
Vulnerability Report

Attacks on PDF Certification.

Simon Rohlmann, Vladislav Mladenov, Christian Mainka, Jörg
Schwenk

Version 2
15 March 2021
Chair for Network and Data Security

Abstract

The Portable Document Format (PDF) is the de-facto standard for document exchange.
The PDF specification defines two different types of digital signatures to guarantee the
authenticity and integrity of documents: approval signatures and certification signatures.
Approval signatures testify one specific state of the PDF document. Their security has
been investigated at CCS’19. Certification signatures are more powerful and flexible. They
cover more complex workflows, such as signing contracts by multiple parties. To achieve
this goal, users can make specific changes to a signed document without invalidating the
signature.

This report presents the first comprehensive security evaluation on certification signatures in
PDFs. We describe two novel attack classes – Evil Annotation and Sneaky Signature attacks
which abuse flaws in the current PDF specification. Both attack classes allow an attacker
to significantly alter a certified document’s visible content without raising any warnings.
Our practical evaluation shows that an attacker could change the visible content in 15 of
26 viewer applications by using Evil Annotation attacks and in 8 applications using Sneaky
Signature by using PDF specification compliant exploits. We improved both attacks’ stealth-
iness with applications’ implementation issues and found only two applications secure to all
attacks.

We responsibly disclosed these issues and supported the vendors to fix the vulnerabilities.
We also propose concrete countermeasures and improvements to the current specification
to fix the issues.

1 Introduction

PDF signatures are a well-established protection mechanism to guarantee the integrity, au-
thenticity, and non-repudiation of a PDF document. Introduced in 1999, PDF signatures
are used to protect important documents such as certification documents, contracts, and in-
voices. According to Adobe, 250 billion Portable Document Format (PDF) documents were
opened by their applications in 2018. Among them, 8 billion were signed [3]. The legal
basis for digitally signed documents is provided in the European Union (EU) by the eIDAS
Regulation [11] and in the United States of America (USA) of the Electronic Signatures in
Global and National Commerce Act (ESIGN) [26] and the Uniform Electronic Transactions
Act (UETA) [25].

Attacker

Certifier Victim

Contract
Transfer to:
Name: Honest Corp.
IBAN: US12 3456 7890
Amount: 100$

Contract
Transfer to:
Name: Honest Corp.
IBAN: US12 3456 7890
Amount: 100$

Contract
Transfer to:
Name: Evil Corp.
IBAN: US66 6666 6666
Amount: 100.000$

Contract
Transfer to:
Name: Evil Corp.
IBAN: US66 6666 6666
Amount: 100.000$

Figure 1.1: In an exemplary attack scenario, the certifier creates a certified contract with
sensitive information which cannot be exchanged. The certifier allows specific
changes to the PDF contract, for example, further signatures. Using these per-
mitted changes, the attacker can change the amount from 100$ to $ 100,000 and
display the IBAN of his own account. Based on the attacks presented in this
report, the victim cannot detect the manipulation and thus accepts the modified
contract.

Different Types of PDF Signatures. The PDF specification defines two types of digital
signatures.1

1) Approval signatures testify a specific document state. The specification allows the us-
age of multiple signatures on the same document. Any other change on a signed document
leads to an invalidation of the approval signature or warnings in most PDF viewer. In

1Digital scans of handwritten signatures, if embedded as an image in a PDF document, are called ’electronic
signatures’. Since they do not protect the integrity of the document, they are out of scope here.

2

the following, we use the terms “signature” and “signed document” for approval signa-
tures.

2) Certification signatures provide a more powerful and flexible mechanism to handle dig-
itally signed documents. During the document’s certification, the owner defines a list of
allowed modifications that do not invalidate the document’s certification signature. These
allowed modifications can be a subset of the following: writing text to specific form fields
(even without signing the document), providing annotations to the document, or adding
approval signatures. Since a certification signature sets permissions on the entire docu-
ment, only one certification signature is allowed within a PDF document. This certification
signature must also be the first signature in the PDF. In the following, we use the terms
“certification” and “certified document” for certification signatures.

Certification signatures in the wild. Companies and organizations can use certification
signatures to protect ready-made forms such as contracts, non-disclosure agreement, or
access control documents against changes and, at the same time, allow signatures in the
shape of approval signatures [1, 20, 4, 5]. For example, the United States Government
Publishing Office (GPO), a US federal legislative authority, and the Legislative Assembly
of British Columbia use certified documents for official publications [27, 28, 29, 21]. The
European Telecommunications Standards Institute (ETSI), as a European Standards Or-
ganization (ESO), also specifies the support of certified documents within the EU [12].
Beside the PDF applications, there exist multiple commercial and governmental online
services capable to sign and certify PDF documents [8, 2, 6, 23, 17, 9, 16, 10, 15, 19,
18].

Use Case: Certified Document. Suppose that two companies have agreed on a contract
but cannot meet in-person to sign it. As shown in Figure 1.2, the text ì of the contract is
converted to PDF . Both companies want to guarantee that this text is displayed unaltered
to any party (CEO, lawyer, judge), even outside the two companies. The CEOs of both
companies sign the PDF contract to make it legally binding, but the sales departments of
both companies should be allowed to add some parameters (e.g. payment dates) and provide
explanations to their CEOs via annotations to the contract.

In the complete scenario, the CEO of company 1 uses a certification � on the PDF docu-
ment. This certification covers the entries of their own sales department and allows for some
alterations after certifying. The sales department of company 2 should be able to enter data
into some specified form fields � displayed by the certified document. They should also be
allowed to make annotations and to add the signature of the CEO of company 2. Company
2 then fills in the form fields�, adds some annotations Ë and signsÒ the slightly modified
document. From this scenario, it should be clear that company 2 must not be able to modify
the original text of the contract before or when signing, for example, by changing the nego-
tiated payment (ì→í). At least, all changes made to the contract by company 2 should
be visible to a judge using any PDF viewer in a legal trial.

3

Company 1 Company 2 Judge

 = (ì, �, �)

 = (ì, �, �, Ë, Ò) Ë
 = (í, �, �, Ë, Ò) é

Figure 1.2: PDF certification use case. The PDF consist of content ì (text, images, etc.),
and forms �. The PDF is protected by a certification signature � that prohibits
text modifications (e.g., ì→í). Company 2 can add annotations Ë, fill-out
forms �, and apply a signature Ò. An independent party (Judge) can verify
whether the PDF is valid Ë or invalid é.

Unfortunately, this is not the case: In this report, we present attacks where the content of
the PDF document can be altered by company 2 in such a way that the changes are unde-
tectable, either in all PDF applications or in a subset of them.

Security of PDF Certification. We investigate the following question:

How dangerous are permitted changes in certified documents?

To answer this question we systematically analyze the allowed modifications in certified
documents and reveal two new vulnerabilities abusing lacks in the PDF specification: Evil
Annotation Attack (EAA) and Sneaky Signature Attack (SSA). These vulnerabilities allow
an attacker to change the visible content of a PDF document by displaying malicious content
over the certified content. Nevertheless, the certification remains valid and the application
shows no warnings.

Responsible Disclosure. We started a coordinated vulnerability disclosure and reported all
issues to the respecting vendors. We cooperated with CERT-Bund (BSI) and provided the
first version of this vulnerability report including all exploits to them. Adobe, Foxit, and Li-
breOffice responded quickly and provided patches for late 2020 (CVE-2020-35931) or early
2021 (CVE-2021-28545, CVE-2021-28546) see subsection 5.3.2.

4

2 Basics

2.1 PDF Structure

Figure 2.1 shows the file structure of a certified document. The first four building blocks
are: header, body, xref table, and trailer. The header defines the version of the document,
for example %PDF-2.0 for version 2.0. The body defines the content shown to the user after
opening the file. The body contains different objects with different types. Common types
are text, font, or image. There are also special objects such as Catalog, Pages, and Page that
control the presentation of the PDF. An example of an object defined in a PDF is depicted
in Listing 2.1.

1 1 0 obj % Object with ID "1"

2 /Type /Page % Definition of one page of the document

3 /Contents 2 0 R % Ref. to 2 0 obj defining the text

4 /Resources 3 0 R % Ref. to 3 0 obj defining the font

5 endobj % End of the object

Listing 2.1: Part of a PDF document depicting the definition of one objects – the Page 1 0
obj.

The xref table contains the byte position of each object in the PDF. It allows PDF viewers
to efficiently find all objects for processing. The trailer defines the byte position of the
xref table and the root object of the PDF document’s object tree. The root object is named
Catalog and it is the first object to be processed, because it contains all relevant information
about the document’s structure.

2.2 Interactive Elements

The PDF specification additionally defines interactive elements that allow user input into the
document. Such elements are separated in two categories: forms and annotations.

Forms. PDF forms allow user input in a predefined mask such as a text field, a radio button,
or a selection box. Facilities, such as the administration, usually use forms to create PDF
documents with predefined areas which are intended to be filled out by users. The user
input is however limited to the defined form fields and cannot change other content within
the PDF.

5

xref table
trailer

header
body

xref table
trailer

Certification

P1 / P2 / P3

xref table
trailer

Allowed

changes

O
ri

g
in

al
 P

D
F

R
a
n
g
e
 p

ro
te

ct
ed

 b
y
 c

er
ti

fi
c
at

io
n

In
c.

 U
p
d
a
te

 1
:

C
e
rt

if
ic

at
io

n

In
c.

 U
p
d
a
te

 2
:

C
h

an
g

es

(a) Structural view of a certified document.

xref table
trailer

header
body

xref table
trailer

Certification

P1 / P2 / P3

xref table
trailer

Allowed

changes

O
ri

g
in

al
 P

D
F

R
a
n
g
e
 p

ro
te

ct
ed

 b
y
 c

er
ti

fi
c
at

io
n

In
c.

 U
p
d
a
te

 1
:

C
e
rt

if
ic

at
io

n

In
c.

 U
p
d
a
te

 2
:

C
h

an
g

es

(b) Certified document within an application.

Figure 2.1: An example of a certified document with allowed changes, hereby highlighting
the text ”All partners” after certification. The figure is divided into the struc-
ture a) and actual view b). Original PDF depicts the PDF document before it is
certified. Inc. Update 1 presents the PDF document after applying a certifica-
tion. Inc. Update 2 shows changes on the document made after its signing and
appended at the end of the file.

Annotations. Annotations introduce a different method for a user input by allowing a user
to put remarks in a PDF document like text highlighting or strikeouts, and sticky notes. An-
notations are not limited to predefined places within the PDF and can be applied everywhere
within the document.

2.3 Incremental Update

An Incremental Update introduces a possibility to extend a PDF by appending new infor-
mation at the end of the file, see Inc. Update 1 in Figure 2.1(a). In this way, the original
document stays unmodified and a revision history of all document changes is kept. Each
Incremental Update defines new objects, a new xref table, and a new trailer. An example of
an Incremental Update is the inclusion of an certification, signature, annotation or the filling
out forms within a PDF.

6

2.4 Integrity Protection of PDFs

Signed Documents. By signing a PDF document, a Signature object is created. This ob-
ject contains the trusted public keys to verify the document, the signature value, the range
of bytes that are protected by the signature, and a user-friendly information regarding the
signer of the document. The Signature object is usually added to the PDF document by
using an Incremental Update.

Certified Documents. Certifications have two main differences to signatures. First, each
PDF can have only one certification and must be the first in the document. Second, certifica-
tions define permissions that allow certain changes to the certified document. Signatures

Incremental Update Signature Certification
Prev. work [22] This report

P1 P2 P3
Add/change visible content − − − −
Fill out form inputs Þ − Z Z
Multiple signatures Z − Z Z
Add/change annotations � − − Z

− Modification not allowed
Z Modification allowed
Þ Only allowed when adding a signature at the same time
� Leads to warnings in most PDF applications

Table 2.1: Comparison between signatures and certifications within a PDF Dokument.

have been investigated in previous work. This report focuses on certified documents, which
have not yet been analyzed. As depicted in Table 2.1, certifications define a more flexible
way to handle Incremental Updates, and allowed Incremental Update do not lead to a warn-
ing. The certifier chooses between three different permission levels (P) to allow different
modifications.

P1: No modifications on the document are allowed.

P2: Filling out forms, and digitally signing the document are allowed.1

P3: In addition to P2, also annotations are allowed.1

The allowed modifications are defined within the DocMDP Transformation parameter con-
tained in the certification object. With respect to the integrity protection of the PDF, the PDF
application must execute the following steps. First, it must verify if an Incremental Update
was applied after the PDF was certified. Second, it must verify if the defined changes are
legitimate according to the given permissions.

1In addition, instantiation of page templates is allowed, but this is not part of this report.

7

3 Attacker Model

The goal of our attacks is to change the view on the certified document, and to block warn-
ings on these changes. Therefore, successful attacks must be defined in the context of the
PDF viewer’s User Interface (UI).

3.1 UI Layer

The UI in many PDF viewing applications can be divided into three layers that are important
for the verification of the certification.

UI-Layer 1: Validation Status Top-Bar. UI-Layer 1 is usually displayed immediately
after opening. Typical applications use a clearly visible bar on top of the PDF content.
The status of the certification and signatures validation is provided as a text (e.g. valid/in-
valid), often combined with green, blue or red background colors, cf. Figures 2.1, 4.1, and
4.2.

UI-Layer 2: Detailed Validation and Information. UI-Layer 2 provides detailed infor-
mation about the certification and the signatures applied to the PDF. It can be implemented
by the viewer in numerous ways, but viewers typically do not show these information au-
tomatically once the PDF file is opened. Instead, it must be opened manually by clicking a
certain button. For example, this button can be placed on the tob-bar (UI-Layer 1). Some
viewers use sidebars which provide detailed information regarding the certified document,
other use pop-up windows.

UI-Layer 3: PDF Annotations. UI-Layer 3 is another UI element that shows all PDF
annotations. Typically, a sidebar is used for this purpose. This layer is of particular impor-
tance for certified documents, since with level P3, adding and changing PDF annotations is
allowed. Without this layer, some annotations (e.g., text blocks) would be indistinguishable
from regular PDF text content.

3.2 Entities

The attacker model defines multiple entities that are involved during the process of creating
a certified document (cf. chapter 3). We assume that private keys remain private, and that
public keys are known to all other involved parties.

8

Attacker Certifier
(pkc, skc)

Victim
pkc

(1) PDFcert

PDFcert,atk :=
manipulate(PDFcert)

(2) PDFcert,atk

vrfy(PDFcert,atk, pkc)(3) result

Figure 3.1: Attacker Model. The attacker is allowed to manipulate the certified document
(i) after its certification. The manipulated PDF is then verified by the victim.

Certifier. The certifier is the entity who initially protects the content of the PDF. The certi-
fier sets the level of permissions (P1,P2,P3) and certified the PDF document.

Victim. The victim can be any person, group or service that trusts the public keys used by
the certifier. The victim uses a PDF viewer application to display the PDF document.

Attacker. The attacker manipulates a given PDF document in order to change its visible
content. The attacker is allowed to modify arbitrary parts of the PDF. Arbitrary in this con-
text means that the attacker is not bound to the allowed modifications defined in the certified
document. For example, the attacker can technically add annotations to a P1 certified doc-
ument by manually editing the file without a viewer application. The goal of the attacker is
to prevent the victim’s detection of these manipulations.

3.3 Success Conditions

The first success condition is that the PDF application displays the manipulated content.
Second, we differentiate the success of the attack in dependence of the UI Layers. On each
UI Layer, the application can be vulnerable , limited vulnerableG#, or secure#. In the fol-
lowing, we summarize the successconditions for each UI Layer.

UI-Layer 1.

 Vulnerable: to be classified as vulnerable, UI-Layer 1 must display that the signature
valid.

G# Limited Vulnerable: if in addition to the valid signature status, generic information
regarding PDF changes is show, we classify the attack as partially vulnerable.

Secure: if UI-Layer 1 shows that the signature is invalid, we classify the application
as secure.

UI-Layer 2.

9

 Vulnerable: all signatures shown in UI-Layer 2 must be valid to evaluate the PDF
application vulnerable.

G# Limited Vulnerable: if UI-Layer 2 displays hints about allowed modifications (e.g.,
“An annotation has been added, but this is allowed.”), then the PDF application is
partially vulnerable.

Secure: if UI-Layer 2 shows a warning or an error with respect to the signature
validation, the PDF viewer is secure #.

UI-Layer 3.

 Vulnerable: the attacker’s annotations that change the visible content must not be
shown in UI-Layer 3 to evaluate the PDF application vulnerable.

G# Limited Vulnerable: if the application does not provide any possibility of listing anno-
tations in a dedicated panel, that is UI-Layer 3, we classify the application as limited
vulnerable.

Secure: If the attacker’s annotations are visible in UI-Layer 3, we evaluate the PDF
application secure.

A perfect attack would be successful on all three layers. We argue that if a victim does not
validate all UI Layers, an attack on UI-Layer 1 or on UI Layers 1+2 might be sufficient. This
assumption especially holds, because only UI-Layer 1 is automatically shown on opening
the certified document. All other layers must be opened and inspected manually by the
victim. Note that UI-Layer 2 and UI-Layer 3 can be opened independently. In dependence
of the used application, this opening can be complicated using multiple clicks in nested
sub-menus.

Comparison to Previous Work. We used the attacker model introduced by Mladenov et al.
[22] for approval signatures as a foundation. For certified documents, we extended the suc-
cess conditions to consider PDF annotations in two ways. First, they can be recognized in
UI-Layer 2 as indicated by the status limited vulnerable G#. Second, PDF viewing appli-
cation displays PDF annotations in a dedicated user interface:. Previous work [22] did not
consider UI-Layer 3.

10

4 Breaking PDF Certification

In this section, we present different attack techniques to break the integrity protection of
certified documents. We found two specification flaws, which lead to security vulnerabilities
in most PDF applications that are compliant to the PDF specification. The first one is the
Evil Annotation Attack (EAA) and it breaks the P3 permission (section 4.1). The second one
is the Sneaky Signature Attack (SSA), breaking the P2 permission (section 4.1). In addition,
we apply obfuscation techniques through further implementation flaws, which allow us to
hide the attacks based on specification flaws even better.

Remove /SubType value or set it to an unspecified one. Remove /SubType value or set it to an unspecified one. Add annotation to overwrite the price per share.Add annotation to overwrite the price per share.

Visible annot. Hidden annot.

Figure 4.1: A certified document. The Price per share was manipulated by a FreeText
annotation to show the value $100,000,000. The PDF viewer displays this an-
notation in UI-Layer 3. By deleting the /Subtype value the PDF object, it can
be removed.

4.1 Evil Annotation Attack (Specification Flaw: Breaking P3)

The idea of the Evil Annotation Attack (EAA) is to show arbitrary content in a certified
document by abusing annotations for this purpose. Since P3 certified document allow to add
annotations, EAA breaks the integrity of the certification.

Evaluating Permission P3. According to the specification, the following changes in a cer-
tified document with P3 are allowed: 1. adding/removing/modifying annotations, 2. filling-
out forms, 3. and signing the document. We started with an in-depth analysis of all anno-
tations and their features. We evaluated 28 different annotations and classified these with
respect to their capabilities and danger level. The results are depicted in Table 4.1 and will
be further explained.

Danger Level of Annotations. We determined three annotations with a danger level high
capable to hide and add text and images: FreeText, Redact, and Stamp. All three can

11

Annotation Capabilities Allowed in Danger
Text Image P1 P2 P3 Level

Add Hide Add Hide

FreeText Ë Ë é Ë − − Z High
Redact Ë Ë é é − − Z High
Stamp é Ë Ë Ë − − Z High

Caret é Ë é Ë − − Z Medium
Circle é Ë é Ë − − Z Medium
Highlight é Ë é Ë − − Z Medium
Ink é Ë é Ë − − Z Medium
Line é Ë é Ë − − Z Medium
Polygon é Ë é Ë − − Z Medium
PolyLine é Ë é Ë − − Z Medium
Square é Ë é Ë − − Z Medium
Squiggly é Ë é Ë − − Z Medium
StrikeOut é Ë é Ë − − Z Medium
Underline é Ë é Ë − − Z Medium

FileAttachment é Ë é Ë − − Z Low
Sound é Ë é Ë − − Z Low
Text(Sticky Note) é Ë é Ë − − Z Low

3D é Ë é Ë − − − None
Link é Ë é Ë − − − None
Movie é Ë é Ë − − − None
Popup é é é é − − Z None
PrinterMark é é é é − − − None
Projection é é é é − − − None
RichMedia é Ë é Ë − − − None
Screen é é é é − − − None
TrapNet é é é é − − − None
Watermark Ë Ë Ë Ë − − − None
Widget é é é é − − − None

Z Usage allowed − Usage not allowed

Table 4.1: List of all specified PDFs annotations, categorized according to: 1) their
capabilities, 2) their permission in certified documents, and 3) the danger
level with respect to their permission.

be used to stealthily modify a certified document and inject malicious content. In addi-
tion, 11 out of 28 annotations are classified as medium since an attacker can hide content
within the certified document. The danger level of the remaining annotations is classified
as low or none since such annotations are either quite limited or not allowed in certified

12

documents.

Attacking with Annotations. According to our attacker model, the attacker possesses a
validly certified document allowing the insertion of annotations. To execute the attack, the
attacker modifies a certified document by including the annotation with the malicious con-
tent at a position of attacker’s choice. Then, the attacker sends the modified file to the
victim who verifies the digital signature. The victim could detect the attack if it manually
opens UI-Layer 3 or clicks on the annotation. However, none of the tested PDF applica-
tions opened UI-Layer 3 automatically. Additionally, the attacker can lock an annotation to
disable clicking on it.

Improving the stealthiness of EAA. To improve the attack, we elaborated techniques to
prevent the annotation’s visualization, so that it does not appear in UI-Layer 3. Surprisingly,
we found a generic and simple bypass that can be applied to all annotations. PDF viewers
identify annotations by their specified /Subtype. This /Subtype is also used by the viewer
to assign the various editing tools, such as a text editor for FreeText comments. If the value
of /Subtype is either missing or set to an unspecified value, whereby both cases are not
prohibited according to the specification, the PDF viewer is unable to assign the annotation.
As depicted in Figure 4.1, the annotation is not listed in UI-Layer 3. In summary, the
annotation is indistinguishable from the original content.

Special Modifications. For some annotations, such as FreeText or Stamp, the editing
tools of appropriate PDF applications can be easily used to completely design the visible
content of a certified document. This is not the case for other annotations, which are classi-
fied as suitable for hiding text and images. The Underline annotation, for example, only
creates a small line below the selected text. For hiding the text that is located below this line,
the PDF object must be manually edited. By using a text editor, the thickness of the line can
be adjusted within the annotation’s appearance (parameter: /N) to hide the whole text. It is
also possible to define the coordinates of an annotation to hide a particular area on a page.
A special feature among the annotations is Redact. It allows new text to be placed over
existing text. If the user moves the mouse over the text, the new text is displayed and hides
the original text. To display this new text permanently, it is sufficient to redirect the object
number (parameter: /N) to the object with the new text. Summarized, the specification does
not restrict the size, color or characteristics of annotations and offers arbitrary possibilities
to change the displayed content.

4.2 Sneaky Signature Attack (Specification Flaw: Breaking
P2)

The idea of the Sneaky Signature Attack is to manipulate the appearance of arbitrary content
within the PDF by adding overlaying signature elements to a PDF document that is certified
at level P2.

13

Evaluating Permission P2. According to the specification, the following changes in a certi-
fied document with P2 are allowed: filling-out forms, and signing the document. We started
the analysis of forms as depicted in Table 4.2 and evaluated their capabilities.

Form 1) Capabilities 2) Allowed in 3) Danger
Text Graphic Form P1 P2 P3 Level

Add Hide Add Hide

Signature Ë Ë Ë Ë é − Z Z High

Text Field é é é é Ë − Z Z None
Button Field é é é é Ë − Z Z None
Choice Field é é é é Ë − Z Z None

Z Usage allowed − Usage not allowed

Table 4.2: A list of all specified PDFs forms. We categorized them by 1) their capabili-
ties, 2) their permission in certified documents, and 3) the danger level with
respect to their permission. One form is classified as highly dangerous since
text and graphics can be hidden or added via it.

Danger Level of Forms. According to our analysis, the danger level was none because the
inserting of new form elements, customizing the font size and appearance, and removing
form elements is prohibited. The only permitted change is on the value stored in the field.
Thus, an attacker is not able to create forms hiding arbitrary content within the PDF doc-
ument. Surprisingly, these restrictions are not valid for the signature field. By inserting a
signature field, the signer can define the exact position of the field, and additionally its ap-
pearance and content. This flexibility is necessary since each new signature could contain
the signer’s information. The information can be a graphic, a text, or a combination of both.
Nevertheless, the attacker can misuse the flexibility to stealthy manipulate the document
and insert new content.

Attacking with Forms: SSA. The attacker modifies a certified document by including a
signature field with the malicious content at a position of attacker’s choice. The attacker
then needs to sign the document, but he does not need to possess a trusted key. A self-
signed certificate for SSA is sufficient. The only restriction is that the attacker needs to sign
the document to insert the malicious signature field. This signing information can be seen
by opening the PDF document and showing detailed information of the signature validation.
In this case, the victim opening the file can get suspicious and refuse to accept the document
even though the certification is valid.

Improving the stealthiness of SSA. To circumvent this limitation, we found a bypass to
hide this information in UI-Layer 2. Thus, the victim is not able to determine the attacker’s
manipulations (see Figure 4.2). Basically, we have three tasks to improve the attack ex-
ecution: 1. hide the signature information in the signature panel on UI-Layer 2 , 2. skip
the validation of attacker’s signature, and 3. make the signature field read-only to make it

14

R
em

o
v

e
 sig

n
e
r in

fo
r
m

a
tio

n
 fr

o
m

 sig
n

a
tu

r
e
 o

b
je

c
t.

R
em

o
v

e
 sig

n
e
r in

fo
r
m

a
tio

n
 fr

o
m

 sig
n

a
tu

r
e
 o

b
je

c
t.

A
d

d
 sig

n
a

tu
r
e to

 o
v

e
rw

r
ite

 th
e p

r
ice

 p
e
r sh

a
r
e.

A
d

d
 sig

n
a

tu
r
e to

 o
v

e
rw

r
ite

 th
e p

r
ice

 p
e
r sh

a
r
e.

Figure 4.2: A certified document. The Price per share was manipulated using a sneaky sig-
nature which overwrites the price with $100,000,000. The PDF viewer displays
this signature in UI-Layer 2. By manipulating the signature object, the signer
information can be removed.

indistinguishable from the text content. To solve all tasks, we need to adjust one object - the
one responsible for the appearance of the signature. It contains three relevant parameters:
/P, /V, and /Ff. The /P is a reference to the page where signature should be displayed. We
found out that if this reference is not valid, the signature disappears from the signature panel
on UI-Layer 2, but the malicious content is still shown on the page. A signature added to a
PDF document is usually verified by processing its referenced signature data. If the stored
cryptographic values are correct and the document is not manipulated within the signed
area, the signature is technically valid. The /V parameter references to the signature value

15

which needs to be validated. We found out that if this reference is also invalid, the signature
validation is skipped. Finally, we set the parameter /Ff to 1 which means that the content
is read-only. If a certified document is opened in a common PDF application, signatures
can only be added to free signature fields provided by the certifier. Adding empty signature
fields is normally no longer possible within the application. However, the specification does
not prohibit adding empty signature fields to a certified document. By using frameworks
like Apache PDFBox1, empty signature fields can be placed anywhere in the document and
filled with arbitrary content.

4.3 Limitations of EAA and SSA

Both attacks can be detected by searching for a specific text which is hidden behind the
annotation or the signature. The editor signals that a searched term is found but the user
is unable to see it. Another limitation could occur in dependence of the UI Layer. In the
default configuration, most PDF applications do not show the applied annotations on UI-
Layer 1. The evil annotations are also not shown on UI-Layer 2. Nevertheless, it should
be mentioned that the UI Layer of some PDF applications can be configured to show all UI
Layers after opening a PDF document.

4.4 It’s not a Bug, it’s a Feature

We classified EAA and SSA as vulnerabilities in the PDF specification. Considering the
fact that the person certifying the document could know that additional signatures and an-
notations might be added to the document, the risks caused by these attacks should be
known and accepted by all involved entities. However, our attacks reveal that signatures
and annotations can 1. be customized to appear as a normal text/images above the signed
content, 2. they can be indistinguishable from the original content, and 3. their indications
can be hidden from UI Layers. Only 3) requires application implementation issues. Study-
ing the PDF specification and guidelines regarding the validation of certified documents,
we did not find any security considerations mentioning the potential risks and summariz-
ing the best practices. This leads to the assumption that the risks mentioned in this re-
port have been overlooked and need to be addressed on specification and implementation
level.

4.5 Permission Mismatch

Besides the specification, PDF applications can also implement the basic verification of
the permissions of certified documents wrongly. These issues enable prohibited changes.

1https://pdfbox.apache.org/

16

We determine two permission mismatches according to the allowed changes described in
Table 2.1:

• The adding of annotations and signatures is allowed regardless of the permission level
P1 / P2.

• Annotations are allowed to be added starting at permission level P2.

Faulty Permission Verification. As already described, the EAA and SSA attack classes
require certain permission levels with regard to document certification. However, this re-
striction requires the correct implementation of the permission levels within the individual
PDF implementations. If an application does not check the set permissions P1 and P2 at all
or not completely, the attack classes can be successfully executed even at lower permission
levels. Editing functions within the PDF applications can be easily outsmarted, for example
to add annotations to PDFs with permission levels lower than P3. For this purpose, it is
sufficient to manually adjust the permission level P1 or P2 of a certified document to P3
using a text editor. Of course, this initially breaks the certification, since this corresponds to
a change in the signed area. However, the invalid certification state is in practice no reason
for the PDF application to prevent functions such as adding annotations or signatures. Now
that an annotation has been added to the document, the permission level can be manually
reset to the original value P1 or P2. The signed area now corresponds to the initial state
again and the certification is valid from a cryptographic point of view. The annotation is
now outside the signed area within an Incremental Update. If a PDF application does not
check when opening the PDF whether the attached Incremental Updates are allowed within
the initial permission level, the execution of the attack classes EAA and SSA on a lower
permission level is possible.

17

5 Evaluation

In this section, we describe the results of our analysis. We created 45 certified documents
during our research and tested 26 applications. The results are shown in Table 5.1.

PDF Specification Flaws Applications’ Implementation Flaws
All exploits are compliant Attacks improving the stealthiness
to the PDF specification of EAA and SSA

UI-Layer 1 UI-Layer 2 UI-Layer 3 UI-Layer 1 UI-Layer 2 UI-Layer 3
Application Version OS EAA SSA EAA SSA EAA EAA SSA EAA SSA EAA

Adobe Acrobat Reader DC 2020.009.20074

W
in

do
w

s

 # # #
Adobe Acrobat Pro 2017 2017.011.30171 # # #
Expert PDF 14 14.0.28.3456 G# G# # # G# G#
Foxit PhantomPDF 9.7.1.29511 # # # # # #
Foxit Reader 9.7.1.29511 # # # # # #
LibreOffice Draw 6.4.2.2 G# G# G# G# G#1 G# G# G# G# G#1

Master PDF Editor 5.4.38 # # #
Nitro Pro 13.13.2.242 # G# # # # G# #
Nitro Reader 5.5.9.2 # # # # #
PDF Architect 7.1.14.4969 G# G# # # G# G#
PDF Editor 6 Pro 6.5.0.3929 #2 #2 # #2 #2 #2 G# #2

PDFelement Pro 7.5.1.4782 #2 #2 # #2 #2 #2 G# #2

PDF-XChange Editor 8.0 (Build 336.0) G# # # G# G#
Perfect PDF 8 Reader 8.0.3.5 # # # # #
Perfect PDF 10 Premium 10.0.0.1 # # # # #
Power PDF Standard 3.10.6687 G# # G# # # G# G#
Soda PDF Desktop 11.2.46.6035 G# G# # # G# G#

Adobe Acrobat Reader DC 2020.009.20074

m
ac

O
S

 # # #
Adobe Acrobat Pro 2017 2017.011.30171 # # #
Foxit PhantomPDF 3.4.0.1012 # # # # #
Foxit Reader 3.4.0.1012 # # # # #
PDF Editor 6 Pro 6.5.0.3929 #2 # #2 # #2 #2 # #2 # #2

PDFelement Pro 7.5.9.2925.5460 #2 # #2 # #2 #2 # #2 # #2

LibreOffice Draw 6.4.2.2 G# G# G# G# G#1 G# G# G# G# G#1

LibreOffice Draw 6.4.2.2

L
in

ux G# G# G# G# G#1 G# G# G# G# G#1

Master PDF Editor 5.4.38 # # #∑︀
Applications that are vulnerable , max 26 15 8 11 0 0 18 15 11 9 15∑︀
Applications that are limited vulnerabilityG#, max 26 7 3 9 3 3 4 3 9 9 3

 Vulnerable: Attack is undetectable on the UI Layer. 1LibreOffice does not provide a UI-Layer 3 and attacks can, henceforce, not be detected.
G# Limited Vulnerability: Attack is undetectable on the UI Layer
but a general notification is shown.

2Every kind of annotation, whether it is allowed or not, leads to an invalid certification.

Secure: Attack is clearly detectable on the UI Layer.

Table 5.1: We evaluated 26 different PDF applications against EAA and SSA. The applica-
tion is vulnerable if the attack is undetectable, that is, if no error or signature
warning is shown. If the application shows a generic information message, we
call it a limited vulnerabilityG#. We evaluated the attack success on each different
UI Layer. Attack detection on deeper UI Layers means that the attack is harder
to detect, because the victim has to inspect multiple application panels.

18

5.1 Test Environment

To create and evaluate the certified documents, we used a three-stage test environment,
divided into systems for certification, manipulation, and validation. The certifier’s system
is based on Windows 10 and uses Adobe Acrobat to create and certify the PDF documents.
Based on their respective market shares [24, 7], this selection makes the best combination
regarding a real-world scenario. The attacker’s system uses the same software combination
as the certifier’s system. The victim’s system splits up into systems with Windows 10,
macOS Catalina, and Ubuntu 18.04.4 as a Linux derivative. The private keys used for
certification are only available on the certification system.

5.2 Tested Applications

To analyze the handling of different PDF applications on regularly certified documents, we
developed four sample documents. We found out that not all tested applications could han-
dle certified documents correctly. The Master PDF Editor application did not show a single
certified document as valid under macOS. PDF Studio 2019 in the Standard and Pro vari-
ants (i.e., Windows, macOS, and Linux) changed the certification status to unknown if any
subsequent changes were added. Since this was also the case for permitted changes, such
as the addition of annotations in P3 or further signatures in P2, we were unable to make
a statement about the certification status. Since an evaluation for Master PDF Editor (ma-
cOS) and PDF Studio 2019 was not possible due to the fuzzy implementation concerning
certified documents, this application was excluded from further consideration. We addition-
ally observed limited support for certified documents in PDF Editor 6 Pro and PDFelement
Pro under macOS; a valid verification of the certification was only possible for documents
without additional signatures.

5.3 Results

We evaluated all 26 PDF applications on each of the three UI Layers against EAA and
SSA attacks. We used two different types of exploits for this purpose: 1. exploits that are
compliant to the PDF specification and 2. exploits that improved the stealthiness of the
attacks by abusing implementation flaws, for example, by parsing errors. The results are
depicted in Table 5.1.

5.3.1 Abusing PDF Specification Flaws

The middle part of Table 5.1 shows the results for all 26 PDF applications when using
exploits that abuse PDF specification flaws.

19

UI-Layer 1. The most critical UI Layer from the attacker’s perspective is UI-Layer 1, be-
cause it is the only layer that automatically displays the signature status by opening the
PDF. On this layer, 15 applications are vulnerable to EAA and 7 have limited vulnera-
bilities G#. The SSA attack is less successful: 8 applications are vulnerable and 3 have
limited vulnerabilities G#. PDF Editor 6 Pro and PDFelement Pro revealed a notable behav-
ior: whenever an annotation is added to a certified document, the signature validation status
is invalid. Although this behavior is not compliant with the PDF specification, it prevents
all our attacks.

UI-Layer 2. One could guess that the more profound the UI Layer is, the more attacks
could be detected. Our evaluation confirms this assumption since most applications de-
tected the SSA attack on UI-Layer 2, only LibreOffice have limited vulnerabilities G#. This
results from a bug in LibreOffice that causes no signatures to be displayed in UI-Layer
2.

UI-Layer 3. UI-Layer 3 is only relevant for EAA. The SSA attack could not be detected on
UI-Layer 3, because SSA adds a signature which does not appear in the UI element showing
PDF annotations. For UI-Layer 3, the EAA attack could be detected in all cases. The only
exception is LibreOffice Draw, because it does not provide a dedicated panel that lists all
PDF annotations.

5.3.2 Abusing Applications’ Implementation Flaws

The right part of Table 5.1 depicts the results for all 26 PDF application when using exploits
that improve the attacks’ stealthiness by abusing implementation flaws. In the following
section, we compare UI-Layer 1 for specification (i.e., the middle part) with implementation
flaws (i.e., the right part).

UI-Layer 1. We could find 3 further vulnerable applications for EAA: Expert PDF
14, PDF Architect, and SodaPDF. For SSA, we could find vulnerabilities in 7 further
applications: Adobe Acrobat Reader DC and Pro 2017 (Windows and macOS), Perfect
PDF 8 Reader and 10 Premium, and Power PDF Standard.

UI-Layer 2. The attack that leverages implementation flaws the most is SSA. While the
specification compliant attacks had only a few successes, the improved attacks lead to 9
vulnerable and 9 limited vulnerable G# applications. For EAA, two further applications
are vulnerable : Foxit PhantomPDF and Foxit Reader.

UI-Layer 3. Similarly to SSA on UI-Layer 2, the EAA attack could be drastically improved
on UI-Layer 3 when using additional implementation flaws. In total, 15 applications were
vulnerable and 3 had limited vulnerabilities G#.

Permission Implementation Analysis. For our evaluation in Table 5.1, we used P2 cer-
tified documents for SSA and P3 certified documents for EAA. This restriction raises the
question of how permissions are validated in general. Firstly, the SSA attacks that work

20

for an application on P2 work in the same way for P3. Secondly, when considering attacks
for lower permission levels, that is, EAA for P2 or P1, respective SSA for P1, it depends
on the application’s implementation of those permissions. According to the PDF specifica-
tion, these kinds of attacks should be impossible in those cases. However, we conducted
an analysis of the permission behavior of these applications. We revealed that 11 of 26
applications revealed incorrectly implemented permissions. In order to analyze how the
applications reacted to manipulations prohibited by the permission levels P1 or P2, anno-
tations, like stamps (image files) and free text comments, were placed within a P2 certified
document. In addition to annotations, existing forms were filled out in a P1 certified doc-
ument. For PDF Architect and Soda PDF we have seen the partial implementation of the
permissions. For example, level P1 is implemented and any subsequent change is penalized
with an invalid certification, while no distinction is made between P2 and P3, and anno-
tations are classified as permitted from P2 onwards. From an attacker’s perspective, this
means that for these 11 applications, the attack classes EAA and SSA can be executed at
lower permission levels.

The following applications do not correctly implement permission-level checks. This im-
plementation issue enables the adaption of SSA to P1 certified documents and EAA to P1
and P2 certified documents.

• Expert PDF 14, 14.0.28.3456, Windows

• LibreOffice Draw, 6.4.2.2, Windows

• Master PDF Editor, 5.4.38, Windows

• PDF Architect 7, 7.1.14.4969, Windows

• PDF-XChange Editor, 8.0 (Build 336.0), Windows

• Perfect PDF 8 Reader, 8.0.3.5, Windows

• Perfect PDF 10 Premium, 10.0.0.1, Windows

• Soda PDF Desktop, 11.2.46.6035, Windows

• LibreOffice Draw, 6.4.2.2, macOS

• Master PDF Editor, 5.4.38, Linux

• LibreOffice Draw, 6.4.2.2, Linux

Additional Findings. For Foxit Reader and Foxit PhantomPDF (Windows and macOS),
the implementation of the individual permissions conformed to the specification. However,
we discovered a serious bug that completely overrides signature and certification validation
for signed and certified documents in P2 and P3. If the order of the incremental update of
body, xref, trailer to xref, trailer, body is swapped and the xref table is adjusted according
to the new byte values, the PDF document can be completely changed without invalidating
the certification or signature.

21

Fixed Applications. The following applications have been reported to us by the vendors as
fixed.

• Adobe Acrobat DC, 2021.001.20315, Windows

• Adobe Acrobat 2020, 2020.001.30020, Windows

• Adobe Acrobat 2017, 2017.011.30190, Windows

• Foxit PhantomPDF, 10.1.1, Windows

• Foxit Reader, 10.1.1, Windows

• LibreOffice, 7.0.4, Windows

• Adobe Acrobat DC, 2021.001.20315, macOS

• Adobe Acrobat 2020, 2020.001.30020, macOS

• Adobe Acrobat 2017, 2017.011.30190, macOS

• Foxit PhantomPDF, 4.1.3, macOS

• Foxit Reader, 4.1.3, macOS

• LibreOffice, 7.0.4, macOS

• LibreOffice, 7.0.4, Linux

22

6 Countermeasures

In this section, we give an overview of possible countermeasures to effectively address the
EAA and SSA attack classes. Since both attacks exploit weaknesses in the specification,
correctly fixing the vulnerabilities requires time. Thus, we elaborated short-term and long-
term countermeasures, which we explain further in this section.

6.1 Long-term Countermeasures: Fixing the PDF
Specification

Preventing Evil Annotations. With the availability of many permitted annotations at per-
mission level P3, there is a large arsenal to manipulate the appearance of the content of a
certified document. A particular risk is posed by the FreeText, Stamp and Redact an-
notations, as they allow new content such as text or images to be inserted into a certified
document. Even without using the EAA techniques for hiding inserted annotations, they
pose a great risk of tricking normal users. Therefore, these three annotation types should
be classified as prohibited within the PDF specification for use within certified documents.
The remaining annotations can be used to hide existing text or images and should be lim-
ited in their attributes. For example, a line of type Underline or StrikeOut should never
be larger than the underlying text part. This could be achieved by calculating the amount
of collision between two rectangles using the /BBox coordinates, taking into account the
line thickness. In case of overlap, the integrated editing tool should reject the drawing
with a corresponding message. To capture manually created incremental updates, collision
calculations should also be performed during certification validation. An empty or unde-
fined value for the /Subtype element must also be penalized with an invalid certification
status.

Preventing Sneaky Signatures. In practice, annotations within a certified document can
often be omitted. Therefore, a lower permission level can be chosen as a precaution. Un-
fortunately, this does not apply to signatures to the same extent. In many situations, it may
be useful and necessary to allow the addition of signatures after certification. For example,
the certified document can be signed by multiple contract partners. However, to prevent
attacks of the SSA class, signature fields must be set up at defined locations in the PDF
document before the document is certified. A subsequent addition of signature fields must
be penalized with an invalid certification status. Otherwise, it can always be used to add
text or images included in the signature at any position. Within our analysis, the contained

23

fieldtype /FT with the value /Sig was decisive for whether an object was identified as a
signature and thus classified as a permitted change. Nevertheless, it was possible to redirect
or omit the reference to the signature data /V, which resulted in the signature not being
validated and thus not being listed in UI-Layer 2. Therefore the specification should show
the parameter /V as mandatory and not optional. Suppose the signature cannot be validated
due to missing or incomplete signature data. In that case, it should be listed as an invalid
signature in UI-Layer 1 and UI-Layer 2.

6.2 Short-term Countermeasures

PDF-Detector. We analyzed the possibilities to provide a short-term countermeasure which
is standard compliant. The main cause for the vulnerabilities described in this report is the
overlay over the original content by using annotations or signatures. We determined that we
can detect such an overlay by analyzing the position of annotations and signatures within
the document and estimating if these intersect with some content. If such an intersection
is found, a warning can be thrown. We implement a tool called PDF-Detector which is
capable to detect EAA and SSA. PDF-Detector is available as online service at http:
//pdf-demos.de and as an open-source library. The PDF-Detector is a python based tool
which takes certified documents as input and produces a report whether dangerous elements
were found in the PDF document, see Listing 6.1.

1 {

2 "status": "OK/warning/error",

3 "type": "approval/certified/none",

4 "permission": "1/2/3/none",

5 "incremental-update-changes":

↪→ "annotation/signature/annotation+signature/exists/none",
6 "changes-danger-level": "very high/high/medium/low/none",

7 "message": ""

8 }

Listing 6.1: PDF-Detector returns a report as a JSON message. The message contains
information if dangerous elements intersecting with original content occur in
the document.

As a first step, PDF-Detector analyzes if the submitted PDF is digitally signed and if the
signature is a certification or approval signature. The PDF-Detector evaluates the docu-
ment’s permission level and estimates if any Incremental Updates are applied. If true, PDF-
Detector determines if the appended elements within the Incremental Update are allowed
according to the permission level. If they are denied, an error is thrown, and the report’s
status is set to error. Otherwise, PDF-Detector determines the type of the appended el-
ements, for example, a FreeText annotation or a signature. In dependence of this type,
the changes-danger-level is defined. The values corresponds to the values depicted in

24

Table 4.1 and Table 4.2. Finally, PDF-Detector analyzes each annotation or signature po-
sition and estimates the intersection with the content of the page. If such an intersection
is found, the changes-danger-level is raised to very high. PDF-Detector does not
provide any cryptographic signature validation. The reason for this decision was that the
management of trusted or revoked certificates and the support of standards like PAdES [13]
and CAdES [14] are considered out of scope and irrelevant for the attacks described in this
report.

Visible Panel for Annotation and Signatures. To reduce the attacks’ stealthiness, we also
recommend making annotations and additional signatures visible on UI-Layer 1. Currently,
none of the tested PDF applications do this. Thus, the attacks can only be detected if the user
pro-actively looks into the PDF application’s corresponding panels.

25

Bibliography

[1] Adobe Inc. What is a Certified Document and when should you
use it?, . URL https://blogs.adobe.com/security/2012/03/

what-is-a-certified-document-and-when-should-you-use-it.html.

[2] Adobe Inc. Adobe Acrobat Online Service, . URL https://www.adobe.com/
acrobat/online.html?promoid=85665T9B&mv=other.

[3] Adobe Inc. Adobe Fast Facts, June 2020. URL https://www.adobe.com/
content/dam/cc/en/fast-facts/pdfs/fast-facts.pdf.

[4] Bank of Italy (Banca d’Italia). USER’S MANUAL SOFTWARE TO SIGN AND
ENCRYPT DOCUMENTS. URL https://www.bancaditalia.it/footer/
firmadigitale/Software_manual.pdf?language_id=1.

[5] Certipost. Definitions and Acronyms. URL http://www.certipost.org/
wp-content/uploads/2015/06/DaA_CTP_TSP_V1_0.pdf.

[6] European Commission. Dss demonstration webapp v5.3.1, oct 2018. URL https:
//ec.europa.eu/cefdigital/wiki/display/CEFDIGITAL/DSS.

[7] Datanyze. Adobe Acrobat DC Market Share and Competitor Report. URL
https://www.datanyze.com/market-share/other-sales-software--408/

adobe-acrobat-dc-market-share.

[8] Inc. DocuSign. Docusign validation service, oct 2018. URL https://validator.
docusign.com/.

[9] EIUS doo. Vep e-obrazci, October 2018. URL https://www.vep.si/validator/
forms/document-verify.

[10] eesti. Siva demo application, oct 2018. URL https://siva-arendus.eesti.ee/.

[11] European Parliament and Council of the European Union. Regulation (EU) No
910/2014 of the European Parliament and of the Council of 23 July 2014 on elec-
tronic identification and trust services for electronic transactions in the internal market
and repealing Directive 1999/93/EC, July 2014. URL https://eur-lex.europa.
eu/legal-content/DE/TXT/?uri=CELEX:32014R0910.

26

[12] European Telecommunications Standards Institute (ETSI). Electronic signatures and
infrastructures (esi); pdf advanced electronic signature profiles; part 4. Technical re-
port, 2009. URL https://www.etsi.org/deliver/etsi_ts/102700_102799/
10277804/01.01.01_60/ts_10277804v010101p.pdf.

[13] European Telecommunications Standards Institute (ETSI). Electronic signatures and
infrastructures (esi); pdf advanced electronic signature profiles; part 1. Technical re-
port, 2009. URL https://www.etsi.org/deliver/etsi_ts/102700_102799/
10277801/01.01.01_60/ts_10277801v010101p.pdf.

[14] European Telecommunications Standards Institute (ETSI). Electronic sig-
natures and infrastructures (esi); cades baseline profile. Technical re-
port, 2012. URL https://www.etsi.org/deliver/etsi_ts/103100_103199/
103173/02.01.01_60/ts_103173v020101p.pdf.

[15] Evrotrust. Validate a signature, October 2018. URL https://www.evrotrust.com/
landing/en/a/validation.

[16] Agency for Digital Italy. Dss demonstration webapp v5.2, oct 2018. URL https:
//dss.agid.gov.it/validation.

[17] Arhs Group. Ellis digital signature, October 2018. URL https://ellis.
arhs-spikeseed.com/.

[18] intarsys. intarsys Online PDF Service. URL https://www.intarsys.de/.

[19] iText PDF. iText Online PDF Service. URL https://itextpdf.com/en/.

[20] Lakehead University. Electronic Approval Standards. URL https:

//www.lakeheadu.ca/sites/default/files/profile-data/dcataldo/

ElectronicApprovalStandards.pdf.

[21] Legislative Assembly of British Columbia. Digitally Signed PDFs. URL https:
//www.leg.bc.ca/content-hansard/Pages/Digital-Signatures.aspx.

[22] Vladislav Mladenov, Christian Mainka, Karsten Meyer zu Selhausen, Martin Grothe,
and Jörg Schwenk. 1 trillion dollar refund – how to spoof pdf signatures. In ACM
Conference on Computer and Communications Security, November 2019.

[23] RUNDFUNK UND TELEKOM REGULIERUNGS-GMBH. Rtr - signatur-prüfung,
oct 2018. URL https://www.signatur.rtr.at/de/vd/Pruefung.html.

[24] Statista, Inc. Operating Systems - Statistics & Facts, September 2019. URL https:
//www.statista.com/topics/1003/operating-systems/.

[25] Uniform Law Commission. Electronic Transactions Act. URL https:

//www.uniformlaws.org/committees/community-home/librarydocuments?

communitykey=2c04b76c-2b7d-4399-977e-d5876ba7e034&tab=

librarydocuments.

27

[26] United States Government Printing Office. Electronic signatures in global and na-
tional commerce act, 2000. URL https://www.govinfo.gov/content/pkg/
PLAW-106publ229/pdf/PLAW-106publ229.pdf.

[27] United States Government Publishing Office (GPO). Authentication, . URL https:
//www.govinfo.gov/about/authentication.

[28] United States Government Publishing Office (GPO). Congressional Bills, . URL
https://www.govinfo.gov/app/collection/bills/.

[29] United States Government Publishing Office (GPO). Collection of Certified Docu-
ments by the United States Government Publishing Office (GPO), . URL https:
//www.govinfo.gov/app/.

28

	Introduction
	Basics
	PDF Structure
	Interactive Elements
	Incremental Update
	Integrity Protection of PDFs

	Attacker Model
	UI Layer
	Entities
	Success Conditions

	Breaking blackPDF Certification
	Evil Annotation Attack (Specification Flaw: Breaking P3)
	Sneaky Signature Attack (Specification Flaw: Breaking P2)
	Limitations of eaa and ssa
	It's not a Bug, it's a Feature
	Permission Mismatch

	Evaluation
	Test Environment
	Tested Applications
	Results
	Abusing PDF Specification Flaws
	Abusing Applications' Implementation Flaws

	Countermeasures
	Long-term Countermeasures: Fixing the PDF Specification
	Short-term Countermeasures

	Bibliography

