

Section V. Motivated by the results and by the importance
of Samsung in the segment of Smart TVs, we moved to a
thorough analysis of our Samsung device, which described
in Section VI.

III. ATTACKER

During our tests we used three types of attackers. Attacker
A is a sniffer who eavesdrops the devices connection to the
Internet. Attacker B is connecting an attached storage device
to the TV and has thus physical access to it. Attacker C
needs a victim who is visiting an attacker controlled page.
We tested all our Smart TV devices with attacker A, and
our Samsung Smart TV with attackers B and C.

A) Eavesdropper. This attacker is sniffing HTTP traffic by
eavesdropping the device’s connection. In our test setup, we
connected each device as well as our eavesdropping device
in an unencrypted Wi-Fi network.2

B) Attached Storage Attacker. The attacker connects an
attached storage device like a USB flash drive to the TV.
Applicable scenarios are freely accessible TVs in hotel
rooms or stores selling consumer electronics.

C) Malware Attacker. The attacker creates a malicious
app and uploads it to the Smart TV device’s app store or
attacker controlled website. The attack is executed if the
victim downloads or executes the attacker’s app on the
Smart TV device.

Attacker C requires a social engineering attack. The
attacker’s aim is that the victim executes the attacker’s app
by clicking on a link in a spam mail or inside an instant
messenger. If the victim is not installing the attacker’s app
directly from the app store, the downloaded app has to
be copied on a storage device. This storage device must
be afterwards connected with the TV. The attacker’s app
can for example be a simple calculator in the foreground;
in the background, attacker’s code is executed. For legal
reasons, we did not verify whether it is possible to provide
a malicious app on, for example, Samsung’s app store.
However, providing such apps seems to be achievable due
to our analyzed privacy violating app VEVO described in
Section V-B.

IV. FOUNDATIONS

In the following, we present security topics relevant to our
paper. Readers familiar with these topics can safely skip this
section.

Transport Layer Security (TLS). TLS [4] is the most
important security protocol on the Internet. It is located
between the transport layer and the application layer in

2For eavesdropping attacks, we used OS X 10 with the integrated W-
LAN sniffer and Wireshark.

http://www.bmw.com/com/de/insights/technology/connecteddrive/2013/index.html
http://www.bmw.com/com/de/insights/technology/connecteddrive/2013/index.html

the TCP/IP reference model. Its main purpose is to pro-
tect integrity, authenticity and confidentiality in application
protocols like HTTP or IMAP, so that these protocols can
securely send critical data like passwords or cookies over
insecure networks.

We are not going to analyze the TLS protocol structure.
For our paper, it is important to know that confidential
and security critical data must always be sent over TLS.
Otherwise, an attacker with eavesdropping capabilities can
see the transmitted data in plaintext.
XML and XXE. eXtensible Markup Language (XML) is a
W3C data format [5]. It is used for transmission, validation
and interpretation of data in different applications ranging
from web services and office applications, to configuration
files used in various servers and appliances. The huge
number of application scenarios adapting XML technology
resulted in a huge number of extension specifications al-
lowing to define schemas for XML documents or to apply
cryptographic primitives directly on the XML level. In the
following, we introduce a standard called Document Type
Definition (DTD), which is necessary for further attack
descriptions.

DTD allows for declaration of new XML building blocks
in the prolog of an XML document. These building blocks
are called XML entities. XML entities are inserted into
the XML document and resolved during XML document
parsing. There are two types of XML entities: internal and
external, see Listing 1 with a DTD declaration.

1 <!DOCTYPE config [
2 <!ENTITY title "Configuration file">
3 <!ENTITY ext SYSTEM "file:///text.txt">
4]>
5 <config>
6 <title>&title;</title>
7 <detail>&ext;</detail>
8 </config>

Listing 1. An XML document containing a DTD declaration with an
internal and external entity.

When an XML parser processes such a document, it first
reads the entities in the XML prolog. Afterwards, it resolves
all the entity occurrences in the document: &title; is
replaced with a text Configuration file and &ext;
is replaced with the content of the file:///text.txt
file.

Resolving external entities can become very dangerous if
an attacker controls content of processed XML files. This is
the case in many applications, for example web services. If
the attacked XML parser resolves external entities, the at-
tacker can force the parser to read arbitrary system files and
send them over the network. These attacks are referenced as
eXternal XML Entity (XXE) attacks [6].
Delegated Authorization: OAuth. OAuth is a framework
for delegated authorization. In contrast to Single Sign-On

Systems like OpenID [7] and SAML [8], the idea of OAuth
is not to log in the user into an application, but to grant
access rights on specific resources to it. In most cases,
the application, referred to as the OAuth Client, is only
authorized to access a subset of resources owned by the
user. There are some variants of OAuth: OpenID Connect
and Facebook Connect. Both are based on OAuth and for
simplicity, we do not distinguish between these three and
refer them by using the term OAuth.

RO UA OAuth Client Auth. Server Res. Server

(1.) visit

(2.) redirect:
client id = C, scope = {a, b, c}

(3.) Do you want to allow C to access ressources {a, b, c} ?

(4.) Yes, I allow C to access ressources {a, b, c}

(5.) code = 123

(6.) code = 123

(7.) client id = C, client secret = abc, code = 123

(8.) token = 987

(9.) Give me ressource a, token = 987

(10.) Ressource: a

Figure 1. OAuth workflow simplyfied.

The basic OAuth protocol flow is depicted in Figure 1
and works as follows: A resource owner visits the website
belonging to the OAuth client. Then, the client redirects
the resource owner’s user agent (UA, the browser) to the
authorization server, for example to Facebook. The resource
owner is asked to confirm that the OAuth client is allowed
to access some resources. If the resource owner accepts, a
so-called access code is given to him.3 Next, the resource
owner sends the code to the OAuth client. This can happen
either by an HTTP redirect or by letting the resource owner
entering it manually. Finally, the OAuth client can submit the
access code to the authorization server to receive the access
token. The access token is then submitted to a resource
server in order to receive its resources. Generally spoken, the
access token is comparable to a session cookie identifying
the resource owner, but with restricted access rights.

Noteworthy is the fact that the security of OAuth is highly
bound to the use of TLS. If either the access code (Steps
5 and 6) or the access token (Step 8 and 9) is transferred
unprotected, an eavesdropping attacker can use it to access
the same resources as the OAuth client. Furthermore, the
OAuth client uses the credentials (client id, client secret)
in Step 7 to authenticate itself against the authorization
server, and therefore it is also of high interest for an attacker.
UI Redressing. UI redressing is a technique to hijack
the victim’s actions like clicks and keystrokes. Introduced
in 2008, Hansen and Grossman showed with clickjacking
that iframe elements can be used to give the attacker

3For the sake of simplicity, we do not consider other OAuth flows, for
example implicit grant.

access to the victim’s camera and microphone by using
ordinary HTML and CSS code [9], [10]. The crucial point
of their attack was that a victim is clicking on an attacker’s
controlled web page and that these clicks will be actually
used to click on an invisible iframe element loading the
target web page (e.g., macromedia.com).

V. EAVESDROPPING ATTACKS

Eavesdropping attacks are well-known and a useful start-
ing point for security reviews. Due to the high number
of Smart TV devices it is interesting to know, whether an
application can leak data if the user’s connection is getting
eavesdropped. Therefore, we analyzed apps from all five
devices. First, we identified apps using security critical data
such as login data or SSO tokens. Then, we checked whether
the data is sent securely over an encrypted channel or not.
Section V-A underlines that eavesdropping attacks are still
a serious problem. On top of that Section V-B discloses
a critical privacy violation and also a way to steal highly
sensitive SSO data.

A. TLS Adoption

Each of our five tested devices was analyzed by looking
at the HTTP traffic of their apps.4 Table II shows the total
number of apps, the number of apps with a login option
(form, PIN, OAuth), and whether these login credentials
were submitted in cleartext via HTTP. Our attacker A has in
such a case the possibility to hijack login credentials if he
eavesdrops the victim’s unencrypted connection and if one
of the vulnerable apps is used by the victim at the same
time.

Manufacturer Apps Login Unencrypted
Samsung 56 16 4
Grundig 34 7 3
Apple 28 17 1
Google 10 – 0
Amazon 20 4 0

Table II
WE ANALYZED THE OVERALL NUMBER OF APPS AND APPS USING

LOGIN CREDENTIALS IN THE PROVIDED SMART TVS. AFTERWARDS,
WE ANALYZED WHETHER THE APPS WITH LOGIN CREDENTIALS SEND

THE LOGIN TOKENS UNENCRYPTED.

In the case of Samsung we picked the 25 pre-installed
apps and the TOP-5 most popular apps from each of the
seven available app store categories. Three apps from the
app store set were in at least more than two categories and
one app had a black screen. Therefore, we tested 31 different
apps from the app store and the 25 pre-installed apps (56 in
total). Two apps of the 25 pre-installed apps (WATCHEVER
v2.200, ImmoScout24 v1.010) and two of the 31 app store

4Our testbed was in Germany. For this reason, some of our tested apps
are only available for the German market.

apps (NewMoove v2.2003, Putpat TV v2.504) did not
encrypt their login data via TLS. Furthermore, we have
detected a critical privacy violation and information leakage
channel discussed in Section V-B.

Grundig does not provide arbitrary developers a possi-
bility to write new apps as is the case in Samsung Smart
TVs. All the Grundig apps are developed by a company
called Arcelikapps.5 We could find altogether 34 apps in the
Grundig app store. Seven apps used login credentials. Three
out of these apps sent the login credentials unencrypted:
Facebook, Ebay, and Viewster. The Facebook and Ebay apps
used OAuth, and we were able to follow an unencrypted
login procedure containing OAuth access tokens in plaintext.
We analyze these problems closer in Section V-C. The
Viewster app used a simple password login.

Apple TV does not provide any app store so that we
tested all of its 28 pre-installed apps. Just one app out of
28 apps did not encrypt its connection during the log in
process (WATCHEVER).6 This app is also contained in our
Samsung Smart TV app set.

Google Chromecast does not have apps in a way like
Samsung or Apple. Apps are triggered and controlled by
smartphones, tablets, or laptops. Therefore, a device like a
smartphone can be used as a remote controller. However, we
tested five apps by using the pre-installed Google Chrome
with the extension Google Cast. To name one example, we
opened YouTube on the TV. We did this by clicking on the
TV button of YouTube’s web page shown in our laptop’s
Chrome browser. We could not find any login information
because the data were always transmitted over encrypted
connections.

Amazon’s Fire TV does not have pre-installed apps but
it offers an app store. We installed the 20 most popular
free apps. Four of them are handling login data and all
connections were encrypted.

B. Privacy Violation and SSO Hijacking

During our tests we analyzed the HTTP traffic initiated by
the app VEVO (v3.701) on our Samsung Smart TV. Please
note that VEVO was also in our Apple TV testbed. However,
in the case of Apple TV the HTTP connection was encrypted
and we were not able to reproduce our Samsung results on
this device. VEVO can be used to watch music videos, artist
videos, and original shows on the user’s TV. During our
analysis of the login procedure we have discovered HTTP
GET requests going to scorecardresearch.com (cf. Figure 2).
This website is a service from a market research company,
primary analyzing surveys and web tagging data.

http://b.scorecardresearch.com/p?...&
ns_jspageurl=file:///mtd_down/widgets

5http://arcelikapps.com/
6We could not identify the version number of WATCHEVER. However,

the app was tested with its newest version on 28/03/2015.

scorecardresearch.com
http://arcelikapps.com/

/normal/111399001425/index.html?
country=DE&language=17&lang=en-GB&
modelid=14_X14_2D&server=operation&
remocon=0_650_259_22&area=PANEURO&
product=0&mgrver=6.1571&ssoid=
USERNAME&ssopw=PASSWORD...

Listing 2. With dots truncated HTTP GET request initiated by the VEVO
app.

Figure 2. In the case of VEVO’s Samsung Smart TV app, the user’s
Samsung SSO data was transmitted in cleartext to an advertiser.

The requests going to this website contain inter alia
the following data: Video artist, video player information,
current video channel, user identifier, and Samsung SSO
username including its password (cf. Listing 2).

Please note that these requests are transmitted regularly
to provide information like the currently watched video.
The crucial point is that the credentials of the user’s Sam-
sung SSO account are submitted unencrypted via HTTP.7

Therefore we have at least two attack scenarios. First, the
marketing company is able to login with the user’s Samsung
SSO account and thus they could have access to all provided
services. Second, an eavesdropper could sniff the connection
and steal the SSO account’s data.

We evaluated the impact of this issue: By using the SSO
login data, we could visit Samsung’s configuration website8

and got access to the following services:
• Samsung GALAXY Apps (download applications)
• Find My Mobile (manage missing devices)
• MILK (radio streaming service)
• PEN.UP (social network)
• S Health (e.g., fitness and health management)
• Samsung Wallet (e.g., tickets and coupons)

7We require that the victim is logged in with its account. This is a
convenient way to not type in credentials for different services and apps.

8https://account.samsung.com

Furthermore, the attacker has access to Samsung Cloud
services that can be used to store files from the TV, PC, or
mobile phone. Additional services can exist depending on
the country of which the user comes from. All in all, the
attacker has access to data across devices that are linked
with the Samsung SSO account.

As a critical side effect and privacy violation, the market
research company and also the attacker can clearly identify
the user.

C. Unencrypted Facebook and Ebay OAuth Tokens

Facebook and Ebay apps for Grundig Smart TVs use
OAuth to gain access tokens for web services and receive
user’s data. As mentioned above, these tokens are transmit-
ted unencrypted, over HTTP. In the following, we give a
summary on the login procedure with the Facebook app. A
similar workflow is established with the Ebay app.

When the user installs the Facebook app, the app requests
him to use his browser and visits http://tv.grundig.com/fb.
This initiates an OAuth authorization procedure: the user
is forwarded to facebook.com and is asked to authorize
the Grunding app to access Facebook resources. Then, he
receives a nine digit access code. The nine digit code can be
supplied to the Grundig app. After inserting the code into the
app, the app invokes the following address: http://tv.grundig.
com/fb/getToken.php?code=[code]. It is then redirected to
http://grundigapps.com and receives an OAuth token. The
token is stored locally on the Smart TV app and is used for
further communication with Facebook. An example of such
a token is depicted in Listing 3.

1 {
2 ” a c c e s s t o k e n ” : ”CAABuxhx . . . ” ,
3 ” e x t e n d t o k e n ” : ” t r u e ”
4 }

Listing 3. An OAuth token example used for access Facebook resources.
The token has no expiration date.

This token can be used to access Facebook resources,
view friends and photos, or post on the timeline. These
capabilities are also gained by an attacker, who eavesdrops
the OAuth token. This is possible since the whole commu-
nication is executed over an unencrypted channel.

In case of the Ebay app, the app authorization procedure
is conducted over an encrypted TLS channel. However, the
resulting OAuth access token is finally transmitted over an
unencrypted channel. Thus, attacker A can similarly gain an
OAuth access token and access Ebay resources.

VI. SAMSUNG: ATTACHED STORAGE
AND WEB ATTACKS

Our findings in Section V point out that Samsung has a
high number of apps with unencrypted connections and at
least one app with a massive privacy violation and SSO
account hijacking possibility. Combined with the leading

https://account.samsung.com
http://tv.grundig.com/fb
facebook.com
http://tv.grundig.com/fb/getToken.php?code=[code]
http://tv.grundig.com/fb/getToken.php?code=[code]
http://grundigapps.com

market share situation, this motivated us for an in-depth anal-
ysis of our Samsung Smart TV device and its vulnerabilities
to the attached storage and web attacks.

While executing these attacks, the attacker first creates
an app and then installs it on victim’s Smart TV. He
can achieve this either by using a USB drive (Attacker
B) or Samsung’s app store (Attacker C). Obviously the
malicious app can cause damage or affect user’s sensitive
data. For example, it can use the web API to control TV
and audio channels, turn on camera, connect to the Internet,
or execute arbitrary functions.9 However, we are going to
analyze how a malicious app can harm the whole Smart TV
system, and what functions it can execute beyond the web
API. This is also motivated by Samsung’s advertisements
on their developer page saying that their Smart TVs have
security modules to protect users against malicious apps.10

We could not find any documentation on these modules,
but we verified that HTML elements are restricted, e.g. the
iframe element which is often used for UI redressing
attacks.

Motivated by the attacks described in Section V-B, we
start this section with a search for possible reasons why the
VEVO app sends Samsung SSO token to further web sites:
We found out, the reason was the Document Object Model
(DOM) saving Samsung’s SSO credentials in objects like
document.location. Afterwards, we analyze possibil-
ities to access the whole Smart TV file system. At the end,
we give an example how to access secret data using an XXE
attack.

A. Web Attacks

Stealing SSO Data. Samsung Smart TV apps are built
of HTML, Cascading Style Sheets (CSS), and can contain
scripts, for example, JavaScript. Thus the developer of
an app is allowed to access the DOM for using objects
like document.title. If the user is logged in with his
Samsung SSO account on his TV, an attacker could steal
the user’s account if one requirement is fulfilled: The user
has to open the attacker’s application. If this is the case,
the malicious app can use the DOM with document.
location to steal the victim’s credentials.

An example for a document.location output is
shown in Listing 4. It starts with the given protocol handler
file:// followed by the path of our USB flash drive. The
app with the name SSO was executed on 09/03/2015 and the
site executing the JavaScript code is index.html. Next to
information like the country code and model number there
is given the SSO identifier and password.

file:///dtv/usb/sda1/SSO6_0.100_Europe_
20150309/index.html?country=DE&...

9Web API, Samsung, http://developer.samsung.com/web-api, May 2015
10TV Apps Security, Samsung, http://www.samsungdforum.com/Support/

TVAppsSecurity, May 2015

ssoid=USERNAME&ssopw=PASSWORD&...&
realmodel=UE22H56000&...

Listing 4. With dots truncated document.location from an app
loaded through a flash drive.

By implementing a code as shown in Listing 5, the
attacker could steal these user credentials. The app requests a
not existing file from attackers.org consisting of the Base64
encoded URL from document.location. Due to this
code, the attacker and owner of attackers.org just has to
check the error logs and decode the Base64 string to retrieve
the user data.

1 <script>
2 document.write(
3 ’<img src="http://www.attackers.org/’+

btoa(document.location)+’">’
4);
5 </script>

Listing 5. Attacker’s code stealing the user’s SSO login data by just letting
the victim open the attacker’s app.

Web Attacks and UI Redressing. By looking on the user
agent, we analyzed that two different browser engines are
used. We analyzed the features of both browser engines and
it turned out that OWASP TOP-10 attacks can be carried
out in the web and app browser engine.11 By looking on
the additional risks listed in the OWASP TOP-10 sheet, we
discovered restrictions for clickjacking attacks. Samsung’s
app browser does not show <iframe> elements. We by-
passed this restriction by using the <object> element with
the media type text/html (cf. Listing 6). This bypass
turned out to be very important and it will be discussed in
Section VI-B.

1 <object type="text/html"
2 data="http://www.example.org"
3 style="width:100%; height:100%">

Listing 6. Our truncated source code of the UI redressing attack bypassing
the iframe element restriction.

B. File System Access

File Browser. A desired goal while analyzing the Samsung
TV was to get file system access. As the TV is not shipped
with a file browser and the included Media browser is only
capable to see the content of, for example, Image/Video/Au-
dio files on an attached flash drive, we had to build one on
our own. To implement it, we could just rely on standard
HTML, CSS, and JavaScript features. Due to the restricting
of not being allowed to use the <iframe> element, we had
to circumvent this restriction. As mentioned in Section VI-A,
we found a bypass by using the HTML <object> element
as a replacement for it. We used the <object data="
file:///"> tag to create a simple file browser app. Note

11TOP-10, OWASP, https://www.owasp.org/index.php/Category:
OWASP Top Ten Project, May 2015

http://developer.samsung.com/web-api
http://www.samsungdforum.com/Support/TVAppsSecurity
http://www.samsungdforum.com/Support/TVAppsSecurity
attackers.org
attackers.org
https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project

that commonly <iframe> and <object> elements are
intended to use the http:// protocol, but by using the
protocol file:// and adding a third slash, we were able
to see the content of the TV’s root directory. Figure 3 shows
that we were able to reload the attacker’s app, type in a path
and optionally a filename, and load the typed in data inside
the <object> element. We were also able to send contents
of the selected files via an XMLHttpRequest (XHR) to the
attacker’s server.

Typically, files can be easily accessed by using a pointing
device like a mouse. Due to the reason that some keyboards
are not supported or just supported in a limited way, we used
Virtual Keyboard in the input field.12 An interesting fact we
observed is that the underlying system seems to be a UNIX
system, but we were allowed to access all files (incl. system
files) on the TV without any restrictions.

Figure 3. Self-written file browser as an attacker’s app using the file
protocol.

XMLHttpRequest. Our file browser allowed us to read
arbitrary files and display them on the TV screen. We then
went one step further: We wanted to be able to download
arbitrary files for a better analysis. One way to do this
is to let the application use the XHR API. We read the
file using XHR, encoded it with Base64, and sent it to
our self-controlled server as GET requests. Because GET
requests are restricted in their length, we spitted the Base64
encoded file content and performed multiple GET requests
successively. We were able to download all files of the
file system and we integrated this functionality in our file
browser app. It can be triggered by clicking on the XHR
button (see Figure 3). However, an attacker could also define
the file to download directly by typing in the path and
filename into the address bar of our file browser. Please
note that an application of the attacker has to be opened
to execute this attack.
XML External Entity. Another possibility to download files
automatically from the Smart TV is by using XXE attacks.

12Virtual Keyboard, Rob Garrison, http://mottie.github.io/Keyboard/

We will elucidate this approach in the following section.

C. Reading Samsung TV’s Sensitive Data

By using our file access mechanisms, we were able to steal
sensitive data which should be unaccesable by the attacker.
Our findings include:

• Wi-Fi data (incl. passwords)
• App and Web browser cookies, local storage
• Browser history
• Common user inputs (incl. typed in passwords)
• Samsung SSO username
• Samsung’s Samsung and Facebook credentials
Wi-Fi data are saved in cleartext so that we were able

to read out the hotspot’s name and also its password by
accessing one file. As it is in the case of Wi-Fi data, cookies
can be read out and thus the attacker has the possibility
to hijack them. The app Zattoo saves the user’s credentials
(username/password) inside the app’s local storage file. As
it is on Desktop systems, the user’s browser history can be
read out.

A critical security risk was spotted out by analyzing a file
called UDBCOMMON. It saves frequently entered user data.
This included in our case terms like www and google, but
also our Samsung’s SSO as well as Facebook’s username
and password. Please note that the user’s username of his
Samsung account is in contrast to the password always saved
on the TV. Thus, the user has to type in his password every
time he is logged out. Last but not least, we have analyzed
apps saved in a widgets folder. This folder contains SSO
procedures with several keys in a static JavaScript file, in-
cluding Samsung’s and Facebook’s API-key and API-secret
for OAuth. This allows us to, for example, impersonate
Samsung’s Facebook app. Such an impersonation attack can
be used to steal user data and to write postings on the user’s
board.

Attack Example: Stealing Data With XXE. In the fol-
lowing we show how to automatically read out data on the
TV. We steal the user’s Samsung SSO username by just
connecting a USB flash drive with the TV – no more user
interaction is required. Though we go into detail regarding
attacker B, please note that attacker C could also do this
attack.

Imagine the following scenario: The attacker has a USB
flash drive with a self-created Samsung Smart TV app con-
taining the code given in Listings 7 and 8. After connecting
his USB flash drive with the TV, the attacker checks the
logfile on the attacker’s server. The logfile shows the SSO
account saved on the Smart TV. Please note that the attack
with the app works automatically, even every time when the
TV restarts.

In the first step, the TV is looking for apps on the USB
flash drive by checking for a config.xml file. In the case
that there is such a file, it will be parsed by the XML engine.

http://mottie.github.io/Keyboard/

The config.xml file usually saves information about the
app, for example the name, version, and author. In contrast
to a benign file, the attacker adds a reference to an external
parameter entity shown in Listing 7.13

1 <?xml version="1.0" encoding="UTF-8"?>
2 <!DOCTYPE roottag [
3 <!ENTITY % ext SYSTEM "file:///mtd_chmap

/operating_account.data">
4 <!ENTITY % dtd SYSTEM "file:///dtv/usb/

sda1/App_1_Europe_20150309/attacker.
xml">

5 %dtd;
6]>
7 <widget xmlns="http://www.samsung.com/">
8 <cpname>&send;</cpname>
9 ...

10 </widget>

Listing 7. Truncated config.xml file of the attacker’s app.

In the second step, the Samsung SSO username saved
in the file operating_account.data will be read
out to the parameter entity ext. To send this file to the
attacker, there is given attacker.xml (cf. Listing 8). This
file defines an external entity send, which is constructed
from the attacker’s URL attackers.org and the hijacked SSO
username. Finally, by resolving the &send; entity from
the config.xml, the Smart TV sends an HTTP request
to attackers.org containing the account data as a parameter
name.

1 <!ENTITY % all "<!ENTITY send SYSTEM ’
http://www.attackers.org/tv/?%ext
;’>">

2 %all;

Listing 8. Sending hijacked data to the attacker’s server.

Due to specific XML parser restrictions, we could only
read one line files. We assume that this behavior was caused
by a libxml parser used in the analyzed Samsung Smart TV.

VII. RELATED WORK

In this section we discuss and compare related work on
Smart-TVs, apps, and OAuth.
TOCTOU attacks. Mulliner et al. showed with a time-
of-check-to-time-of-use (TOCTOU) attack called “Read It
Twice!” on Samsung’s LE32B650T2-PXZG that software
installations can be exploited by emulating mass-storage
devices [11]. For their attack, they used a non-modified
software package or firmware upgrade with a valid software
signature during the Check process of the TV’s update
routine. After that they replaced their checked file with a

13External parameter entities have to be used to read a file content and
insert it in a further external entity in order to send it over the network,
see [6].

modified one. Due to the reason that the Install routine runs
with root privileges, their attack can be used to jailbreak the
TV and thus get access to file system data.

In this paper we are able to get access to the file system
without jailbreaking it. Our attacks do not rely on a valid
signature nor on a TOCTOU attack. We are able to auto-
matically hijack sensitive user data like the SSO account by
just connecting an attached storage device like a USB flash
drive. Moreover, the device can be attacked if the attacker
has physical access to the TV or if the victim is downloading
and executing the attacker’s app (e.g., from an app store).

HbbTV attacks. In the past there were discussed sev-
eral Hybrid Broadcast-Broadband Television (HbbTV) at-
tacks [12], [13], [14]. One attack with a high impact is from
Oren et al. They showed that broadcast streams providing
HTML, CSS, and JavaScript code can be used to attack
websites on the Internet [15]. In contrast to ordinary Same
Origin Policy restrictions, HbbTV data are in their own
origin and able to access websites. The authors used this
security issue by picking up a TV channel, adding malicious
HbbTV data to it, and sending it with a strong signal to the
victim. Thus, the victim’s TV rendered a malicious page
automatically by just requiring that the victim is viewing
the malicious TV channel.

While Oren et al. attacked targets on the Internet with the
help of TVs, we are attacking TVs to get their sensitive data.
They highlighted with different attack types that request
forgery and exploit distribution attacks are a high risk.
In our case, we can inter alia hijack critical data like
the victim’s SSO account and therefore we are able to
attack his whole account environment; this includes services
like digital wallets for saving payment data or health data
provided by fitness bracelets. Furthermore, we are able to
hijack secret Samsung and Facebook OAuth credentials,
which are implemented on several millions of devices.

Code Injection Attacks on HTML5 Apps. Jin et al. [16]
created a study regarding the risk of HTML5-based code
injection attacks on mobile apps. They underlined that these
apps have many data channels like barcode, SMS, WIFI,
Contact, and NFC, which can be used for code injection at-
tacks. As an example they created a malicious QR code with
payload containing geolocation data that are automatically
sent to the attacker’s server if the victim is reading this QR
code with a vulnerable app.

In contrast to Jin et al., we do not execute code injection
attacks through data channels relying on malicious user in-
puts provided by vulnerable apps. We use a USB flash drive
to execute our code directly and are therefore not limited to
data channels and vulnerable apps. Furthermore, we are able
to eavesdrop an unencrypted connection and hijack sensitive
information like login data. Jin et al. mentioned that the
Android file system can be used to store malicious code on
it. Please note that Android does not allow one application to

attackers.org
attackers.org

read data from another application.14 We are able to read out
the whole file system including data on internal and external
storages like cookie files, log files, or the USB flash drive
where the application is executed from.
OAuth. OAuth has been analyzed in different contexts. In
2011, Chatfield et al. published a widespread analysis of 96
popular websites acting as OAuth clients [17]. Their work
also includes eavesdropping of tokens and impersonation
of clients by using stolen or guessed SSO credentials. The
paper founds the basic structure for our analysis of OAuth.
At CCS 2014, Chen et al. expanded the analysis field of
OAuth to mobile apps [18]. Our analysis is a consequent
follow up by transferring the concepts of attacks on OAuth
to a new platform: Smart TVs. In contrast to mobile devices,
the app concepts for Smart TVs are relatively new, and, there
are more different app distribution systems (e.g., Samsung
and Grundig have their own stores) and apps are often built
up using HTML, CSS, and JavaScript only; for example, in
contrast to Android apps.

VIII. CONCLUSIONS & LESSONS LEARNED

Our work highlights that new technologies like Smart
TVs are a valuable target for attackers. We pointed out that
best practices like SSL/TLS are not used properly. Smart
TVs contain sensitive data that can even lead to a full SSO
account compromise revealing health, credit card, or cloud
data. Looking on the generality, apps are a crucial com-
ponent in the current technology market. Volkswagen has
announced that they offer connected-car features provided by
the Apple Watch app Car-Net.15 One of Car-Net’s features
is to remotely locking and unlocking doors.

Learning from the attacks described in this paper, the
Smart TV and app developers should consider the following
best practices:
SSL/TLS. Due to the high media focus on POODLE,
BEAST, and CRIME, we have expected that apps are
protected with TLS [19]. It was was surprising that some
apps like WATCHEVER do not even protect important
login procedures. In general, sensitive data should only be
submitted through an encrypted connection.
Saving Sensitive Data. Samsung is using OAuth for ac-
cessing resources. It is surprising that they save the user’s
SSO account in the Smart TV’s DOM. We expected that
they use the user’s credentials to get an OAuth token; this
token could be saved on the TV. Another example is the
UDBCOMMON file which saves common user inputs including
passwords. Saving user inputs might be useful in cases like
autocomplete features. However, this is critical in the case
of passwords. To sum it up, important sensitive data must
not be stored on the TV.

14Saving Files, Android, http://developer.android.com/training/basics/
data-storage/files.html, Apr. 2015

15http://media.vw.com/release/977/

File System Access. We were surprised by the fact, that
we could get full file system access on Samsung TVs. We
would have expected a sandboxing/chrooting mechanism on
a per-app basis comparable to Android or iOS apps. Even a
simple discretionary access control (DAC) is missing: Our
app is able to read all files, including system files, on the
TV. This flaw shows how important data separation is.

ACKNOWLEDGEMENTS

The research was supported by 3curity GmbH and the
German Ministry of research and Education (BMBF) as part
of the VERTRAG research project.

REFERENCES

[1] S. David Watkins, “Global connected tv device tracker: Q4
2014,” Online, http://is.gd/SIWJJx, March 2015.

[2] R. van der Meulen and J. Rivera, “Gartner predicts live video
broadcasting will be the new selfie by 2017,” Online, http:
//www.gartner.com/newsroom/id/2934717, December 2014.

[3] R. Briel, “Samsung global smart tv market share reaches
26%,” http://is.gd/Rsno0k, February 2014.

[4] T. Dierks and E. Rescorla, “RFC 5246 - The Transport Layer
Security (TLS) Protocol Version 1.2,” Tech. Rep., Aug.
2008. [Online]. Available: http://tools.ietf.org/html/rfc5246

[5] T. Bray, J. Paoli, C. M. Sperberg-McQueen, E. Maler,
and F. Yergeau. (2008, November) Extensible markup
language (xml) 1.0 (fifth edition). [Online]. Available:
http://www.w3.org/TR/REC-xml/

[6] T. D. Morgan and O. A. Ibrahim, “Xml schema, dtd,
and entity attacks: A compendium of known tech-
niques,” Online, http://www.vsecurity.com/download/papers/
XMLDTDEntityAttacks.pdf, 2014.

[7] specs@openid.net, “OpenID Authentication 2.0 – Final,”
Dec. 2007. [Online]. Available: https://openid.net/specs/
openid-authentication-2 0.html

[8] Organization for the Advancement of Structured Information
Standards, “Security assertion markup language (saml) v2.0,”
2005.

[9] R. Hansen and J. Grosmann, “Clickjacking,” Online, http:
//www.sectheory.com/clickjacking.htm, May 2015.

[10] L.-S. Huang, A. Moshchuk, H. J. Wang,
S. Schecter, and C. Jackson, “Clickjacking: Attacks
and defenses,” in Presented as part of the
21st USENIX Security Symposium (USENIX Security
12). Bellevue, WA: USENIX, 2012, pp. 413–
428. [Online]. Available: https://www.usenix.org/conference/
usenixsecurity12/technical-sessions/presentation/huang

[11] “Read it twice! a mass-storage-based tocttou attack,” in
Presented as part of the 6th USENIX Workshop on
Offensive Technologies. Berkeley, CA: USENIX, 2012.
[Online]. Available: https://www.usenix.org/conference/
woot12/workshop-program/presentation/Mulliner

http://developer.android.com/training/basics/data-storage/files.html
http://developer.android.com/training/basics/data-storage/files.html
http://media.vw.com/release/977/
http://is.gd/SIWJJx
http://www.gartner.com/newsroom/id/2934717
http://www.gartner.com/newsroom/id/2934717
http://is.gd/Rsno0k
http://tools.ietf.org/html/rfc5246
http://www.w3.org/TR/REC-xml/
http://www.vsecurity.com/download/papers/XMLDTDEntityAttacks.pdf
http://www.vsecurity.com/download/papers/XMLDTDEntityAttacks.pdf
https://openid.net/specs/openid-authentication-2_0.html
https://openid.net/specs/openid-authentication-2_0.html
http://www.sectheory.com/clickjacking.htm
http://www.sectheory.com/clickjacking.htm
https://www.usenix.org/conference/usenixsecurity12/technical-sessions/presentation/huang
https://www.usenix.org/conference/usenixsecurity12/technical-sessions/presentation/huang
https://www.usenix.org/conference/woot12/workshop-program/presentation/Mulliner
https://www.usenix.org/conference/woot12/workshop-program/presentation/Mulliner

[12] M. Herfurt, “Security issues with hybrid broadcast broadband
tv (hbbtv),” in 30th Chaos Communication Congress, 2013.

[13] ——, “Security concerns with hbbtv,” https://mherfurt.
wordpress.com/2013/06/01/security-concerns-with-hbbtv/,
June 2013.

[14] M. Ghiglieri, F. Oswald, and E. Tews, “Hbbtv - i know what
you are watching,” Online, May 2013.

[15] Y. Oren and A. D. Keromytis, “From the aether to the ether-
net—attacking the internet using broadcast digital television,”
in 23rd USENIX Security Symposium (USENIX Security 14).
San Diego, CA: USENIX Association, Aug. 2014, pp. 353–
368. [Online]. Available: https://www.usenix.org/conference/
usenixsecurity14/technical-sessions/presentation/oren

[16] X. Jin, X. Hu, K. Ying, W. Du, H. Yin, and G. N.
Peri, “Code injection attacks on html5-based mobile apps:
Characterization, detection and mitigation,” in Proceedings
of the 2014 ACM SIGSAC Conference on Computer
and Communications Security, ser. CCS ’14. New York,
NY, USA: ACM, 2014, pp. 66–77. [Online]. Available:
http://doi.acm.org/10.1145/2660267.2660275

[17] K. Chatfield, V. Lempitsky, A. Vedaldi, and A. Zisserman,
“The devil is in the details: an evaluation of recent
feature encoding methods,” 2011. [Online]. Available:
http://eprints.pascal-network.org/archive/00008315/

[18] E. Chen, Y. Pei, S. Chen, Y. Tian, R. Kotcher, and
P. Tague, “Oauth demystified for mobile application devel-
opers,” CCS14, 2014.

[19] C. Meyer and J. Schwenk, “Sok: Lessons learned from ssl/tls
attacks,” in Information Security Applications. Springer,
2014, pp. 189–209.

https://mherfurt.wordpress.com/2013/06/01/security-concerns-with-hbbtv/
https://mherfurt.wordpress.com/2013/06/01/security-concerns-with-hbbtv/
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/oren
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/oren
http://doi.acm.org/10.1145/2660267.2660275
http://eprints.pascal-network.org/archive/00008315/

	Introduction
	Tested Devices
	Attacker
	Foundations
	Eavesdropping Attacks
	TLS Adoption
	Privacy Violation and SSO Hijacking
	Unencrypted Facebook and Ebay OAuth Tokens

	Samsung: Attached Storage and Web Attacks
	Web Attacks
	File System Access
	Reading Samsung TV's Sensitive Data

	Related Work
	Conclusions & Lessons Learned
	References

