usenix
.’ THE ADVANCED
COMPUTING SYSTEMS

ASSOCIATION

The Dangers of Key Reuse:
Practical Attacks on IPsec IKE

Dennis Felsch, Martin Grothe, and Jorg Schwenk, Ruhr-University Bochum;
Adam Czubak and Marcin Szymanek, University of Opole

https://www.usenix.org/conference/usenixsecurity18/presentation/felsch

This paper is included in the Proceedings of the

27th USENIX Security Symposium.
August 15-17, 2018 - Baltimore, MD, USA
ISBN 978-1-931971-46-1

Open access to the Proceedings of the
27th USENIX Security Symposium
is sponsored by USENIX.

The Dangers of Key Reuse:
Practical Attacks on IPsec IKE

Dennis Felsch
Ruhr-University Bochum
dennis.felsch@rub.de

Adam Czubak
University of Opole
aczubak@uni.opole.pl

Abstract

IPsec enables cryptographic protection of IP packets.
It is commonly used to build VPNs (Virtual Private Net-
works). For key establishment, the IKE (Internet Key
Exchange) protocol is used. IKE exists in two versions,
each with different modes, different phases, several au-
thentication methods, and configuration options.

In this paper, we show that reusing a key pair across
different versions and modes of IKE can lead to cross-
protocol authentication bypasses, enabling the imperson-
ation of a victim host or network by attackers. We exploit
a Bleichenbacher oracle in an IKEv1 mode, where RSA
encrypted nonces are used for authentication. Using this
exploit, we break these RSA encryption based modes,
and in addition break RSA signature based authentica-
tion in both IKEv1 and IKEv2. Additionally, we describe
an offline dictionary attack against the PSK (Pre-Shared
Key) based IKE modes, thus covering all available au-
thentication mechanisms of IKE.

We found Bleichenbacher oracles in the IKEv1 imple-
mentations of Cisco (CVE-2018-0131), Huawei (CVE-
2017-17305), Clavister (CVE-2018-8753), and ZyXEL
(CVE-2018-9129). All vendors published fixes or re-
moved the particular authentication method from their
devices’ firmwares in response to our reports.

1 Introduction

VPNs (Virtual Private Networks) allow employees to se-
curely access a corporate network while they are outside
the office. They also allow companies to connect their lo-
cal networks over the public Internet. Examples for large
industrial VPNs are the ANX (Automotive Network Ex-
change), ENX (European Network Exchange), and JNX
(Japanese Network Exchange) associations, which con-
nect vehicle manufacturers with their suppliers [1-3]. In
4G/LTE (Long Term Evolution) networks, wireless car-
riers use VPN to secure the backhaul links between base

Martin Grothe
Ruhr-University Bochum
martin.grothe @rub.de

Jorg Schwenk
Ruhr-University Bochum
joerg.schwenk@rub.de

Marcin Szymanek
University of Opole
mszymanek @uni.opole.pl

Main Mode
2{ negotiation
2{ authentication/ ~ Aggressive Mode IKEV1
key agreement Phase 1
negotiation
authentication/ 3
2 N 3
{ key confirmation {
IKEV1
3{ key update key update key update Phase 2
| PsecEsP | | iPsecESP | [IPsecESP | IPsecESP
Figure 1: The relationship between IKEvl Phase 1,

Phase 2, and IPsec ESP. Multiple simultaneous Phase 2
connections can be established from a single Phase 1
connection. Grey parts are encrypted, either with IKE
derived keys (light grey) or with IPsec keys (dark grey).
The numbers at the curly brackets denote the number of
messages to be exchanged in the protocol.

stations and the core network [4, pp. 66—67]. Other appli-
cations of VPNs involve circumventing geo-restrictions
and censorship.

IPsec (Internet Protocol Security) is a protocol stack
that protects network packets at the IP layer. In contrast
to other widespread cryptographic protocols like TLS
(Transport Layer Security) or SSH (Secure Shell), which
operate at the application layer, IPsec allows to protect
every IP based communication. When transmitting pay-
load data, IPsec uses two different data formats to protect
IP packets: AH (Authentication Header) for integrity-
only setups and ESP (Encapsulating Security Payload)
for confidentiality with optional integrity.

IKE. To establish a shared secret for an IPsec connec-
tion, the IKE protocol has to be executed. There are
two different versions of IKE named IKEv1 (1998) and
IKEv2 (2005). Although IKEv2 officially obsoletes the

USENIX Association

27th USENIX Security Symposium 567

DoS Protection
IKEv2
2
{ PR Phase 1

o Negotiate

2{ Authentication —>{ ESP/AH SA
- ESP/AH SA IKEv2

P Negotiate

ESP/AH SA Negotiate Phase 2

ESP/AH SA

Negotiate
ESP/AH SA
ESP/AH SA

ESP/AH SA

Figure 2: The relationship between IKEv2 Phase 1,
Phase 2, and IPsec ESP. Multiple simultaneous Phase 2
connections can be established from a single Phase 1
connection. Furthermore, Phase 1 and Phase 2 are par-
tially interleaved. Grey parts are encrypted, either with
IKE derived keys (light grey) or with IPsec keys (dark
grey). The numbers at the curly brackets to the left de-
note the number of messages to be exchanged in the pro-
tocol.

ESP/AH SA

previous version, both are still available in all implemen-
tations and both can be configured for actual use in all
major operating systems and network devices.

IKE consists of two phases, where Phase 1 is used to
establish initial authenticated keying material between
two peers. Phase 2 is used to negotiate further derived
keys for many different IP based connections between
the two.

IKE is one of the most complex protocols in use, and
the dependencies between Phase 1 and Phase 2 make it
hard to analyze. Figures 1 and 2 illustrate this complex-
ity: InIKEv1, both phases are clearly separated, but there
are two different modes for Phase 1. In IKEv2, Phase 1
has been simplified, but now Phase 1 interleaves with the
first execution of the Phase 2 protocol.

Authentication. In IKEv1, four authentication meth-
ods are available for Phase 1 (cf. subsection 2.2): Two
RSA encryption based methods, one signature based
method, and a PSK (Pre-Shared Key) based method.
All Phase 1 modes/methods contain a DHKE (Diffie-
Hellman Key Exchange), which guarantees PFS (Perfect
Forward Secrecy) for every connection. IKEv2 Phase 1
omits both encryption-based authentication methods, so
only signature and PSK based authentication remain.

Attacks. Our attacks only target Phase 1 in IKEv1 and
IKEv2, where we impersonate an IKE device. Once
attackers succeed with this attack on Phase 1, they
share a set of (falsely) authenticated symmetric keys
with the victim device, and can successfully complete

Phase 2 — this holds for both IKEvl and IKEv2. The
attacks are based on Bleichenbacher oracles discovered
in implementations of the two RSA encryption based
IKEv1 variants (cf. sections 5-7). These Bleichenbacher
oracles can very efficiently be used to decrypt nonces,
which breaks these two variants (subsection 4.2). The or-
acles can also be used to forge digital signatures, which
breaks the signature based IKEvl and IKEv2 variants
(subsection 4.4).

We additionally show that both PSK based modes can
be broken with an offline dictionary attack if the PSK has
low entropy (section 9). We thus provide attacks against
all authentication modes in both IKEv1 and IKEv2 under
reasonable assumptions.

Contribution.
contributions:

In this paper, we make the following

e We identify and describe Bleichenbacher oracles in
the IKEv1 implementations of four large network
equipment manufacturers, Cisco, Huawei, Clavis-
ter, and ZyXEL.

e We show that the strength of these oracles is suffi-
cient to break all handshake variants in IKEv1 and
IKEv2 (except those based on PSKs) when given
access to powerful network equipment.

e We demonstrate that key reuse across protocols as
implemented in certain network equipment carries
high security risks.

o We complete the evaluation of all variants of IKEv1
and IKEv2 by showing that a/l PSK based variants
are vulnerable to offline dictionary attacks if low en-
tropy PSKs are used. Such attacks were previously
only documented for one out of the three PSK-based
variants of IKE.

Responsible Disclosure. We reported our findings to
Cisco, Huawei, Clavister, and ZyXEL. Cisco pub-
lished fixes with IOS XE versions 16.3.6, 16.6.3, and
16.7.1. They further informed us that the vulnera-
ble authentication method would be removed with the
next major release. Huawei published firmware version
V300R001C10SPH702 for the Secospace USG2000 se-
ries that removes the Bleichenbacher oracle and fixes
crash bugs we identified on our test device. Customers
who use other affected Huawei devices will be contacted
directly by their support team as part of a need-to-know
strategy. Clavister removed the vulnerable authentication
method with cOS version 12.00.09. ZyXEL responded
that our ZyWALL USG 100 test device is from a legacy
model series that is end-of-support. Therefore, these de-
vices will not receive a fix. For the successor models, the
patched firmware version ZLD 4.32 is available.

568 27th USENIX Security Symposium

USENIX Association

2 IKE (Internet Key Exchange)

IKE is a family of AKE (Authenticated Key Exchange)
protocols. It is responsible for negotiating multiple sets
of cryptographic algorithms and keys, called SAs (Se-
curity Associations) in IPsec terminology. Each SA can
either be used to protect the integrity of IP packets with
the data format AH (Authentication Header) or to pro-
tect confidentiality with optional integrity using the data
format ESP (Encapsulating Security Payload). IKE mes-
sages are exchanged over UDP (User Datagram Proto-
col) and their destination port is 500.

IKE is standardized in two major versions: Version 1,
described in RFC 2409 [16] and accompanying docu-
ments, was published in 1998. It has been declared obso-
lete by the IETF (Internet Engineering Task Force), but it
is nevertheless included in all implementations and still
widely used. Version 2, first published in RFC 4306 in
2005 [22] was designed as a low-latency alternative to
Version 1, and therefore has a fundamentally different
design. It is subject of ongoing standardization, but only
minor clarifications are incorporated in the most recent
RFCs. IKEvl uses a data format called ISAKMP (In-
ternet Security Association and Key Management Proto-
col), which has later been integrated with IKEv2.

2.1 1IKEv1 Phases

IKEv1 consists of two phases (cf. Figure 1). In Phase 1,
a SA is established for IKEv1 itself, such that the subse-
quent Phase 2 messages can be encrypted. Additionally,
a shared symmetric key is established as basis of authen-
tication in Phase 2. In Phase 2, several SAs for IPsec AH
and ESP are negotiated.

IKEvl Phase 1. For Phase 1 of the protocol, two
modes — main mode and aggressive mode — and four
authentication methods are available. A main mode
handshake consists of exactly six messages; an aggres-
sive mode handshake compresses the protocol flow into
only three messages. We do not cover the aggressive
mode explicitly in this paper. However, all results de-
scribed in this paper hold for the aggressive mode as
well. Throughout the rest of this paper, we assume read-
ers familiar with the TLS protocol, as we will sometimes
compare IKE with TLS.

Figure 3 gives a simplified overview of the IKE proto-
col structure of Phase 1. Since IKE uses UDP, the pro-
tocol itself has to keep track of the handshake session.
IKE uses random values called cookies (and denoted by
¢y and cg) for this purpose; these cookies are present in
each IKE header.

The first two messages (m; and my) are used to ne-
gotiate on a proposal — a combination of different cryp-

Initiator Responder
(IDy, skr) (IDR, skr)
my = (proposals)
cr,0,mq
my = (proposal)
Cr.CRr, M2
mg := (g%, ancy)
Cr,CRr,M3
my = (g¥,ancg)
Cr,CR, My
Derive k, kq, kq, ke Derive k, kg, ka, ke
Compute MAC; using k
Generate authentication
proof ms from MAC; and skj
mg is encrypted with k.
Cr,CR, M5
Compute MACg using k
Generate authentication
proof mg from MACg and skg
mg is encrypted with ke
Cr,CRr, Mg
Decrypt and verify mg Decrypt and verify ms

Figure 3: Generic structure of IKEvl Phase 1 in main
mode.

tographic algorithms, comparable to TLS ciphersuites.
In messages m3 and my a DHKE is performed, to-
gether with the exchange of additional parameters called
ancillary data (anc), depending on the chosen authenti-
cation method.

Based on these messages and the shared DH secret,
four symmetric keys (k, kg, kq, k.)! are derived by both
parties (cf. Table 1). The formula to derive the interme-
diate key k varies between the different authentication
methods, which are explained in more detail in the fol-
lowing sections. From this intermediate key, the other
three keys are derived as the result of a pseudorandom
function. Inputs to this function are &, the most recent
generated key, the shared DH secret g%, the cookies
(cr,cr), and an index.

The last two messages (ms and mg) are used for key
confirmation. For this, two MAC values” are generated
using k. These MACs are either exchanged or digitally
signed. In main mode, messages ms and mg are en-
crypted under key k..

Signature PKE & RPKE PSK
k| PRFy, g (87) | PRFhny) (cr:6R) | PRFpgk (1, mg)
kd PRFk(gxy7c1,cR,0)
ku PRFk(kd,gxy,Cl,CR, 1)
ke PRFy(ka,&™,cr,Cr,2)

Table 1: The key derivation in the four different authen-
tication methods.

IKEv1 Phase 2. Phase 2 is also called quick mode. In
essence, quick mode is a three-message PSK based au-
thenticated key agreement protocol. Its security is based
on psk = (kq,k,) from Phase 1 while key k, is used to en-
crypt all messages. For each of the several executions of
Phase 2, fresh nonces are exchanged. If PFS is desired, a
DHKE can additionally be performed.

USENIX Association

27th USENIX Security Symposium 569

2.2 IKEvl Authentication Methods

In Phase 1 of IKEv1, four different modes of authentica-
tion are available: (a) Digital signatures, (b) PKE (Pub-
lic Key Encryption), (¢) RPKE (Revised Public Key En-
cryption), and (d) PSKs (Pre-Shared Keys). While the
message exchange patterns in Phase 1 are fixed to main
or aggressive mode, the two communicating entities may
freely negotiate any of these four authentication modes.

Signature Based Authentication. This authentication
mode assumes that each party owns an asymmetric key
pair with valid certificates. After choosing this authenti-
cation mode, nonces n; and ng are exchanged as ancillary
information with the third and fourth message. These
nonces are then used as key input to the PRF function,
which is used to derive the shared key k from the shared
DH secret. As proof for identification and authentication,
both parties sign their MAC values and exchange these
signatures, optionally together with their certificates. An
exact protocol flow diagram for this mode is given in Fig-
ure 13 in Appendix A.

Public Key Encryption Based Authentication. This
mode requires that both parties exchanged their public
keys securely beforehand (e.g. with certificates during
an earlier handshake with signature based authentica-
tion). RFC 2409 advertises this mode of authentication
with a plausibly deniable exchange to raise the privacy
level.

In this mode, messages three and four exchange
nonces and identities as ancillary information (see Fig-
ure 4). In contrast to the signature based mode, they
are encrypted using the public key of the respective
other party. The encoding format for these ciphertexts
is PKCS #1 v1.5. For verification, both parties exchange
their MAC values.

Revised Public Key Encryption Based Authentica-
tion. The PKE based mode of authentication requires
both parties to perform two public- and two private-key
operations. To reduce this computational overhead, the
revised public key encryption based mode of authentica-
tion (RPKE) was invented (see Figure 8).

This mode still encrypts the nonces n; and ng with the
other party’s public key using PKCS #1 v1.5. However,
the identities are encrypted with ephemeral symmetric
keys kej and keg that must not be confused with k., which
is derived later in the handshake. ke; and keg are derived
from each party’s nonces and cookies. The rest of the
handshake is identical to the non-revised mode.

PSK Based Authentication. If initiator and responder
do not have asymmetric keys, symmetric PSKs can be

used for authentication. This can be implemented with a
(low or high entropy) password both parties know. The
PSK is used to derive k from the nonces n; and ng, which
are exchanged as ancillary information (Figure 12). The
rest of the handshake is identical to the public key en-
cryption based modes.

2.3 1IKEv2

The structure of IKEv2 [24, 25] is fundamentally differ-
ent from IKEv1 (cf. Figure 2) — Phase 1 and Phase 2
are partially interleaved, and Phase 2 is reduced to a
two-message protocol. For our analysis it is only im-
portant that IKEv2 (cf. Figure 6) shares two authentica-
tion methods with IKEv1, and that we can directly apply
our attacks to impersonate an IPsec device in Phase 1 of
IKEv2.

3 Bleichenbacher Oracles

Bleichenbacher’s attack is a padding oracle attack
against RSA PKCS #1 v1.5 encryption padding, which
is explained in more detail in Appendix B. If an imple-
mentation allows an attacker to determine if the plain-
text of a chosen RSA ciphertext starts with the two bytes
0x00 0x02, then a Bleichenbacher attack is possible. In
his seminal work [9], Bleichenbacher demonstrated how
such an oracle could be exploited:

Basic Algorithm. In the most simple attack scenario,
attackers have eavesdropped a valid PKCS #1 v1.5 ci-
phertext cg. To get the plain message my, the attackers
issue queries to the Bleichenbacher oracle &

ﬁ() 1 ifm=c? mod N starts with 0x00 0x02
Cc)=
0 otherwise

If the oracle answers with 1, the attackers know that
2B <m<3B—1, where B =282 where ¢, is the
byte-length of message m. The attackers can then take
advantage of the RSA malleability and generate new can-
didate ciphertexts by choosing a value s and computing

c¢=(co-s°) mod N = (mg-s)° mod N.

The attackers query the oracle with c¢. If the or-
acle responds with 0, they increment s and repeat
the previous step. Otherwise, the attackers learn that
2B <mgy-s—rN < 3B for some r. This allows the at-
tackers to reduce the range of possible solutions to:

2B+rN 3B+rN

<mp <

570 27th USENIX Security Symposium

USENIX Association

The attackers proceed by refining guesses for s- and r-
values and successively decreasing the size of the inter-
val containing mg. At some point, the interval will con-
tain a single valid value, mg. Bleichenbacher’s original
paper [9] describes this process in further detail.

Signature Forgery Using Bleichenbacher’s Attack.
It is well known that in the case of RSA, performing a
decryption and creating a signature is mathematically the
same operation. Bleichenbacher’s original paper already
mentioned that the attack could also be used to forge
signatures over attacker-chosen data. In two papers by
Jager et al. [19, 20], this has been exploited for attacks
on XML-based Web Services, TLS 1.3, and Google’s
QUIC protocol. The ROBOT study [10] used this at-
tack to forge a signature from Facebook’s web servers as
proof of exploitability.

Optimized Bleichenbacher Attack In 2012, Bardou
et al. [7] presented an optimization of the standard Blei-
chenbacher attack by trimming the initial space for my.
They divide a ciphertext by an integer ¢ by multiplying it
with ¢ mod N with e being the public exponent of the
oracle.

In case the original plaintext was divisible by ¢, then
the multiplication co - u¢ -7~ is equal to =2 under the
assumption that mg and my - ut~! are PKCS #1 v1.5 con-
forming. Note, that the value u and t+ must be coprime
integers with u < %t and t < %’.

In order to find a suitable amount of trimmer values
that result in PKCS #1 v1.5 conforming messages, we
need to calculate a few thousand ¢ and u values, satis-
fying the above requirements. After that, we get a set
of trimmer values shrinking the mg search space into
smaller chunks of 2B- L <my <3B- L.

4 Attack Outline

Bleichenbacher attacks [9] are adaptive chosen cipher-
text attacks against RSA-PKCS #1 v1.5. Though the at-
tack has been known for two decades, it is a common
pitfall for developers [10, 27]. The mandatory use of
PKCS #1 v1.5 in two ciphersuite families — the PKE
(Figure 4) and RPKE (Figure 8) authentication meth-
ods — raised suspicion of whether implementations resist
Bleichenbacher attacks.

4.1 Bleichenbacher Oracles in IKEv1

PKE authentication is available and fully functional
in Cisco’s I0S (Internetwork Operating System). In
Clavister’s cOS and ZyXEL's ZyWALL USGs (Uni-
fied Security Gateways), PKE is not officially avail-

Initiator Responder
(IDy, sk, pkr) (IDg, skr, pkr)
my = (proposals)
cr,0,my
my := (proposal)
Cr,CR, M2
Cp; = Encpr, (ng)
Cia; = Encpr, (IDy)
mg := (9%, Cid;» Cn;)
cr,Cr, M3
Cnp 1= Encpr, (nR)
Ciap = Encpy, (IDR)
my := (9", Cidps Cnr)
Cr.CR, My
k := PRFy(n; np)(cr,Cr) k := PRFy(n; np)(cr,CR)
Derive kg, kq, ke from k Derive kg, ka, ke from k
Compute MAC; using k
ms := Enci, (MACy)
Cr,CRr, M5
Compute MACg using k
me := Enci, (MACR)
Cr.CR, Mg
Compute MACg and Compute MAC; and
compare to mg compare to ms

Figure 4: IKEv1 in Phase 1 using main mode with PKE
based authentication. Differences to Figure 3 are high-
lighted.

able. There is no documentation and no configuration
option for it; therefore, it is not fully functional. Never-
theless, these implementations processed messages us-
ing PKE authentication in our tests. RPKE is imple-
mented in certain Huawei devices including the Seco-
space USG2000 series. We were able to confirm the
existence of Bleichenbacher oracles in all these imple-
mentations (CVE-2018-0131, CVE-2017-17305, CVE-
2018-8753, and CVE-2018-9129), which are explained
in depth in sections 5 — 7.

On an abstract level, these oracles work as follows: If
we replace the ciphertext ¢, in message m3 (cf. Figure 4)
with our modified RSA ciphertext, the responder will

Case 0 indicate an error (Cisco, Clavister, and ZyXEL)
or silently abort (Huawei) if the ciphertext is not
PKCS #1 v1.5 compliant, or

Case 1 continue with message my (Cisco and Huawei)
or return an error notification with a different mes-
sage (Clavister and ZyXEL) if the ciphertext is
PKCS #1 v1.5 compliant.

Each time we get a Case 1 answer, we can advance the
Bleichenbacher attack one more step.

If a Bleichenbacher oracle is discovered in a TLS im-
plementation, then TLS-RSA is broken since one can
compute the Premaster Secret and the TLS session keys
without any time limit on the usage of the oracle. For
IKEv1, the situation is more difficult: Even if there is a
strong Bleichenbacher oracle in PKE and RPKE mode,
our attack must succeed within the lifetime of the IKEv1
Phase 1 session, since a DHKE during the handshake
provides an additional layer of security that is not present
in TLS-RSA. For example, for Cisco this time limit is

USENIX Association

27th USENIX Security Symposium 571

Responder A Attacker Responder B

my

m,

m3

m,=(Cpr= Enc(pkg,ng), ...)

%,
6@,)
Ze)

e
0,5@/.

keep A
waiting

decrypt ng

ms compute k, kg, Ky, ke

Me

Attacker impersonates B !
1

Figure 5: Bleichenbacher attack against IKEvl PKE
based authentication.

currently fixed to 60 seconds for IKEv1 and 240 seconds
for IKEv2.

To phrase it differently: In TLS-RSA, a Bleichen-
bacher oracle allows to perform an ex post attack to break
the confidentiality of the TLS session later on, whereas
in IKEv1 a Bleichenbacher oracle only can be used to
perform an online attack to impersonate one of the two
parties in real time.

4.2 A Bleichenbacher Attack against PKE
and RPKE

Figure 5 depicts a direct attack on IKEv1 PKE:

1. The attackers initiate an IKEv1 PKE based key ex-
change with Responder A and adhere to the protocol
until receiving message my. They extract ¢, from
this message, and record the public values c;,cg.
They also record the nonce n; and the private DHKE
key x chosen by themselves.

2. The attackers keep the IKE handshake with Respon-
der A alive for a maximum period #;eou:. For Cisco
and ZyXEL, we know that #jeeur > 60s, for Clav-
ister and Huawei t;;00u: > 30s.

3. The attackers initiate several parallel PKE based key
exchanges to Responder B.

e In each of these exchanges, they send and re-
ceive the first two messages according to the
protocol specification.

e In message mj3, they include a modified ver-
sion of ¢,, according to the Bleichenbacher at-
tack methodology.

e They wait until they receive an answer my
(Case 1), or they can reliably determine that
this message will not be sent (timeout or re-
ception of a repeated message my).

4. After receiving enough Case 1 answers from Re-
sponder B, the attackers compute ng. From the

DHKE share of Responder A and their private
DHKE share x they compute g*.

5. The attackers now have all the information to com-
plete the key derivation described in Table 1. They
can compute MAC; and encrypt message ms to Re-
sponder A with key k.. They thus can impersonate
Responder B to Responder A.

It is important to note that this attack also can be used
to execute a man-in-the-middle attack against two par-
ties. For that, the connection is interrupted by the at-
tackers and on the following attempt to restart the IKEv1
session with a handshake, the attackers execute a Blei-
chenbacher decryption attack against each party. In case
of success, they can decrypt and manipulate the whole
traffic.

4.3 Key Reuse

Each theoretical description of some public key prim-
itive starts with something like (pk,sk) & KeyGen(1¥)
to indicate that freshly generated keys should be used if
the security proof should remain valid. In practice, this
is difficult to achieve. TLS now has four versions (not
counting the completely broken SSL 2.0 and 3.0), three
major handshake families, both prime order and ellip-
tic curve groups, and many minor variants described in
the different ciphersuites. It is practically impossible to
maintain a separate key pair for each ciphersuite. Typi-
cally, a single RSA key pair together with an encryption
& signing certificate is used to configure a TLS server.
As a result, cross-ciphersuite [26] and cross-version [20]
attacks have been shown, despite security proofs for sin-
gle ciphersuite families.

For IKE, there is a similar situation: Maintaining in-
dividual key pairs for all “ciphersuite families” and ver-
sions of IKE is practically impossible and oftentimes not
supported. This is the case with the implementations by
Clavister and ZyXEL, for example. Thus, it is common
practice to have only one RSA key pair for the whole IKE
protocol family. The actual security of the protocol fam-
ily in this case crucially depends on its cross-ciphersuite
and cross-version security. In fact, our Huawei test de-
vice reuses its RSA key pair even for SSH host identifi-
cation, which further exposes this key pair.

4.4 A Bleichenbacher Attack Against Digi-
tal Signature Based Authentication
The attack against IKEv2 with signature based authenti-

cation proceeds as follows (cf. Figures 6 and 7). It can
easily be adapted to IKEv1.

1. The attackers initiate an IKEv2 signature based key
exchange with Responder A and adhere to the pro-

572 27th USENIX Security Symposium

USENIX Association

Initiator
(IDy, sky.pkrp)

Responder
(IDg, skr,pkr)

IKE_SA_INIT

my = (proposaly, g*,ny)
cr,0,my
my := (proposalg, g¥,ng)
C1,Cr, M2

5 < PRF, (0) (97Y)
(Kas kar, kars ker, ker, kpr, kpr) < PRFs(nr,ng,cr,cr)

IKE_AUTH
Messages Encrypted-then-MACed with (ker, kar), (ker, kar)

MAC; < PRFy,, (IDy)
op « Signgy, (cr,0,m1,nr, MAC;)
mg := (IDy, 01, proposalg)
€1, CRr, M3
MACR « PRFy . (IDp)
OR Sign“n(c,,cu, ma,n, MACr
my := (IDpg, o, proposalg)
C1,CR, Ty

(kirs Kip ko ko) < PRFy, (nr,)

Figure 6: IKEv2 with interleaved Phase 1/Phase 2 with
signature based authentication.

tocol until they receive message m,. After this mes-
sage, they have enough data to complete the key
derivation described in Figure 6. From these keys
they need k,; to compute MAC; = PRka,(IDB),
which is part of the data to be signed with the pri-
vate key of Responder B.

2. They keep the IKE handshake with Responder A
alive for a maximum period #;jyeour- For Cisco 108,
we know that t,e0ur > 240s.

3. The attackers encode the hash & of
(c7,0,my,ng, MAC;) with PKCS #1 v1.5 for dig-
ital signatures. We denote this encoded value as H.
They then compute ¢ < (H - r®) (mod N), which
is known as the blinding step in the Bleichenbacher
attack.

4. The attackers initiate several parallel PKE based
key exchanges with Responder B.

e In each of these exchanges, they send and re-
ceive the first two messages according to Fig-
ure 4.

e In message m3, they include a modified ver-
sion of ¢ according to the Bleichenbacher at-
tack methodology.

e They wait until they receive an answer my
(Case 1), or they can reliably determine that
this message will not be sent (timeout, or re-
ception of a repeated message my).

5. After receiving enough Case 1 answers from Re-
sponder B, the attackers can compute the decryption
m < c? (mod N). Since m = c? = (H-r)? = H? -
r*¢ = H?.r (mod N), they can compute a valid sig-
nature ¢ of H by multiplying m with 7~! (mod N).

[Responder A] [Attacker]

Responder B

m,

m,

compute kg, Ka), Kars Keis Kers kp,, kpR,
compute MAC, = PRF(k,, IDg)
encode h = hash(c,, 0, m;, ng, MAC))
keep A %é
waiting %,

forge signature o
my=Enc(...,05) e B

my

Attacker impersonates B !

Figure 7: Bleichenbacher attack against IKEv2 signature
based authentication.

6. The attackers complete the handshake by sending
message m3 including the valid signature ¢ to Re-
sponder A, thus impersonating Responder B.

4.5 Offline Dictionary Attack on Main
Mode IKEv1 with Pre-Shared Keys

It is common knowledge that the aggressive mode of
IKEv1 using PSKs is susceptible to offline dictionary at-
tacks, against passive attackers who only eavesdrop on
the IP connection. This has actually been exploited in
the past [5].

We show that an offline dictionary attack is also possi-
ble against the main mode of IKEv1 and against IKEv2
with PSKs, if the attackers are active and interfere with
DHKE. Additionally, the attackers have to act as a re-
sponder, thus waiting for a connection request by the
victim initiator. Once the attackers have actively in-
tercepted such an IKE session, they learn an encrypted
MAC; value. This value is computed from public data
from the intercepted session, the shared DHKE value,
and the PSK. Since the attackers know all of these values
except the PSK, they can now perform an offline dictio-
nary attack against it. Details on this attack can be found
in section 9.

5 Bleichenbacher Oracle in Cisco 10S

Cisco includes the PKE authentication mode in IOS,
which is the operating system on the majority of Cisco
routers and current Cisco switches. The mode can also
be found in IOS XE, which combines a Linux kernel with
IOS as an application. IOS XE is used on Cisco’s carrier
routers and enterprise switches [13]. For our tests, we
used a Cisco ASR 1001-X router running IOS XE in ver-
sion 03.16.02.S with IOS version 15.5(3)S2.

USENIX Association

27th USENIX Security Symposium 573

Based on the default configuration, we first generated
an RSA key pair on the device using the default options
(i.e., we created general-keys; cf. Appendix C). Second,
we created a peer entry with the RSA public key and IP
address of our test initiator. Third and last, we configured
a policy that only IKEv1 and only PKE authentication is
allowed. Our test initiator is based on Scapy [8], a Python
library for network packet manipulation. With it, we can
create any IKE message and fully control all fields like
cookies, proposals, nonces, ciphertexts, etc.

Ciphertext ¢, in Figure 4 is the target of our attack.
This ciphertext is sent with message m3 of an IKEvl
handshake. After sending an invalid ciphertext to our
Cisco router, no error message is sent back to the ini-
tiator. Instead, the router retransmits message m, to the
initiator after one second has elapsed. If the router suc-
ceeds decrypting the message, m4 is sent immediately to
the initiator. This is clearly a Bleichenbacher oracle.

5.1 Testing the Oracle’s Strength

For testing PKCS #1 v1.5 compliance, after decrypting
¢y, the responder should check if the first two bytes
of the plaintext are indeed 0x00 0x02, if the following
eight bytes are non-zero, and then search for the first zero
byte. All data following this zero byte are considered the
decrypted message.

Our test device performs all these checks after de-
crypting c,,. As an edge case, Cisco’s implementation
also accepts a plaintext that entirely consists of padding,
i. e. where the zero byte separating padding and message
is the last byte of the plaintext. Furthermore, IOS ignores
c¢ip, and determines the public key to use for its response
based on the IP address of the initiator. One can even
omit ¢;p, when constructing mj3; it does not have any ef-
fect on the Bleichenbacher oracle.

This makes the Cisco oracle a FFT oracle based on the
observations made by Bardou et al. [7]. The probability
to get a valid padded message for such an FFT oracle is
Pr(P|A) = 0.358 with Pr[A] ~ 276 being the probability
that the first two bytes are 0x0002 [7, 9]. For a 128-byte
RSA modulus, the probability Pr(P|A) can be computed
as follows:

Pr(P|A) = (32)8% (1—(32)"18) ~ 0.358
Based on the assumption made by Bleichenbacher we
would need 371,843 requests for a 1024-bit modulus
(128 bytes):

(25216 416%128)
ERrA = 371,843

However, Bleichenbacher made his heuristic approx-
imation based on the upper bound, not the mean value.

Furthermore, we implemented the optimized Bleichen-
bacher attack as proposed by Bardou et al. [7], thus, we
need fewer requests (247,283 on average) to mount the
decryption attack.

5.2 Performance Restrictions

Oracle Performance Restrictions. In order to investi-
gate the performance restriction we used the debug logs
of Cisco IOS. There one can see that IKE handshakes
are processed by a state machine. This state machine
enforces some non-cryptographic boundary conditions,
which have impact to the performance of a Bleichen-
bacher attack against Responder B. For example, 10S
has a limit for concurrent SAs under negotiation of 900.

Unfortunately, Cisco’s implementation is not opti-
mized for throughput. From our observations, we assume
that all cryptographic calculations for IKE are done by
the device’s CPU despite it having a hardware acceler-
ator for cryptography. One can easily overload the de-
vice’s CPU for several seconds with a standard PC burst-
ing handshake messages, even with the default limit for
concurrent handshakes. Moreover, even if the CPU load
is kept below 100 %, we nevertheless observed packet
loss. With 1024-bit RSA keys, our test device is capable
of handling only 850 Bleichenbacher requests per sec-
ond on average. We also saw significant CPU load after
around 64,000 Bleichenbacher oracle requests, possibly
caused by a memory limitation of our test device. For
other devices or more powerful ones, this is probably not
a limitation. Another possible reason is that hash colli-
sions occur when the device needs to store many cookie-
value pairs in its SA database due to the high amount of
IKE handshakes during the attack.

Attack Performance Restrictions. For an attack, Re-
sponder A has to be held waiting. Here, a limitation in
IKEvl1 is the quick mode timer. 1t is started after re-
ceiving the first handshake message. If the quick mode
handshake (i.e. phase 2 of the IKE handshake) is not
completed after 75 seconds, this timer cancels the hand-
shake deleting all ephemeral values like the cookie cg,
the nonce ng, and the DH secret y.

Furthermore, the state machine maintains an error
counter with a fixed limit of five. Every time an er-
roneous message is received or the device retransmits
a message during Phase 1, the counter is incremented.
Retransmissions happen every ten seconds if no mes-
sage was received during that time, which we refer to as
SA timeouts. After a fifth retransmission of any Phase 1
packet, IOS waits one last time for ten seconds before
canceling the handshake. This translates to a maximum
of 60 seconds between two messages sent from the peer.

574 27th USENIX Security Symposium

USENIX Association

For an attack, the attackers require the victim’s DHKE
share that is sent with message m3 or my, depending on
the role the attackers play. If the attackers play the role of
an initiator, a Bleichenbacher attack has to be successful
within the maximum of 60 seconds between messages
my4 and ms. If the attackers play the role of a responder,
a few seconds can be gained by delaying message my
slightly below ten seconds so that no retransmission is
triggered.

In Cisco’s IKEv2 implementation, timers are more re-
laxed. Here, an attack can take up to 240 seconds until a
timeout occurs.

6 Bleichenbacher Oracles in implementa-
tions by Clavister & ZyXEL

Clavister cOS and the firmware of ZyXEL ZyWALL
USGs do not officially support the PKE authentication
mode. It is not documented in their manuals and the web
and command line interfaces do not offer any configu-
ration option for it. Nevertheless, both implementations
responded to handshake proposals with PKE authentica-
tion in our tests. For these, we used a virtual Clavister
cOS Core in version 12.00.06 and a ZyXEL ZyWALL
USG 100 running firmware version 3.30 (AQQ.7).

For PKE authentication, both implementations use the
key pair that is configured for IKEv1 authentication with
signatures. Both implementations show the same behav-
ior regarding the handling of IKEv1 (e. g. both respond
with identical error messages).

PKE authentication with Clavister and ZyXEL is non-
functional since one cannot configure public keys for
peers. Therefore, we always expect an error notifica-
tion after sending message m3. When sending an in-
valid ciphertext c,, with message mj3, we receive an error
message containing only 16 seemingly random bytes. A
valid ¢, instead triggers an error message containing the
string “Data length too large for private key to decrypt”.
While the error message itself is misleading (the cipher-
text can in fact be decrypted by the private key), the dif-
ference in the error messages is clearly a Bleichenbacher
oracle.

Clavister and ZyXEL perform the same checks as
Cisco. Therefore, the strength of the oracle and the esti-
mated amount of messages is identical to the Cisco case.
We did not evaluate the performance of an attack against
these oracles.

7 Bleichenbacher Oracle in Huawei Seco-
space USG2000 series

We identified Huawei as another large network equip-
ment supplier who offers the RPKE mode with cer-

Initiator Responder

(IDy, sky, pki) (IDr. sk, pkr)
my := (proposals)
cr,0,my
mg = (proposal)
Cr,CR, M2
e, = Encppp (nr)
ker := PRF,,, (cr)
Cid; = Encye, (IDy)
m3 = (9%, Cid;+ Cn;) o e
1,CR, M3
Cnp = Encpr, (ng)
ker := PRF,,(cr)
Cidp = Encre, (IDR)
my = (9", Cidp, Cng)
Cr,CR, My

k= PRFh(m.n”)(CI.cR)

Derive kg, kq, ke from k

Compute MAC; using k&
ms := Ency, (MAC;)

k := PRFu(n) (€15 CR)
Derive kg, kq, ke from k

Cr,CR, M5

Compute MACp using k
mg = Ency, (MACR)
Cr1,CR, Mg

Compute MACg and
compare to mg

Compute MAC; and
compare to ms

Figure 8: IKEv1 in Phase 1 using main mode with RPKE
based authentication. Differences to Figure 4 are high-
lighted.

tain devices such as their Secospace USG2000 se-
ries [18]. For our tests, we used a Huawei Sec-
ospace USG2205 BSR firewall running firmware version
V300R001C10SPC700.

The steps for setting up an IPsec configuration are very
similar to Cisco. We started with the default configura-
tion and generated an RSA key pair. Importing the RSA
public key of our Scapy based test initiator turned out
to be a little more complicated since the required data
format is non-standard. Similar to Cisco, we configured
a proposal, a policy, and a policy-template so that only
IKEv1 with RPKE authentication is allowed.

Again, ciphertext c¢,, (cf. Figure 8) is the target of our
attack. After sending an invalid ciphertext with mj3 to the
device, the firewall does not send an error message back
to the initiator. In contrast to Cisco’s implementation,
there are no retransmissions. If the firewall succeeds in
processing the message, m4 is sent to the initiator. This
is also clearly a Bleichenbacher oracle.

7.1 Testing the Oracle’s Strength

Huawei’s firewall also performs all PKCS #1 v1.5 checks
mentioned in subsection 5.1 after decrypting c,,. There-
fore, Huawei’s oracle is similar to the FFT oracle.
Howeyver, the constraints of the RPKE mode reduce
the strength of the oracle. If all PKCS #1 v1.5 checks
were successful, the ephemeral key ke; is derived and
used to decrypt the identity payload cjp, in order to de-
termine the public key to use for its response. Unfortu-
nately, during a Bleichenbacher attack the attackers do

USENIX Association

27th USENIX Security Symposium 575

not know which ke; is derived. There is no way for at-
tackers to distinguish a failed PKCS #1 v1.5 check from
a failed decryption of ¢;p,. This reduces the probability
to get a Case 1 answer from Huawei by the factor %.
Thus, Huawei’s Bleichenbacher oracle has an additional
false negative rate of 56.64 %, which is explained in more
detail in the next section. Consequently, we estimate
that a successful attack requires 371,843 /(1 —0.5664) =

857,571 requests.

7.2 Oracle Performance Restrictions

RFC 2409 defines an unusual padding for messages en-
crypted using symmetric algorithms: The message is
padded with zero bytes. The last padding byte contains
the number of zero bytes inserted. Padding is mandatory
even if this requires an additional block containing only
padding. Figure 9 gives examples of this padding.

| message [ERIGIIGN) 04
| message [T o6 |

Figure 9: The padding scheme for symmetric encryp-
tions defined by RFC 2409.

Huawei’s implementation of this padding is odd:
There are no checks whether the padding bytes are in fact
zero-bytes. The implementation only reads the last byte
and removes the given number of bytes together with the
padding length byte. It does not verify whether the value
of the padding length byte is larger than the block length
of the negotiated algorithm. It only cancels processing
if the value of the padding length byte is larger than the
decrypted ciphertext or if the padding length byte is zero.

In contrast to Cisco, we observed that the Huawei de-
vice as responder thoroughly checks the identity payload
cp, sent by the initiator. It has to be present, its length
has to be a multiple of the symmetric algorithm’s block
length, and the plaintext needs to be correctly padded
in terms of the checks described above. If the plaintext
identity ID; after removing the padding is 121 or less
bytes in length, the device however ignores the identity
value and continues the handshake using the initiator’s
configured public key based on its IP address. If IDy is
122 bytes long, the device crashes and reboots, which
takes several minutes. If /Dy is 123 to 255 bytes long,
IDj is used to determine the public key of the initiator. If
1Dy is more than 256 bytes long, the Huawei device also
crashes and reboots.

This complicates a Bleichenbacher attack scenario:
Even if the attackers hit a PKCS #1 v1.5 compliant mes-
sage, the decrypted value (i.e. what the device treats as
the nonce n;) is unknown to them. This value is then used

to derive the key ke;, which in turn is used to decrypt
cip, supplied by the attackers. Since the attackers do not
have ke, they cannot construct any ¢;p, that decrypts to a
meaningful /D;. During our tests, we sent random bytes
for cyp, to our test device. However, even without influ-
ence on /Dy, the attackers can adjust the length of ¢;p,.

Here, the attackers have to deal with two contradicting
restrictions: On the one hand, it is necessary to keep the
length of ID; below 122 bytes to prevent both a crash and
the evaluation of the value of /D;. On the other hand,
no assumptions on the padding length byte can be made.
The longer the length of cyp,, the higher the possibility
that the value of the padding length byte is below the
plaintext length so that no padding error occurs.

Regardless of the length of c¢jp,, the padding length
byte can only decrypt to one of 256 possible values. Tak-
ing into account that the length of ¢;p, has to be a mul-
tiple of 16 (the block length of AES), the attackers have
to choose between a ¢;p, with a length of 128 bytes and
one with 112 bytes. For 128 bytes, all padding length
byte values above 121 and zero will make the device not
respond, either due to a padding error, an evaluation of
1Dy, or a crash. This way, the Bleichenbacher oracle has
an additional false negative rate of 47.66 %.

For 112 bytes, the chance of getting a Case 1 answer is
slightly lower. Now, all padding length byte values above
111 and zero will make the device not respond due to
the padding error. With this choice, the Bleichenbacher
oracle has an additional false negative rate of 56.64 %.
However, this choice eliminates the chance of hitting the
crash condition with 122 bytes. Therefore, we recom-
mend a length of 112 bytes for ¢;p,, which favors relia-
bility of the attack over speed.

8 Implementing Bleichenbacher Attacks

For our proof-of-concept attack, we focused on our Cisco
test device due to the high false negative rate of the
Huawei oracle. In order to keep the required time for
an attack below the limits, we built a highly parallelized
Bleichenbacher attacker using Java (cf. Figure 10). This
tool pipelines all steps of the attack through /N and OUT
queues and keeps track of used and unused SAs.

SA States. There is a global limit of 900 Phase 1 SAs
under negotiation per Cisco device in the default con-
figuration. If this number is exceeded, one is blocked.
Thus, one cannot start individual handshakes for each
Bleichenbacher request to issue. Instead, SAs have to
be reused as long as their error counter allows.

For that, we are pooling SAs and tracking their states.
This is necessary since for example receiving a message
my can have three meanings: (1.) The SA has been cre-

576 27th USENIX Security Symposium

USENIX Association

ated as a response to a message mi, (2.) a Bleichenbacher
request was not successful and message m, was a retrans-
mission after one second, or (3.) the SA was not recently
used for a request and message m; was a retransmission
after ten seconds.

When preparing a Bleichenbacher request, an SA is
taken from the unused SA pool and put into the used SA
pool to ensure that SAs are not mixed up. In a parallel
attack, constant SA state checks at all processing steps
are required. After receiving a response to a Bleichen-
bacher request, we return the corresponding SA to the
unused SA pool.

In our Bleichenbacher attacker, an SA can only be in
one out of eight states. The life of an SA starts with
the generation of an initiator cookie c¢;. With it, the first
message m is send and the state of the SA is set to
PRESTART. When we receive a corresponding message
my, we store the responder cookie value for that SA and
update its state to FRESH. From now on, every time we
receive a message my for that SA, we increment its state
from FIRST to FIFTH. After the FIFTH state is reached
and another timeout or Bleichenbacher response is re-
ceived, we set the state to EXHAUSTED and remove the
SA from the unused SA pool.

Packet and Network Pool. For a fast attack, we re-
quire an efficient packet builder and analyzer. The for-
mer only creates either first messages (m;) for SA gen-
eration or third messages (m3) for Bleichenbacher re-
quests. The latter analyzes the responses from the Blei-
chenbacher oracle. Our packet builder uses static bytes
sequences for the messages updating only the cookie val-
ues and encrypted nonce payloads. We omit the iden-
tity payload ¢;p, from ms3 in order to save an unnec-
essary public key decryption. The analyzer only needs
the length of a received message and the values of two
bytes at specific positions in order to distinguish Blei-
chenbacher responses from timeout packets.

For sending and receiving packets with multiple
threads, we use Java NIO DatagramChannels and NIO
Selectors.

Bleichenbacher Producer and Consumer. A spe-
cial producer thread executes the Bleichenbacher attack
against a target and distributes the computations to con-
sumers. We implemented two distribution mechanism
(multiple and single interval) in order to address the dif-
ferent steps in Bleichenbacher’s attack.

The consumers do the expensive computations for the
Bleichenbacher attack. In order to address the differ-
ent computations in the two attack variants (standard and
optimized), the consumers are provided with a task de-
scription of whether a multiplication or a division of the

ciphertext is required. Other consumers are used to ver-
ify the results from the packet analyzer and to notify the
producer in case a valid padding was found.

Cisco Oracle Simulator. In order to accelerate our
evaluation process, we first queried our test device with
different valid and invalid PKCS #1 v1.5 messages. Af-
ter that, we analyzed its responses and reimplemented
its behavior as a local multi-threaded simulator. Thus,
the speed of finding valid PKCS #1 v1.5 messages is
only limited by the hardware resources of the attackers’
systems.

8.1 Evaluation of the Bleichenbacher
IKEv1 Decryption Attack

For the decryption attack from subsection 4.2 on Cisco’s
IKEvl responder, we need to finish the Bleichen-
bacher attack in 60 seconds. If the public key of our
ASR 1001-X router is 1024 bits long, we measured an
average of 850 responses to Bleichenbacher requests per
second. Therefore, an attack must succeed with at most
51,000 Bleichenbacher requests.

Based on this result, we used our Cisco oracle sim-
ulator to measure the percentage of attacks that would
succeed before the time runs out. These results can be
found in Figure 11.

Standard Bleichenbacher. In total, we executed 990
decryption attacks with a 1024-bit public key and differ-
ent encrypted nonces. On average, a decryption using
Bleichenbacher’s original algorithm requires 303,134 re-
quests. However, in 78 simulations, we needed less than
51,000 request to decrypt the nonce and thus could have
impersonated the router.

Optimized Bleichenbacher. For the optimized Blei-
chenbacher algorithm, we executed 200 attacks against
our Cisco oracle simulator with different nonces and a
1024-bit key. On average, we gained a reduction for
requests by approximately 18 % (247,283) using 3,000
trimmers for each attack. The amount of attacks that re-
quire less than 51,000 requests increases from 7.88 % to
26.20 %.

Real Cisco Hardware. For an attack against the real
hardware, the limitations of Cisco’s IKEv1 state machine
are significant. The main obstacle is the SA manage-
ment: Once the attackers negotiate several thousand SAs
with the router, its SA handling becomes very slow.

We managed to perform a successful decryption at-
tack against our ASR 1001-X router with approximately

USENIX Association

27th USENIX Security Symposium 577

Attacker Pool

Packet Pool

Network Pool

Consumer

Bleichenbacher
Producer

Out
N CE— Bleichenbacl
Bleichenbacher I

Unused
SA's

Bleichenbacher

S

Bleichenbacher
Consumer

r —>@—> oo
acke! en

Builder letworky Worker

- Unused
SA

Keys

IN
Bleichenbacl

Receive
Worker

¢ (IN ()‘
Packet Network
Analyzer

Figure 10: Design of our highly parallelized Bleichenbacher attacker.

421

(#542 total)

Standard
signature-forge

121
with requests under limit | 22.32%

912

78
7.88%

Standard
decryption attack
(#990 total)

with requests under limit 3

= 324
8
<] equests over limi 73.809
§2 withrequests over limit _ 3.80%

115
26.20%

Optimized
decryption

0 100 200 300 400 500 600 700 800 900 1000

Figure 11: Statistics of 990 standard decryption, 439
optimized decryption, and 542 signature-forgery attacks
against our Cisco Bleichenbacher oracle simulator.

19,000 Bleichenbacher requests. However, due to the
necessary SA negotiations, the attack took 13 minutes.

Note that a too slow Bleichenbacher attack does not
permanently lock out attackers. If a timeout occurs, they
can just start over with a new attack using fresh values
hoping to require fewer requests. If the victim has de-
ployed multiple responders sharing one key pair (e. g. for
load balancing), this could also be leveraged to speed up
an attack.

8.2 Evaluation of the Bleichenbacher
IKEv2 Signature Forgery Attack

For our attack with forged signatures, we have 240 sec-
onds time. Therefore, we may issue 204,000 Bleichen-
bacher requests before the time runs out. The timeout
limits of IKEv1 are irrelevant for this attack; the IKEv1
handshake is only used to forge the signature we need for
message ms in IKEv2 (cf. Figure 7).

Like with the decryption attack, we used our Cisco
oracle simulator in order to speed up the evaluation.
We simulated 542 attacks with a 1024-bit key and ran-
dom messages padded as PKCS #1 v1.5 for signatures.
From these attacks, 121 signatures needed less than

204,000 Bleichenbacher requests (on average 508,520).
Thus, 22 % of our attack simulations would have been
fast enough to allow attackers to impersonate a Cisco
router. Note that due to the increased time limit, attack-
ing IKEv2 with a forged signature has a higher success
rate than the same attack on IKEv1.

9 Offline Dictionary Attack against Weak
PSKs

PSKSs as authentication method are often found in sce-
narios where users authenticate against services such as
websites and computer logins. Other applications in-
clude interconnecting devices like with Bluetooth, Wi-Fi,
or IKE. In the case of IKE, knowing the PSK allows
attackers to impersonate any of the peers of an IPsec
connection. We will show in the following section how
to mount offline dictionary attacks against IKEv1 and
IKEv2.

9.1 IKEv1l with Weak Pre-Shared Keys

It is well known that the PSK based mode of authen-
tication is vulnerable to an offline dictionary attack
when used together with the aggressive mode of IKEv1
Phase 1. This has actually been exploited in the past [5].
For the main mode however, only an online attack against
PSK authentication was thought to be feasible. This re-
quired attackers to initiate many handshake attempts to
try all different passwords making it likely to be detected.

We present an attack that only requires a single hand-
shake in which attackers simulate a responder. With it,
the attackers learn enough information to mount an of-
fline dictionary attack. Thus, they can learn the PSK and
can thus impersonate any party or act as a Man in the
Middle.

On the network, the attackers wait for the victim to
initiate a handshake with a responder. If victim and re-
sponder already have an active connection, the attackers

578 27th USENIX Security Symposium

USENIX Association

Initiator Responder
(ID;, PSK) (IDg, PSK)
my = (proposals)
cr,0,my
my = (proposal)
Cr,CR, M2
my = (g%, 1)
Cr,CR,M3
my = (¥, nR)

Cr,CR, My

k:= PRFpsk(nr,ng)

Derive kg, kq, ke from k

Compute MAC; using k
msg = Ency, (IDr, MACy)

k := PRFpsk(nr,ng)
Derive kq, kg, ke from k

C1,CR, M5

Compute MACg using k
meg := Ency_ (IDg, MACR)
Cr,CRr, Mg
Compute MACg and
compare to mg

Compute MAC; and
compare to ms

Figure 12: IKEv1 in Phase 1 using main mode with PSK
based authentication. Differences to Figure 3 are high-
lighted.

may enforce a new handshake by dropping all packets of
the already established connection, which will eventually
lead to a new handshake.

During this handshake, the attackers do not forward
the packets to the responder but rather simulate to be the
responder (e. g. by spoofing its IP address). The attackers
act as normal responder performing the Phase 1 proto-
col and record all messages exchanged until they receive
message is.

With message ms, the attackers receive ID; and MAC,
encrypted with k, (cf. Figure 12). Of all the values
that ms is generated from, the attackers only lack knowl-
edge of ID; and the key k. IDj is easy to guess, as
often it is just the IP address of the initiator. The key
k = PRFpsk (ns,ng) is directly derived from the PSK the
attackers want to learn.

This allows an offline dictionary attack against the
PSK. To check whether the guessed PSK is correct, the
attackers can derive k and the other three keys. If the
attackers’ candidate for k, is capable of decrypting mes-
sage ms, the attack is successful and the attackers learn
the PSK. This is possible since the plaintext of message
ms has a known structure beginning with the known IDj.

Evaluation, Impact and Countermeasure. To verify
the attack, we implemented and tested it against the open
source IKE implementation strongSwan in version 5.5.1.
Since the attack solely relies on the protocol specification
and does not depend on any implementation error, we be-
lieve every RFC-compliant implementation of IKEv1 to
be vulnerable. Therefore, the main mode PSK authenti-
cation has to be considered as insecure as the aggressive
mode one. The only available countermeasure against
this attack is choosing a cryptographically strong PSK
that resists dictionary attacks.

9.2 IKEv2

In general, IKEv2 is perceived to be more secure than
IKEv1. However, the attack described above works simi-
larly against IKEv2. The current standard RFC 5996 [23]
mentions that it is generally not smart to rely only on
a user chosen password and recommends to use IKEv2
together with EAP (Extensible Authentication Protocol)
protocols. However, in practice IKEv2 is usually used
without EAP.

Instead of using IKEv2 together with some EAP-TLS
variant (like EAP-TTLS with EAP-MDS5), one could
also switch to OpenVPN and thus reduce the overhead
from tunneling TLS in IKEv2. Moreover, the advice
from RFC 5996 is misleading since some EAP modes
like EAP-MDS5 or EAP-MSCHAPvV2 also do not pre-
vent offline dictionary attacks, they just require the at-
tackers to shift from IKE to attacking EAP. Ultimately,
our research indicates that implementations only support
IKEv2 with EAP for remote access of a user to a net-
work. Site-to-site scenarios are not covered by this con-
struction and therefore remain vulnerable to the attack.

10 Related Work

IPsec and IKE For some time, real-world crypto-
graphic research in the area of IPsec concentrated on the
encryption layer. Thus, the security of ESP is well un-
derstood today, thanks to major contributions from Pa-
terson et al. in 2006-2007. Their work shows vul-
nerabilities affecting encryption-only configurations of
ESP due to flaws in the standard and its implementa-
tions [14, 28]. These flaws can be resolved by integrity
protection. However, in 2010 they also showed that
a particular integrity protection — namely a MAC-then-
encrypt configuration — also leads to a plaintext-recovery
attack [15].

Research paid only little attention to IKE. The Log-
jam paper [5] discovered that some of the most used DH
groups standardized for IKE offer an attack surface if
the attackers are able to perform costly precomputations.
Another contribution by Checkoway et al. shows that the
random number generator used by VPN devices from Ju-
niper Networks was manipulated leading to a passive de-
cryption vulnerability [11]. However, both these findings
do not target IKE itself, but rather the parameters of un-
derlying cryptographic building blocks.

Bleichenbacher Attacks. Even though the seminal
work by Bleichenbacher dates back to 1998 [9],
Bleichenbacher vulnerabilities are discovered regularly.
Though the vulnerability is not protocol-related, the ma-
jority of vulnerabilities have been found in TLS imple-
mentations. A paper by Meyer et al. found Bleichen-

USENIX Association

27th USENIX Security Symposium 579

bacher vulnerabilities in OpenSSL, JSSE (Java Secure
Socket Extension), and a TLS hardware accelerator chip
[27]. Somorovsky showed that MatrixSSL was also af-
fected [29]. Recently, the ROBOT survey showed that
thousands of domains on the Internet were running Blei-
chenbacher vulnerable servers, among them Facebook
and PayPal [10].

Cross Protocol Attacks. VPNs have already been tar-
get of cross protocol attacks. One has been found in
PPTP (Point-to-Point Tunneling Protocol) VPNs [17].
Another famous cross protocol attack is DROWN [6],
which exploits the broken SSL 2.0 to break the current
TLS 1.2. In 2012, Mavrogiannopoulos et al. described a
cross-protocol attack against all TLS versions using ex-
plicit elliptic curve Diffie-Hellman parameters [26]. A
paper by Jager et al. [20] shows how to attack TLS 1.3
and QUIC from a Bleichenbacher oracle in some imple-
mentation of previous TLS versions.

11 Conclusion

In this paper, we have shown that all versions and vari-
ants of the IPsec’s Internet Key Exchange (IKE) protocol
can be broken, given two entry points.

The first entry point is weak PSKs. Offline dictionary
attacks are possible against all three different variants,
with two different adversaries: IKEv1 PSK in aggressive
mode can be broken by a passive adversary, and both
IKEv1 PSK in main mode and IKEv2 PSK can be broken
by an active adversary who acts as a responder.

The second entry point is Bleichenbacher oracles in
the IKEvl PKE and RPKE variants. We have shown
that such oracles exist in Cisco, Clavister, Huawei,
and ZyXEL devices, and have computed their strength.
Given an oracle of this strength, we were able to show
that under the attack restrictions imposed by Cisco’s de-
fault values, we could successfully attack all public key-
based variants of IKEv1 and IKEv2 with success proba-
bilities between 7 % and 26 % in a single attempt. There-
fore, by repeating the attacks, all implementations can
be broken. In this work, we focus on IKE implementa-
tions. However, if network devices reuse RSA key pairs
for other services like SSH, TLS, etc., further attack sur-
faces could arise.

To counter these attacks, both entry points must be
closed: Only high entropy PSKs should be used, and
both PKE and RPKE modes should be deactivated in all
IKE devices. It is not sufficient to configure key sep-
aration on the sender side. All receivers must also be
informed about this key separation — novel solutions are
required to achieve this task.

Acknowledgments

The authors wish to thank Juraj Somorovsky and Tibor
Jager with whom we had long conversations regarding
Bleichenbacher attacks. Thanks to Cisco who provided
us test hardware for our experiments. This paper is
based in part upon work in the research projects SyncEnc
and VERTRAG, which are funded by the German
Federal Ministry of Education and Research (BMBE,
FKZ: 16KIS0412K and 13N13097), as well as the
FutureTrust project funded by the European Commission
(grant 700542-Future-Trust-H2020-DS-2015-1).

Notes

IRFC 2409 calls these keys SKEYID, SKEYID,, SKEYID,, and
SKEYID,. We shorten these names for brevity.

2RFEC 2409 calls these values HASH. This is misleading, since in
practice the HMAC version of the negotiated hash algorithm is used as
PRF. Therefore, we use the name MAC.

References

[1] Automotive Network Exchange. http://www.anx.
com/.

[2] European Network Exchange. http://www.enx.
com/.

[3] Japanese Network Exchange. https://www.jnx.
ne.jp/.

[4] 3RD GENERATION PARTNERSHIP PROJECT
(3GPP). 2018. 3GPP System Architecture Evolution
(SAE); Security architecture. 3GPP TS 33.401
V15.3.0. http://www.3gpp.org/ftp/specs/
archive/33_series/33.401/33401-£30.zip.

[5] ADRIAN, D., BHARGAVAN, K., DURUMERIC, Z.,
GAUDRY, P., GREEN, M., HALDERMAN, J. A,
HENINGER, N., SPRINGALL, D., THOME, E., VA-
LENTA, L., VANDERSLOOT, B., WUSTROW, E.,
ZANELLA-BEGUELIN, S., AND ZIMMERMANN, P.
2015. Imperfect forward secrecy: How Diffie-
Hellman fails in practice. In ACM CCS 15: 22nd Con-
ference on Computer and Communications Security.

[6] AVIRAM, N., SCHINZEL, S., SOMOROVSKY, J.,
HENINGER, N., DANKEL, M., STEUBE, J., VA-
LENTA, L., ADRIAN, D., HALDERMAN, J. A.,
DUKHOVNI, V., KASPER, E., COHNEY, S., EN-
GELS, S., PAAR, C., AND SHAVITT, Y. 2016.
DROWN: Breaking TLS with SSLv2. In 25th
USENIX Security Symposium (USENIX Security 16).

[71 BARDOU, R., FocaArDI, R., KAwAMOTO, Y.,
SIMIONATO, L., STEEL, G., AND TSAyY, J.-K. 2012.

580 27th USENIX Security Symposium

USENIX Association

http://www.anx.com/
http://www.anx.com/
http://www.enx.com/
http://www.enx.com/
https://www.jnx.ne.jp/
https://www.jnx.ne.jp/
http://www.3gpp.org/ftp/specs/archive/33_series/33.401/33401-f30.zip
http://www.3gpp.org/ftp/specs/archive/33_series/33.401/33401-f30.zip

Efficient padding oracle attacks on cryptographic
hardware. In Advances in Cryptology—CRYPTO 2012.

[8] BioNDI, P. Scapy. http://www.secdev.org/
projects/scapy/.

[9] BLEICHENBACHER, D. 1998. Chosen ciphertext at-
tacks against protocols based on the RSA encryption
standard PKCS #1. In Advances in Cryptology —
CRYPTO °98.

[10] BOCK, H., SOMOROVSKY, J., AND YOUNG, C.
2017. Return Of Bleichenbacher’s Oracle Threat
(ROBOT). In 27th USENIX Security Symposium
(USENIX Security 18).

[11] CHECKOWAY, S., MASKIEWICZ, J., GAR-
MAN, C., FrRIED, J., COHNEY, S., GREEN, M.,
HENINGER, N., WEINMANN, R.-P., RESCORLA, E.,
AND SHACHAM, H. 2016. A systematic analysis of
the Juniper Dual EC incident. In ACM CCS 16: 23rd
Conference on Computer and Communications Secu-

rity.

[12] Cisco SYSTEMS INC. 2017a. Cisco
ios security command reference. https:
//www.cisco.com/c/en/us/td/docs/ios-
xml/ios/security/al/sec-al-cr-book/sec-
cr-c4.html#wp1444104032.

[13] Cisco SYSTEMS INC. 2017b. Configuring
Internet Key Exchange for IPSec VPNs - RSA
Encrypted Nonces. https://www.cisco.
com/en/US/docs/ios-xml/ios/sec_conn_
ikevpn/configuration/15-2mt/sec-key-
exch-ipsec.html#GUID-5257C56A-122F-47F6-
8BC5-3E462C946879.

[14] DEGABRIELE, J. P. AND PATERSON, K. G. 2007.
Attacking the IPsec standards in encryption-only con-
figurations. In 2007 IEEE Symposium on Security and
Privacy.

[15] DEGABRIELE, J. P. AND PATERSON, K. G. 2010.
On the (In)Security of IPsec in MAC-then-encrypt
configurations. In ACM CCS 10: 17th Conference on
Computer and Communications Security.

[16] HARKINS, D. AND CARREL, D. 1998. The In-
ternet Key Exchange (IKE). RFC 2409 (Proposed
Standard). Obsoleted by RFC 4306, updated by RFC
4109.

[17] HORST, M., GROTHE, M., JAGER, T., AND
SCHWENK, J. 2016. Breaking PPTP VPNs via RA-
DIUS Encryption. In CANS 16: 15th International
Conference on Cryptology and Network Security.

[18] HUAWEI TECHNOLOGIES Co., LTD. 2017. Au-
thentication methods IKEvl USG2100/2200/5100
BSR&HSR & USG2000/5000 V300RO001.
http://support.huawei.com/enterprise/
pages/doc/subfile/docDetail. jsp?
contentId=D0OC1000010065&partNo=100172#
authentication-method_ike_pro.

[19] JAGER, T., PATERSON, K. G., AND SoO-
MOROVSKY, J. 2013. One bad apple: Backwards
compatibility attacks on state-of-the-art cryptography.
In ISOC Network and Distributed System Security
Symposium — NDSS 2013.

[20] JAGER, T., SCHWENK, J., AND SOMOROVSKY, J.
2015. On the security of TLS 1.3 and QUIC against
weaknesses in PKCS #1 v1.5 encryption. In ACM
CCS 15: 22nd Conference on Computer and Com-
munications Security.

[21] KALISKI, B. 1998. PKCS #1: RSA Encryption
Version 1.5. RFC 2313 (Informational). Obsoleted by
RFC 2437.

[22] KAUFMAN, C. 2005. Internet Key Exchange
(IKEv2) Protocol. RFC 4306 (Proposed Standard).
Obsoleted by RFC 5996, updated by RFC 5282.

[23] KAUFMAN, C., HOFFMAN, P., NIR, Y., AND
ERONEN, P. 2010. Internet Key Exchange Proto-
col Version 2 (IKEv2). RFC 5996 (Proposed Stan-
dard). Obsoleted by RFC 7296, updated by RFCs
5998, 6989.

[24] KAUFMAN, C., HOFFMAN, P., NIR, Y., ERONEN,
P., AND KIVINEN, T. 2014. Internet Key Exchange
Protocol Version 2 (IKEv2). RFC 7296 (INTERNET
STANDARD). Updated by RFCs 7427, 7670.

[25] KIVINEN, T. AND SNYDER, J. 2015. Signature
Authentication in the Internet Key Exchange Version
2 (IKEv2). RFC 7427 (Proposed Standard).

[26] MAVROGIANNOPOULOS, N., VERCAUTEREN, F.,
VELICHKOV, V., AND PRENEEL, B. 2012. A cross-
protocol attack on the TLS protocol. In ACM CCS 12:
19th Conference on Computer and Communications
Security.

[27] MEYER, C., SOMOROVSKY, J., WEIss, E.,
SCHWENK, J., SCHINZEL, S., AND TEWS, E. 2014.
Revisiting SSL/TLS Implementations: New Blei-
chenbacher Side Channels and Attacks. In 23rd
USENIX Security Symposium (USENIX Security 14).

[28] PATERSON, K. G. AND YAU, A. K. 2006. Cryp-
tography in theory and practice: The case of encryp-
tion in IPsec. In Advances in Cryptology — EURO-
CRYPT 2006.

USENIX Association

27th USENIX Security Symposium 581

http://www.secdev.org/projects/scapy/
http://www.secdev.org/projects/scapy/
https://www.cisco.com/c/en/us/td/docs/ios-xml/ios/security/a1/sec-a1-cr-book/sec-cr-c4.html#wp1444104032
https://www.cisco.com/c/en/us/td/docs/ios-xml/ios/security/a1/sec-a1-cr-book/sec-cr-c4.html#wp1444104032
https://www.cisco.com/c/en/us/td/docs/ios-xml/ios/security/a1/sec-a1-cr-book/sec-cr-c4.html#wp1444104032
https://www.cisco.com/c/en/us/td/docs/ios-xml/ios/security/a1/sec-a1-cr-book/sec-cr-c4.html#wp1444104032
https://www.cisco.com/en/US/docs/ios-xml/ios/sec_conn_ikevpn/configuration/15-2mt/sec-key-exch-ipsec.html#GUID-5257C56A-122F-47F6-8BC5-3E462C946879
https://www.cisco.com/en/US/docs/ios-xml/ios/sec_conn_ikevpn/configuration/15-2mt/sec-key-exch-ipsec.html#GUID-5257C56A-122F-47F6-8BC5-3E462C946879
https://www.cisco.com/en/US/docs/ios-xml/ios/sec_conn_ikevpn/configuration/15-2mt/sec-key-exch-ipsec.html#GUID-5257C56A-122F-47F6-8BC5-3E462C946879
https://www.cisco.com/en/US/docs/ios-xml/ios/sec_conn_ikevpn/configuration/15-2mt/sec-key-exch-ipsec.html#GUID-5257C56A-122F-47F6-8BC5-3E462C946879
https://www.cisco.com/en/US/docs/ios-xml/ios/sec_conn_ikevpn/configuration/15-2mt/sec-key-exch-ipsec.html#GUID-5257C56A-122F-47F6-8BC5-3E462C946879
http://support.huawei.com/enterprise/pages/doc/subfile/docDetail.jsp?contentId=DOC1000010065&partNo=100172#authentication-method_ike_pro
http://support.huawei.com/enterprise/pages/doc/subfile/docDetail.jsp?contentId=DOC1000010065&partNo=100172#authentication-method_ike_pro
http://support.huawei.com/enterprise/pages/doc/subfile/docDetail.jsp?contentId=DOC1000010065&partNo=100172#authentication-method_ike_pro
http://support.huawei.com/enterprise/pages/doc/subfile/docDetail.jsp?contentId=DOC1000010065&partNo=100172#authentication-method_ike_pro

[29] SOMOROVSKY, J. 2016. Systematic fuzzing and
testing of TLS libraries. In ACM CCS 16: 23rd Con-
ference on Computer and Communications Security.

A IKEvl with Signature Authentication

The IKEv1 and IKEv2 signature authentication modes
are similar and both target of our signature forgery at-
tack. Supplementary to the description of the IKEv2
variant (cf. Figure 6), here we present the IKEv1 sig-
nature authentication mode in detail. Figure 13 shows
the message flow for this mode.

First, the initiator creates a set of proposals consisting
of algorithms, key lengths, and additional parameters and
sends it with his initiator cookie to the responder. The re-
sponder selects a proposal based on his configured poli-
cies. After that, initiator and responder exchange DHKE
parameters and nonces.

Both peers are now able to derive all symmetric keys.
In order to confirm the keys and authenticate against each
other, a MAC is computed by each party using key k from
the key derivation. Subsequently, two signatures are gen-
erated by the peers: one over MAC; and one over MACkg.
After both peers exchanged their signatures and option-
ally the corresponding certificates, they validate the sig-
natures and continue with Phase 2 only if the signatures
are valid.

Initiator Responder
(IDy, skp, certr) (IDg, skr, certr)
my = (proposals)
cr,0,my
my = (proposal)
Cr.CR, Mo
mg = (g%, nr)
Cr.CR,M3
ma = (g%, nr)
Cr.CRy My
k :=PRF,, n.(9"Y) k := PRF,, . (g"¥)
Derive kg, kq, ke from k Derive kg, ko, ke from k
Compute MAC; using k
o := Sign(skr, MACy)
ms := Ency, ([certs],or)
Cr.CR, M5
Compute MACg using k
o = Sign(skr, MACR)
me := Ency_([certr],or)
Cr.CR, Mg
Vfy(certgr,or) Vfy(certr,or)

Figure 13: IKEv1 in Phase 1 using main mode with sig-
nature based authentication. Differences to Figure 3 are
highlighted.

B PKCS#1 Padding

In the following, a||b denotes concatenation of strings
a and b. ali] references the i-th byte in a. ¢, is the

length of R?A modulus

I

random non-zero m

nonce

length nonce

Figure 14: PKCS #1 v1.5 padding for RSA public key
encryption

byte-length of string a. (N,e) denotes an RSA pub-
lic key, where N is the public modulus and e is the
public exponent. The corresponding secret exponent is
d=1/emod ¢(N).

The PKCS #1 v1.5 encryption padding scheme [21]
randomizes encryptions by requiring the encoding shown
in Figure 14. To encrypt a plaintext message n (here, a
nonce), the following steps have to be performed:

1. The encrypter generates a random byte string P of
length ¢p = {5 — ¢, —3. P must not contain 0x00
bytes (i.e. P[i] # 0x00 Vi € [1...¢p]). Furthermore,
P must be at least eight bytes long (¢/p > 8).

2. The message with padding before encryption is
m = 0x00||0x02|| P || 0x00]|| n.

3. The ciphertext is computed as ¢ = m® mod N.

To decrypt such a ciphertext, the naive decrypter per-
forms the following steps:

1. Compute m = ¢¢ mod N.

2. Check if m[1]]|m[2] = 0x00 || 0x02.
ciphertext otherwise.

Reject the

3. Check if m[i] # 0x00 Vi € [3...10]. Reject the
ciphertext otherwise.

4. Search for the first i > 10 such that m[i] = 0x00.
Reject the ciphertext if no i is found.

5. Recover the message n = m[i + 1] || ... || m[¢y]

However, if the attackers learn whether the decrypter
rejects messages due to the checks performed in steps
2-4, the decrypter is susceptible to Bleichenbacher’s at-
tack.

C Key Types of Cisco IOS

Our key reuse attack assumes that the same RSA key
pairs are used for encryption and signatures. When gen-
erating RSA key pairs, Cisco IOS gives the administra-
tor a choice: The default is to create general-keys, which
generates a single key pair for all authentication methods
that is vulnerable to our attacks. The other option is to

582 27th USENIX Security Symposium

USENIX Association

create usage-keys, through which two RSA special-usage
key pairs — one encryption pair and one signature pair —
are generated. In their documentation [12], Cisco states
the following:

If you plan to have both types of RSA authenti-
cation methods in your IKE policies, you may
prefer to generate special-usage keys. With
special-usage keys, each key is not unneces-
sarily exposed. (Without special-usage keys,
one key is used for both authentication meth-
ods, increasing the exposure of that key.)

We have not evaluated whether special usage keys are a
working countermeasure against our key reuse attack.

USENIX Association 27th USENIX Security Symposium 583

