
Breaking PPTP VPNs via RADIUS Encryption

Matthias Horst, Martin Grothe, Tibor Jager, and Jörg Schwenk
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Abstract. We describe an efficient cross-protocol attack, which enables an at-
tacker to learn the VPN session key shared between a victim client and a VPN
endpoint. The attack recovers the key which is used to encrypt and authenticate
VPN traffic. It leverages a weakness of the RADIUS protocol executed between
a VPN endpoint and a RADIUS server, and allows an “insider” attacker to read
the VPN traffic of other users or to escalate its own privileges with significantly
smaller effort than previously known attacks on MS-CHAPv2.

1 Introduction

The Point-to-Point Tunneling (PPTP) protocol [5] implements a confidential and au-
thenticated virtual private network (VPN) tunnel in public computer networks like the
Internet. In this work, we analyze the security of PPTP using MS-CHAPv2 in combi-
nation with a RADIUS authentication server. This is a standard setting, which is used
in large-scale and enterprise networks, where RADIUS is used to centralize user man-
agement and to perform authentication for different applications. Large scale analysis
of public VPN service providers shows that over 60% of these still offer PPTP [14].

Contributions. We describe an efficient cross-protocol attack, which enables an attacker
to learn the VPN session key shared between a victim client and a VPN endpoint.
The attack recovers the key which is used to encrypt and authenticate VPN traffic,
usually with the Microsoft Point-to-Point Encryption (MPPE) [9] scheme. The attack
leverages a weakness of the RADIUS protocol executed between the VPN endpoint and
the RADIUS server.

VPN session establishment with RADIUS authentication. In order to be able to sketch
our attack, we first describe how a VPN session is established with RADIUS authenti-
cation. VPN session establishment with RADIUS involves three parties:

– The client which connects to the VPN endpoint. It shares a secret password with
the RADIUS server. The RADIUS server is used to authenticate the client (or the
user that uses this client). We assume that this password is a strong, high-entropy
password, such that a dictionary attack is infeasible.

– The VPN endpoint relies on the RADIUS server to authenticate users. It shares a
RADIUS secret S with the RADIUS server. We assume that S is a cryptographically
strong high-entropy key.
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Translation

GRE ↔ RADIUS

2: GRE(MS-CHAPv2 run) 2: RADIUS(MS-CHAPv2 run)

3: EncRADIUS(kMPPE)

4: GRE(MPPE encrypted VPN data)

Fig. 1. Protocol Overview

– The RADIUS server is a trusted party, which performs user authentication on be-
half of the VPN endpoint, using that it shares the password with the client and the
RADIUS secret S with the VPN endpoint.

Establishment of a VPN session works as follows (cf. Figure 1 for an overview, detailed
version Figure 4).

1. The client initiates a PPTP session with the VPN endpoint.
2. At the beginning of the PPTP session, it authenticates itself by running the MS-

CHAPv2 protocol. The VPN endpoint relays all MS-CHAPv2 messages between
the client and the RADIUS server. As a result of the MS-CHAPv2 protocol, client
and RADIUS server obtain a shared session key kMPPE for the connection be-
tween client and VPN endpoint. Additionally, the VPN endpoint transmits a ran-
dom nonce, called the Request Authenticator (ReqAuth) to the RADIUS server.

3. The RADIUS server uses the RADIUS secret S shared with the VPN endpoint to
encrypt and send kMPPE to the VPN endpoint. Here the so-called RADIUS encryp-
tion scheme EncRADIUS is used, which essentially computes a ciphertext EncRADIUS(kMPPE)
encrypting kMPPE as

EncRADIUS(kMPPE) = (Salt,MD5(S||ReqAuth||Salt)⊕ kMPPE)

where Salt is a short random 11 bit Salt and ReqAuth is the random nonce selected
in Step 2 by the VPN endpoint. (a full description of RADIUS encryption can be
found in subsection 2.3)

4. The VPN endpoint decrypts this message. Now the client and the VPN endpoint
share a session key kMPPE, which can be used to encrypt VPN payload data, using
the Microsoft Point-to-Point Encryption (MPPE) protocol.

High-level attack description. Our attack is based on the following observations about
RADIUS encryption as used in the setting described above.

– The “pseudorandom” value MD5(S||ReqAuth||Salt) used to encrypt kMPPE de-
pends deterministically on S, ReqAuth, and Salt.

– The same value of S is used to encrypt all ciphertexts sent from the RADIUS server
to the VPN endpoint.

– Salt has only 11 bits of entropy, therefore it is very likely that it is repeated in
different ciphertexts sent from the RADIUS server to the VPN endpoint.



– The ReqAuth is a random nonce with high entropy (128 bits), however, it is chosen
by the VPN endpoint and transmitted in plain and unauthenticated form from the
VPN endpoint to the server.

Our attack leverages these observations as follows. We consider a setting with an
attacker that meets the following two requirements:

– The attacker is able to monitor all data exchanged between the VPN endpoint and
the RADIUS server, and it is able to inject packets.

– The attacker is an “insider”, who is also able to establish VPN connections (but
possibly with lower permissions than other users), whose goal is to learn the session
key of another user.

This is a very practical setting in many applications of PPTP. We require the attacker to
perform only a very small amount of computations, which could even be performed on
a constrained device or a smartphone within a very short time (a few seconds). We also
sketch below how the assumption of an “insider” attacker can be removed.

1. While the victim initiates a VPN connection, the attacker observes all messages
exchanged between VPN endpoint and RADIUS server. In particular, it records
ReqAuth and EncRADIUS(kMPPE) = (Salt,MD5(S||ReqAuth||Salt)⊕ kMPPE).

2. The attacker also initiates a VPN session as an honest user1 and proceeds as fol-
lows:
(a) The attacker runs the MS-CHAPv2 protocol to establish a shared session key

k∗MPPE shared with the RADIUS server.
(b) When the VPN endpoint sends a random RADIUS Request authenticator Req∗Auth

to the RADIUS server, then the attacker replaces Req∗Auth with the previously
recorded value ReqAuth sent from the VPN endpoint.

(c) The RADIUS server will respond to the VPN endpoint with a RADIUS en-
cryption

EncRADIUS(k
∗
MPPE) = (Salt∗,MD5(S||ReqAuth||Salt∗)⊕ k∗

MPPE)

If Salt∗ = Salt (which happens with high probability, because the salt is a
short random string of only 11 bits), then the attacker is able to use the fact that
it knows k∗MPPE to easily compute

MD5(S||Req∗Auth||Salt∗) = MD5(S||ReqAuth||Salt)

from EncRADIUS(k
∗
MPPE). This is sufficient to decrypt the session key contained

in the message EncRADIUS(kMPPE) of the victim’s session.

Experimental analysis of the attack. We have implemented the attack in Python on a
Ubuntu Linux machine. The target RADIUS server was the FreeRadius Server 3.0.10.

Our analysis shows that computing the session key of a victim user takes about 62
seconds in our setting on average.

1 Recall here that in the basic setting we assume that the attacker is an “insider”, which aims at
learning the key kMPPE of the victim in order to read the traffic or to escalate its own privileges.



Comparison to other attacks on MS-CHAPv2. It is well-known that MS-CHAPv2
is cryptographically weak, as it is based on the DES encryption scheme with 56 bit
keys [13]. The previously best known attacks on MS-CHAPv2 were passive (=eaves-
dropping) attacks that recover the DES key, which required an exhaustive search over
the key space of size 256 (which is feasible on high-performance hardware, but rela-
tively expensive) or were based on the use of low-entropy passwords [13,7].

In contrast, we show an active attack allowing to break MS-CHAPv2 authentica-
tion in PPTP with RADIUS authentication with significantly smaller effort of only 214,
which is feasible even without access to high-performance hardware.

Extension to “outsider” attackers. Our attack assumes an “insider” attacker, but we
note that it generalizes easily to “outsider” attackers as well. An outsider would first run
the attack from Schneier and Mudge [13] to break MS-CHAPv2, in order to recover the
secret of one user to become an “insider”, and then mount our attack.

The main advantage of this approach is that the attacker has to execute the (feasible,
but relatively expensive) attack of Schneier and Mudge only once, while without our
attack technique he would have to executed it once for each victim user.

Further related work. Schneier and Mudge [13] as well as Eisinger [4] analyzed the
security of MS-CHAPv2 and showed the maximum security is one full DES key space
search. MPPE security was analyzed most recently by Patterson et. al [10], who ex-
ploited biases in the RC4 keystream, in order to mount plaintext recovery attacks.
Downgrade attacks on PPTP were showed by Ornaghi et. al [8], which tried to force
PAP or MS-CHAPv1 as authentication protocol instead of MS-CHAPv2.

2 Foundations

Our attack utilizes three different protocols, as shown in Figure 1 and therefore can be
split into three different parts:

1. The first part is the setup of an PPTP channel over any PPP channel between the
client and the VPN endpoint using the Link Control Protocol and Network Control
Protocol. All data is transfered encapsulated in GRE packets. This is described in
subsection 2.1.

2. The second part is the login procedure of the client at the RADIUS server. Here the
data is transported again with GRE on the side between client and VPN endpoint
and is then repacked into RADIUS packets and send from the VPN endpoint to the
RADIUS server. This part is decribed in subsection 2.2

3. After the client is successfully logged in, he and the RADIUS server both compute a
key kMPPE and the RADIUS server encrypts this key using the RADIUS encryption
subsection 2.3 and sends it to the VPN endpoint. Now that the client and VPN
endpoint both have the same key, they derive a session key from that and can start
MPPE encrypted data communication. This part is described in subsection 2.4.

After we describe this setting in detail, we introduce an attacker that can get the key
kMPPE, with a few messages send to the RADIUS server under certain assumptions.
We will then show, how the attacker can use the key to decrypt all messages from the
secured MPPE channel. Our attack is described in section 3.



2.1 PPTP

The Point-to-Point-Tunneling Protocol (PPTP) was designed to allow for clients that are
not part of a network to tunnel their data trough a Point-to-Point protocol to that network
to extend the original one with a virtual one. This allows to create Virtual Private Net-
works (VPNs). The Point-to-Point method was chosen, so that it was not necessary to
have a working Ethernet connection between the networks, but phone communication
or others could also be used.

PPTP uses a control channel over TCP and a second channel that is encapsulated in
GRE to transfer the data.

PPP The Point-to-Point-Protocol (PPP) was introduced in 1994 in RFC 1661 [1]. It
is a layer-2 protocol to transmit arbitrary data packets over a full duplex point-to-point
connection that can be established over many underlying systems.

Aside from the channel that transmits the actual data, the PPP uses two distinct
protocols to agree how the channel is build:

1. Link Control Protocol (LCP)
2. Network Control Protocol (NCP)

The LCP focuses on all management between the two parties constructing the chan-
nel, while the NCP controls how the selected payload protocol is used in the transfer
later.

While the original PPP protocol was designed to allow transfer over Point-to-Point
connections, the protocol was extended with Point-to-Point-over-Ethernet to also work
in a Ethernet environment that is not a direct two point connection. This allows the use
of all protocols based on PPP to be used over the Internet. This allows PPTP Endpoint
to work directly with clients coming over the Internet and others using phone-lines with
the same protocol.

PPTP The PPP protocol itself does not offer security protection. As a result the Point-
to-Point-Tunneling-Protocol (PPTP) was designed. In the beginning when PPP was
only used over direct Point-to-Point connected endpoints, the security was derived from
this direct connection. Now that it also possible to use the Internet as the underlying
layer, these security guarantees are not valid anymore and additional security is needed.
In the original PPTP specification in RFC 2637 [5], which was mainly driven by Mi-
crosoft, Ascend and a few others, were already different authentication mechanism in-
troduced. The PPTP supports PAP, CHAP and the Microsoft version MS-CHAP. After
MS-CHAP v1 was proven to be insecure, Microsoft developed v2. This standard has
some security difficulties, but until today still has a complexity of 256 for an attacker
to get the password of a client. We will make use of this attack later. Besides the au-
thentication Microsoft introduced the encryption Microsoft Point-to-Point Encryption
(MPPE), which we describe in subsection 2.4.

Microsoft used PPTP as default way to construct secure VPN connections in its
operating system Windows for a long time. Today still all Windows OSs have build
in support for PPTP with the Microsoft authentication mechanisms MS-CHAPv1/v2.
Further 60% of publicly available VPN service providers still offer PPTP as a possible



VPN mechanism [14]. Also every smartphone with Android or iOS supports PPTP by
default.

GRE The Generic Routing Encapsulation (GRE) is an older standard described in RFC
1701 [6], mainly developed by Cisco, that allows PPTP to transfer its data over many
different PPP protocols. Based on the fact that it is a data format, it does not influence
the security and will not be discussed in more detail.

2.2 MS-CHAPv2

During the setup of a PPTP connection a variety of protocols can be utilized to authen-
ticate the users. MS-CHAPv2 is one example. It is used together with Microsoft’s im-
plementation of the Point-to-Point tunneling Protocol. In Microsoft environments PPTP
is used together with Microsoft Point-to-Point Encryption algorithm (MPPE). The MS-
CHAPv2 protocol is depicted in Figure 2. An example protocol run is as follows. First
the client requests an authenticator challenge from the server. The server then creates a
16 byte random authenticator challenge (CS) and sends it back to the requesting client.

Client Server
AuthRequest

ChallServer
$← Z2128ChallServer

ChallClient
$← Z2128

HashChall = SHA1(ChallServer||ChallClient||Username)

ChallHash = HashChall[0− 7]

Nulls = 0x00||0x00||0x00||0x00||0x00
K = MD4(Password)||Nulls

Enc1 = DESK[0−6](ChallHash)

Enc2 = DESK[7−13](ChallHash)

Enc3 = DESK[14−20](ChallHash)

RespClient = Enc1||Enc2||Enc3

RespClient, ChallClient, Username

Compute Chall′Hash as Client did

Verify Chall′Hash == ChallHash

HMD42 = MD4(Password)2

HashResp = SHA1(HMD42 ||RC ||const)
RespServer = SHA1(HResp||Chall′Hash||pad)

RespServer

Compute Resp′Server as Server did

Verify Resp′Server == RespServer

Fig. 2. MS-CHAPv2 Protocol run

Next the client creates a new random 16 byte long challenge. This challenge to-
gether with the the name of the client user and the challenge created on the server side
are hashed via SHA-1 and the first 8 bytes results in the client hash (ChallHash ). For the
creation of the client response of the server challenge a key for the DES algorithm is
created by hashing the user’s password via the message digest algorithm 4 (MD4). The



resulting hash is afterwards concatenated with 5 zero bytes. These constant 5 bytes lead
to some major security issues as described by Schneier et. al [13]. The resulting bytes
stored in k are then split up into 3 keys (k1, k2, k3) and used for 3 different DES encryp-
tions with ChallHash as input data for every encryption. All ciphertexts are concatenated
and stored as the client response in RC. The values RC, CC and UName are sent back to
the server. To verify the credentials of the user, the server recreates the client response.
Therefore, it uses the password it stored for the corresponding user name received with
the client response, as well as the ChallHash recomputed by the server. It then compares
its created client response with the received RC. In case the values are equal the server
continues with the authentication process. The next protocol message created by the
server is the server response RS. As a preparation the server double hashes the pass-
word of the user with the MD4 algorithm. The resulting hash value is used together
with client response and a constant string value (const) 2. This hash value (HSHA1 ) is
used together with the previous created ChallHash and the constant string value pad 3

as input for another SHA1 run. The result is named server response RS and send to
the client, which verifies the value. In case the verification ends successfully the mutual
authentication process is also completed successfully. [13,15]

Schneier et. al Attack on MS-CHAPv2 As mentioned earlier, MS-CHAPv2 can be bro-
ken by doing just one exhaustive key search of the DES key space. This is possible
due to the fact that the input data (ChallHash ) for all three DES encryption runs stays
the same (cf. Figure 2). Thus, 256 encryption executions are necessary to find all three
keys (K[0 . . . 6], K[7 . . . 13] and K[14 . . . 20]). This is accomplished by trying every
K ∈ Z256 as encryption key, when ChallHash is input into the DES encryption and com-
pare the corresponding result with Enc1, Enc2 and Enc3. As soon as one key matches,
it can be stored and the search continues until all three keys are found [13].

2.3 RADIUS Encryption

The RADIUS protocol defines its own encryption scheme. This scheme is mandatory
for PPTP, and is used by default in software like the FreeRADIUS [11] server. The al-
gorithm is defined in two RFCs: RFC 2865 [12], which is the default RFC for RADIUS,
defines how RADIUS encrypted user passwords are send. RFC 2868 [17] defines how
RADIUS is used in tunnel scenarios. Both versions only differ in the point that the RFC
for the tunnel scenarios adds an additional Salt. We will focus on the tunnel version
from now on, because this version is used to encrypt the MPPE key (kMPPE).

The specification does not take care of key management for the RADIUS encryp-
tion. As a result the shared key has to be established manually on the VPN endpoint
and the RADIUS server. If this shared key is of low-entropy, it can be computed using
dictionary attacks [2]. Therefore, we assume that only high-entropy keying material is
used.

Basically the RADIUS encryption is a stream cipher, with an input seed consisting
of the (static) RADIUS secret and some (pseudo-)random values ( RA and Salt for the

2 ”Magic server to client constant”
3 ”Pad to make it do more than one iteration”
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Fig. 3. RADIUS encryption and decryption

first block, ci and Salt for the others) hashed using a MD5 hash function to generate the
keystream. The ciphertext is then generated by computing the XOR of the keystream
and the plaintext (cf. Figure 3).

The pseudorandom values are used to prevent the keystream output of MD5 from al-
ways being identical for a single RADIUS secret. The Request Authenticator (ReqAuth)
is chosen by the client before encrypting the data and is 16 bytes long.

The Salt is 2 bytes long. The first bit is fixed to 1, indicating that the salt was
chosen by the server. This is followed by a 4 bit offset that is always incremented by 1.
The remaining 11 bits are chosen at random. The salt is transmitted as a prefix to the
encrypted data.

In the formal way the RADIUS encryption can be defined as two algorithms (Enc,Dec)
with

c = Enc(S,ReqAuth, p, SaO) and p = Dec(S, Sa,ReqAuth, c)
Request Authenticator In the RADIUS standards, there is some confusion on the term
“Request Authenticator” (ReqAuth). In the original version of RADIUS encryption [12],
the client selects ReqAuth and uses it as nonce and an IV for the encryption. The IV is
used together with the RADIUS secret to encrypt data which should be sent to the
server. The ReqAuth is a 16 byte value and stored in the message field named RADIUS
Authenticator (RA). In case no encryption is used, ReqAuth is just a nonce value and
not an IV in the RADIUS encryption. Thus, every RADIUS message from the client to
the server contains a new value stored in the field RA.

Of course there are also RADIUS messages send from the server to the client. The
server use the message field RA for authentication purposes. It creates a Message Au-
thentication Code (MAC) called “Response Authenticator”. The MAC is computed over



are all encrypted message fields, except the RA field. Afterwards, the MAC (RespAuth)
is stored in this ReqAuth field. As a consequence the field cannot be used to store the
new IV needed for the used RADIUS encryption. Thus, the IV (ReqAuth) from the last
message from the client to the server is used. In short, the client controls which IV is
used by the server for the encryption.

The RADIUS RFC [12] defines that the RAs should not be used twice with the same
RADIUS secret, but this is not checked by the server. This behavior allows a successful
attack against PPTP.

2.4 MPPE

For the PPTP protocol an additional encryption protocol is needed in order to encrypt
the user data. Because PPTP itself does not offer such an encryption, Microsoft pre-
sented the Microsoft Point-to-Point Encryption protocol (MPPE) [9]. MPPE offers 3
different lengths for the key: 40, 56 and 128 bits. We assume that the strongest option
with 128 bits is used, because the other options were designed to fulfill other regulations
like export limitations.

MPPE was designed for the use case of PPTP. As a result the protocol expects an
open PPTP channel and that a key was derived there. The encryption is done by using
the standard RC4 algorithm. MPPE only defines how the keys and the data are fitted to
be used in the RC4 encryption algorithm.

MPPE offers the functionality to exchange the key while transmitting data and to
synchronize keys again if the synchronization is lost at some point. This allows MPPE
to change the keys after a set schedule. The keys only depend on older keys. If the first
key is compromised, all others could be computed by an attacker. Thus, there is no real
key freshness. In this paper we will focus only on the first key for a session.

Key Derivation MPPE utilizes the keys derived by other protocols for its own key
derivation. This is then used in the RC4 algorithm. The protocols from which MPPE
can derive keys are MS-CHAPv1, MS-CHAPv2 and TLS as specified in RFC 3079 [16].



For MS-CHAPv2 it works as follows: the key is split in two halves, one for sending
data from the client to the VPN endpoint called “Send-Key” and one for the other way
around called “Recv-Key”. This is done by hashing the MS-CHAP key together with
different magic constants. The Send-Key is computed as follows:

Send-Key = HSHA1(Key‖pad‖const send‖pad)

and the Recv-Key the same way with another constant. These keys are used as the
starting point for the session keys that are used for the encryption. The actual keys used
for the encryption are called session keys, and the first is derived only from the Send-
Key and Recv-Key, while the following also use the last session key. Here again as
hashing function only SHA1 is used. The key is derived as follows:

Session-Send-Key = HSHA1(Send-Key‖Pad‖Send-Key‖Pad)

In consecutive runs the second Send-Key in the formula would be exchanged with the
last Session-Send-Key. When the keys are switched is depending on the configuration
of the VPN endpoint. It allows for sessions that run over a long period of time to change
the keys in between, without having to do a full restart.

Format of Key Fields in RADIUS. Microsoft extended the RADIUS format with vendor
specific attributes in order to be able to transport keys in encrypted form. This was
necessary, because no fields for these purposes were available before. Thus, Microsoft
introduced the field MS-MPPE-RECV-KEY and MS-MPPE-SEND-KEY to transmit the
keys in both directions for MPPE.

Today these fields are reused to transport keys for other protocols that do not have
any connection to the MPPE protocol. One of the best known protocol that use these
field are the EAP protocols like EAP-(T)TLS that use this field to transmit the PMK.

3 Attack

For our attack we will first describe the scenario and its requirements. Further we will
show that this scenario is quite common and can even be relaxed if our attack is mixed
with other attacks later. Then we will introduce our known-plaintext attack against RA-
DIUS that allows us to learn about the key material that is used for a key stream of a
stream cipher. Then we will show that this attack which is not specific for the PPTP
VPN scenario can be used to mount an chosen-ciphertext attack against the VPN which
drastically reduces the complexity of known attacks against it. Finally we show our real
life test results of this attack against the well used RADIUS implementation FreeRA-
DIUS.

3.1 Scenario

Our attack works in every scenario, in which the attacker can wiretap and inject packets
to the local network of the VPN endpoint and RADIUS server. An example of such
a scenario is a university. In general students have access to the network via wireless



LAN. Due to the high amount of consumer devices (e.g. smartphones, tablets, note-
books) there is a demand for wireless access, therefore universities have many access
points installed. In general these access points are not protected well physically and can
simply be exchanged against another arbitrary device by an attacker. This way a MitM
attack is easy to mount. Many universities also use RADIUS to manage the authentica-
tion process of the users. In addition, universities often provide PPTP VPN services so
students can access university servers from abroad (e.g. ERASMUS), Internet cafes or
from home. A further requirement are valid MS-CHAPv2 credentials for the VPN.

So we will, from this point on say that the attacker fulfills the following require-
ments:

1. The attacker can act as a MitM between an VPN device and the RADIUS Server
2. The network offers PPTP with MS-CHAPv2 (also other internal protocols like MS-

CHAPv1 would also work, but they are already broken)
3. The attacker has valid credentials for the network

Getting valid MS-CHAPv2 credentials is as easy as applying for an arbitrary study
in the university scenario. But this assumption can also easily be fulfilled for other
company networks, for which one could not just register. Here the attack presented by
Schneier et. al [13], described in section 2.2, can be executed to brute-force the creden-
tials of an arbitrary user from any wiretapped PPTP connection. Note, that breaking the
weakest credentials of some user is enough for our attack. Afterwards, these credentials
can be used to run our attack against every other user using the PPTP VPN of the closed
network.

3.2 Known-Plaintext Attack on RADIUS Encryption

In this section we will introduce our attack to get the key material that is sent encrypted
with the RADIUS encryption. We will use a known plaintext attack on the RADIUS
encryption that allows us to recover the first 16 bytes of the key material of a target
ciphertext. We have already shown that PPTP only allows keys with the length of 40,
56 or 128 bits, so this always gets the attacker the complete key in the final attack in the
next chapter.

Overview Known-Plaintext Attack on RADIUS to partially decrypt MPPE. The prob-
lem of the RADIUS encryption is that the ReqAuth is used as an initialization vector
IV for the encryption but is not chosen by the RADIUS server who performs the en-
cryption, but by the client. This allows for a simple and fast attack on the RADIUS
encryption that has the following features:

1. To decrypt a value that is encrypted with the RADIUS encryption one only needs
the output X1 of the MD5 hash function (cf. Figure 3). This value is the key stream
that is used to be xored with the plaintext.

2. This MD5 result depends on the 3 inputs: RADIUS secret, the ReqAuth and the
Salt. While the secret only changes if manually reconfigured, it can be assumed to
be constant. To prevent an easy known-plaintext attack a ReqAuth is chosen with a
length of 128 bits, so that it is statistically unlikely that one RA is chosen twice in
a measurable amount of time.



3. The Salt is only part of the encryption if the tunneled RADIUS mode is used. This
is done to add an easy way to check for the correct order by adding the 4 bit salt
counter. In addition, the salt differs in the first bit if send from the client to the
server or the other direction, so that a message encrypted in one direction cannot
be injected in traffic in the opposite direction.

The attack is using the fact that the ReqAuth was designed to be chosen by the party,
which use the RADIUS encryption to encrypt messages. This is not true in case the
message originates from the server. Then the field RA is used in another way namely to
store the Response Authenticator. As described in section section 2.3, the server utilizes
the last received ReqAuth as IV for the encryption instead of choosing it on its own. This
is the point the attack applies. In RADIUS the messages from the client to the server
are not integrity protected (just from server to client), so that an attacker could easily
exchange this ReqAuth and force two of the three input values for the MD5 to be the
same.

Now only the Salt remains changing, which based on its structure, is not a big prob-
lem. The first bit is always 1 if the message is from the server and the next 4 bits are
a counter that increases by 1 per use in the encryption. But the tunneled encryption is
used twice in the RADIUS message, so that it is the same every 8 protocol runs. Only
the remaining 11 bits are random meaning an attacker can get every 8 protocol runs a
chance with probability of 2−11 to get the same key stream. This allows for an efficient
known-plaintext attack against the tunneled version of the RADIUS encryption. In prin-
cipal, the attack works also for the non-tunneled version from RFC 2865 [12], but here
in practice the ReqAuth is always chosen by the sender and not the responding party.

3.3 Chosen-Ciphertext Attack on PPTP

Chosen RA Attack on RADIUS Encryption The attack to get the key-stream for MPPE
kMPPE uses the known-plaintext attack idea outlined in subsection 3.2 to get the ReqAuth
and combines it with the PPTP scenario.

As described previously the client and VPN endpoint need a shared key to establish
a connection secured by MPPE. But only the client and RADIUS server share any
common keys. The VPN endpoint and the RADIUS server share the RADIUS secret
S. So the idea is for the VPN endpoint to just relay the MS-CHAPv2 login messages
from the client to the RADIUS server and if the login is successful, to get key material
from the RADIUS server. The client can compute the same key material from the MS-
CHAPv2 protocol results (cf. subsection 2.2).

The key material kMPPE is transferred in the RADIUS packet from the RADIUS
server to the VPN endpoint. It is transferred in the MS-MPPE-RECV-KEY and MS-
MPPE-SEND-KEY attribute fields in the RADIUS message. Because there was no at-
tribute designed to transport keys encrypted, Microsoft created this one that is nowadays
used also for other protocols, even if they are not using MPPE at all.

The MS-MPPE fields contains 18 changing bytes, while the rest defines the field as
MS-MPPE. RADIUS allows for vendor specific fields and this is one of them, so it has
to be clearly defined, because it is not part of the original RFC.
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Fig. 4. Attack protocol flow

The 18 bytes contain: 2 bytes Salt and 16 bytes encrypted key. If not the strong
version of MPPE, which uses 128 bits keys is used, then the key is even smaller. This
means 16 bytes are encrypted using the RADIUS tunnel Encryption EncRADIUS, while
the two bytes Salt are sent in clear. The values can be seen in Figure 4 where the
ciphertext C1 is the encrypted first 16 bytes. The RADIUS encryption would allow to
send more blocks for longer keys, as it is used for example in EAP-TTLS but here only
one block is used. The attack is shown in Figure 4 and is divided into the following 7
steps:

Step 1: The attacker needs to get himself in the position that he has MitM capabilities
on the designated connection between VPN endpoint and RADIUS server.

Step 2: After the attacker is set, he has to wait for the victim user to start a PPTP session
and login with MS-CHAPv2 to the VPN through a wiretapped VPN endpoint. In
case the potential victim uses another VPN endpoint the attack would not work.



Step 3: The attacker monitors the communication between the VPN endpoint and the
RADIUS server.
A device running Wireshark can easily collect all the communication and split them
into the different messages that were send. The RADIUS structure dictates that all
communication starts with a request from the RADIUS client in this case the VPN
endpoint and is answered by a response from the RADIUS server. All following
messages are build with the same structure. There is never a response without a
request. The attacker is only interested in the last pair of requests and response.
If multiple clients connect at the same time to the VPN endpoint, the attacker has
to find the correct pair of messages for the desired victim. This information can
be read directly from the RADIUS messages, because RADIUS has no privacy
protection in place for this information (e.g., Username). This step is marked with
the wiretap arrows in Figure 4

Step 4: After getting the correct pair of request / response RADIUS messages the at-
tacker takes the ReqAuth and Salt from the request and the ciphertext from the
MPPEKey field and stores both.

Step 5: The attacker now starts his own login at the same VPN endpoint using his own
authentication data. If the messages from the VPN endpoint to the RADIUS server
reach again the last pair, the attacker switches the Req2Auth send from the VPN
endpoint to the RADIUS server with the one (Req1Auth) he stored in the step before.
This means that the response will use the old ReqAuth instead of the new one.
Because the VPN endpoint used another ReqAuth it will not be able to decrypt the
MS-MPPE key stream kMPPE in the following response, but that is not a problem,
because it is not the goal of the attacker to log himself into the network.

Step 6: The attacker compares the Salt that was received in the last response with the
Salt stored in step 4. If the Salt is the same he stores the ciphertext again and this
time also the plaintext. The attacker has access to the plaintext, because he acts also
as a client in the MS-CHAPv2 run and can compute the MPPE-Key kMPPE from
internal key material. If the Salt is not the same, the attacker goes back to step 5
and starts there again. The Salt is only 2 bytes (16 bit) long which would offer 65k
possible Salts, but the Salt is restricted in different ways (cf. section 2). The first
bit is always set to 1, because the message is sent from the server. This protects the
encryption from using the client as decryption oracle, but limits the possible Salts.
Bits 2 to 5 are used to store the offset. Every time the Salt is used for encryption,
the offset is incremented by 1. Due to the fact that two encryptions are done per
response from the server (MS-MPPE-RECV-KEY and MS-MPPE-SEND-KEY), the
offset repeats after 8 request and not after 16. As a result the attacker only needs to
check every 8th response from the server for the correct Salt. Only the remaining 11
bits are chosen at random, so that after 2048 tries with the same offset the attacker
should have found the same random Salt values. On Average an attacker would
need 8 * 1024 = 8192 tries.
The Salt was included into the RADIUS encryption to prevent reuse of the RA, but
it will show it does not help enough, because the 2048 tries could be done in a short
time.

Step 7: The attacker now takes the plaintext and ciphertext he has collected in the last
step and computes the XOR of the first 16 bytes of the plaintext called p1 and of



the ciphertext called c1 (cf. Figure 3). We will call this intermediate value X1. This
value X1 is now the same as in the stored communication of the victim and in the
stored communication of the attacker. This results from the identical ReqAuth and
Salt. The RADIUS Secret S always stays the same, so that now all input for the
MD5 Algorithm is identical, which leads to identical output. The attacker now can
XOR the value X1 with the first block of the victims C1. The result are the first 16
plaintext bytes, which is the MPPE-Key kMPPE of the victim.

3.4 Practical Evaluation

Setup. The setup consists of four different Virtualbox machines, one acting as the client,
one as the VPN endpoint, one as the RADIUS server and the last machine performing
the attack. As the operating system Ubuntu Linux 15.04 with Kernel 3.19.0-39-generic
was used. The client had pptp-linux 1.7-2.7 installed for the pptp client. The VPN end-
point used pppd 2.4.6 as PPTP server and the FreeRadius Client 1.1.7 for the con-
nection to the RADIUS server. The attack was tested against the most used RADIUS
server FreeRADIUS. We used the server with version 3.0.10 in the default configura-
tion, without any further modifications. The host machine was equipped with an Intel
Core i5-6600K @ 3.5 GHz and 16 Gbyte of DDR4 memory.

Results. The attack was run for 432 times on the attack machine (see. section 3.4). The
evaluation showed that for these 432 attack runs the average time was 62 seconds and it
took on average 18847 protocol runs until the Salt was correct. The theoretical average
is 214 = 16384. This shows that the random salts generated by the RADIUS server are
chosen as random as roughly expected. For this test we ran 8,1 Million protocol runs
in total. Our cross protocol attack thus reduced the complexity by 242 compared to the
attack of Schneier et. al [13] and Marlinspike [7]. Still today brute-forcing DES keys
on an FPGA cluster takes an average of 7 hours (25,200 seconds) and hardware costs
of around $ 140,000 [3]. This means, our attack speeds up the time for the decryp-
tion process by factor of 124, compared to the traditional brute-force approach and is
achievable on standard computer hardware, which cost around $ 700 US (reduction by
factor 200).

4 Conclusion

In the paper we showed two novel attacks. A known-plaintext attack on RADIUS en-
cryption and a chosen-ciphertext attack on PPTP VPN. We describe how both of these
attacks can be combined in a cross protocol attack to decrypt PPTP VPN sessions. Ana-
lyzes of public VPN services providers showed that PPTP is used by 60% of them [14].
Further, all Windows and Linux operating systems currently support PPTP VPNs. For
our attacks we give a description of PPTP VPN and how they are used together with
MS-CHAPv2 and RADIUS server. Based on the description we show how an attacker
can use our cross protocol attack to decrypt PPTP VPN sessions in a realistic scenario
in one minute. In contrast to previous published attacks [7,13], we reduced the com-
putational complexity by factor 242. The decryption of a PPTP VPN session is now



achievable with just 214 protocol runs. Our attacks do not need special hardware and
run on every modern device, from standard computers down to smartphones. Further,
the attack needs on average 62 seconds, leading to a time reduction by the factor of
124, compared to the brute-force of the complete DES key space, which also required
special cracking hardware [3].

We saw with this attack that even after 18 years a protocol is in the wild improve-
ments for attacks can be found, by taking a look on cross protocol usage. At first we
tried to drive the attack on EAP-(T)TLS implementations [2], but realized during the
testing, that an additional MAC over the whole message is computed preventing our
attack.

In the RFC 2868 [17], which specified the used RADIUS attributes, multiple pro-
tocols are defined, we analyzed only PPTP. Similar attacks may be possible on other
protocols like L2TP, depending on the used key derivation function and are worth look-
ing at in future research.
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